Isolation and Investigation of Potential Non-Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Isolation
2.2. Polymerase Chain Reaction (PCR) and PCR-Restriction Fragment Length Polymorphism (RFLP)
2.3. Enzymatic Activity and β-Glucosidase Activity
2.4. Physiological Characteristics
2.5. Environmental Tolerance and Fermentation Rates
2.6. Wine Fermentation
2.7. Analysis of Wine Characteristics and Viable Cell Counts
2.8. Volatile Aromatic Compounds in Muscat Bailey A Wine
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification of Non-Saccharomyces Yeasts Using PCR-RFLP Analysis
3.2. Physiological Characteristics of Non-Saccharomyces Yeasts
3.3. Biochemical Characteristics for Carbon Assimilation of Non-Saccharomyces Yeasts
3.4. Enzymatic Activity and the Effect of Growth Medium on β-Glucosidase Production
3.5. Effect of β-Glucosidase-Producing Non-Saccharomyces Yeasts on Fermentation Characteristics and Volatile Aromatic Profiling of MBA Wine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stanley, D.; Bandara, A.; Fraser, S.; Chambers, P.J.; Stanley, G.A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 2010, 109, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Banda, C.; Park, H.D. Effect of inoculation strategy of non-Saccharomyces yeasts on fermentation characteristics and volatile higher alcohols and esters in Campbell Early wines. Aust. J. Grape Wine Res. 2019, 25, 384–395. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Studies on acetate ester production by non-Saccharomyces wine yeasts. Int. J. Food Microbiol. 2001, 70, 283–289. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Hu, K.; Tao, Y.S.; Zhu, X.L.; Peng, C.T.; Ullah, N. Potential of glycosidase from non-Saccharomyces isolates for enhancement of wine aroma. J. Food Sci. 2016, 81, M935–M943. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Acetate ester formation in wine by mixed cultures in laboratory fermentation. Int. J. Food Microbiol. 2003, 86, 181–188. [Google Scholar] [CrossRef]
- Spagna, G.; Barbagallo, R.N.; Palmeri, R.; Restuccia, C.; Giudici, P. Properties of endogenous β-glucosidases of a Pichia anomala strain isolated from Sicilian musts and wines. Enzyme Microb. Technol. 2002, 31, 1036–1041. [Google Scholar] [CrossRef]
- Swangkeaw, J.; Vichitphan, S.; Butzke, C.E.; Vichitphan, K. Characterization of β-glucosidases from Hanseniaspora sp. and Pichia anomala with potentially aroma-enhancing capabilities in juice and wine. World J. Microbiol. Biotechnol. 2011, 27, 423–430. [Google Scholar] [CrossRef]
- Kuo, H.P.; Wan, R.; Huang, C.Y.; Lai, J.T.; Lo, Y.C.; Huang, S.T. Characterization of an extracellular β-glucosidase from Dekkera bruxellensis for resveratrol production. J. Food Drug Anal. 2018, 26, 163–171. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuo, X.; Hu, L.; Zhang, X. Effects of crude β-glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the flavor complexity and characteristics of wines. Microorganisms 2020, 8, 953. [Google Scholar] [CrossRef]
- Benito, A.; Calderón, F.; Benito, S. The influence of non-Saccharomyces species on wine fermentation quality parameters. Fermentation 2019, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Park, H.D. Overexpressed acetohydroxyacid reductoisomerase (ILV5) gene in Saccharomyces cerevisiae reduces diacetyl contents in Korean Campbell Early and Muscat Bailey A grape wines. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 799–801. [Google Scholar] [CrossRef]
- Lee, S.B.; Choi, W.S.; Jo, H.J.; Yeo, S.H.; Park, H.D. Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces yeast as industrial wine starters. AMB Express 2016, 6, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.W.; Park, H.D. Characteristics of red wine fermentation of freeze-concentrated Campbell Early grape juice using various wine yeasts. Korean J. Food Preserv. 2009, 16, 977–984. [Google Scholar]
- Lee, J.Y.; Chae, S.K. Studies on the changes in the extraction of phenolics and color characteristics by the enzyme treatment of red grape (Muscat Bailey A) wine during fermentation. Korean J. Food Nutr. 2010, 23, 323–331. [Google Scholar]
- Maicas, S.; Mateo, J.J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: A review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Choi, K.T.; Lee, S.B.; Jeon, S.H.; Lee, W.C.; Choi, J.S.; Park, H.D. Quality characteristics and antioxidant activities of Muscat Bailey A wines mixed with different types of aronia. Korean J. Food Preserv. 2020, 217, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.W.; Park, H.D. Properties of red wine fermented using freeze-concentrated Muscat Bailey A grape juice. Korean J. Food Preserv. 2010, 17, 807–813. [Google Scholar]
- Kim, M.S.; Park, H.D. Reduction in the contents of acetaldehyde, methanol and fusel alcohols in the Muscat Bailey A wine fermented by Korean indigenous sugar-tolerant yeasts Saccharomyces cerevisiae S13 and D8. Korean J. Food Preserv. 2014, 21, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Wahyono, A.; Lee, S.B.; Kang, W.W.; Park, H.D. Improving bread quality using co-cultures of Saccharomyces cerevisiae, Torulaspora delbrueckii JK08, and Pichia anomala JK04. Ital. J. Food Sci. 2016, 28, 298–313. [Google Scholar]
- Kaiser, C.; Michaelis, S.; Mitchell, A. Methods in Yeast Genetics; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1994. [Google Scholar]
- Philippsen, P.; Stotz, A.; Scherf, C. DNA of Saccharomyces cerevisiae. Meth. Enzymol. 1991, 194, 169–182. [Google Scholar] [PubMed]
- Montrocher, R.; Verner, M.C.; Briolay, J.; Gautier, C.; Marmeisse, R. Phylogenetic analysis of the Saccharomyces cerevisiae group based on polymorphisms of rDNA spacer sequences. Int. J. Syst. Evol. Microbiol. 1998, 48, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambrook, J.; Russel, D.W. Molecular Cloning, 3rd ed.; A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schȁffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, S.; Lee, S.; Park, H.; Shin, H.; Holzapfel, W.; Huh, C.S. Development of putative probiotics as feed additives: Validation in a porcine-specific gastrointestinal tract model. Appl. Microbiol. Biotechnol. 2016, 100, 10043–10054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, C.P.; Fell, J.W. The Yeasts, a Taxonomic Study, 4th ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1998; pp. 89–94. [Google Scholar]
- Jung, Y.J.; Park, H.D. Antisense-mediated inhibition of acid trehalose (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae. Biotechnol. Lett. 2005, 27, 1855–1859. [Google Scholar] [CrossRef]
- Cunniff, P.A. (Ed.) Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995; pp. 28.1–28.16. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lee, S.B.; Kim, D.H.; Park, H.D. Effects of protectant and rehydration conditions on the survival rate and malolactic fermentation efficiency of freeze-dried Lactobacillus plantarum JH287. Appl. Microbiol. Biotechnol. 2016, 100, 7853–7863. [Google Scholar] [CrossRef]
- Jeong, H.S.; Lee, S.B.; Yeo, S.B.; Kim, D.H.; Choi, J.S.; Kim, D.H.; Yeo, S.H.; Park, H.D. Blending effect of Campbell Early and aronia wines fermented by the mixed culture of Pichia anomala JK04 and Saccharomyces cerevisiae Fermivin. Korean J. Food Preserv. 2017, 24, 472–482. [Google Scholar] [CrossRef]
- Kim, D.H.; Hong, Y.A.; Park, H.D. Co-fermentation of grape must by Issatchenckia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol. Lett. 2008, 30, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Guillamón, J.M.; Sabaté, J.; Barrio, E.; Cano, J.; Querol, A. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 1998, 169, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Zarzoso, B.; Peris-Torán, M.J.; Ramón, D.; Querol, A. Molecular characterization of Hanseniaspora species. Antonie van Leeuwenhoek 2001, 80, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zott, K.; Miot-Sertier, C.; Claisse, O.; Lonvaud-Funel, A.; Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 2008, 125, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Tofalo, R.; Schirone, M.; Telera, G.C.; Manetta, A.C.; Corsetti, A.; Suzzi, G. Influence of organic viticulture on non-Saccharomyces wine yeast populations. Ann. Microbiol. 2011, 61, 57–66. [Google Scholar] [CrossRef]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Barquet, M.; Martín, V.; Medina, K.; Pérez, G.; Carrau, F.; Gaggero, C. Tandem repeat-tRNA (TRtRNA) PCR method for the molecular typing of non-Saccharomyces subspecies. Appl. Microbiol. Biotechnol. 2012, 93, 807–814. [Google Scholar] [CrossRef]
- Wang, C.; Garcia-Fernández, D.; Mas, A.; Esteve-Zarzoso, B. Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE. Front. Microbiol. 2015, 6, 1156. [Google Scholar] [CrossRef] [Green Version]
- Anfang, N.; Brajkovich, M.; Goddard, M.R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Hong, Y.A.; Park, H.D. Role of non-Saccharomyces yeasts in Korean wines produced from Campbell Early grapes: Potential use of Hanseniaspora uvarum as a starter culture. Food Microbiol. 2013, 34, 207–214. [Google Scholar] [CrossRef]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherria) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Mateo, J.J.; Maicas, S. Application of non-Saccharomyces yeasts to wine-making process. Fermentation 2016, 2, 14. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Manzanares, P.; Ramón, D.; Querol, A. The role of non-Saccharomyces yeasts in industrial winemaking. Int. Microbiol. 1998, 1, 143–148. [Google Scholar]
- Fernández, M.; Úbeda, J.F.; Briones, A.I. Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int. J. Food Microbiol. 2000, 59, 29–36. [Google Scholar] [CrossRef]
- Verstrepen, K.J.; van Laere, S.D.M.; Vanderhaegen, B.M.P.; Derdelinckx, G.; Dufour, J.P.; Pretorius, I.S.; Winderickx, J.; Thevelein, J.M.; Delvaux, F.R. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl. Environ. Microbiol. 2003, 69, 5228–5237. [Google Scholar] [CrossRef] [Green Version]
- López, M.C.; Mateo, J.J.; Maicas, S. Screening of β-glucosidase and β-xylosidase activities in four non-Saccharomyces yeast isolates. J. Food Sci. 2015, 80, C1696–C1704. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Hernández, L.F.; Espinosa, J.C.; Fernández-González, M.; Briones, A. β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. Int. J. Food Microbiol. 2003, 80, 171–176. [Google Scholar] [CrossRef]
- Swangkeaw, J.; Vichitphan, S.; Butzke, C.E.; Vichitphan, K. The characterisation of a novel Pichia anomala β-glucosidase with potentially aroma-enhancing capabilities in wine. Ann. Microbiol. 2009, 59, 335–343. [Google Scholar] [CrossRef]
- Gonzalez, R.; Quirós, M.; Morales, P. Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Technol. 2013, 29, 55–61. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Challenges of the non-conventional yeast Wickerhamomyces anomalus in winemaking. Fermentation 2018, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Mendes Ferreira, A.; Clímaco, M.C.; Mendes Faia, A. The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components—A preliminary study. J. Appl. Microbiol. 2001, 91, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Hjelmeland, A.K.; Ebeler, S.E. Glycosidically bound volatile aroma compounds in grapes and wine: A review. Am. J. Enol. Vitic. 2015, 66, 1–11. [Google Scholar] [CrossRef] [Green Version]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma—A review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Lee, S.B.; Jeon, J.Y.; Park, H.D. Development of air-blast dried non-Saccharomyces yeast starter for improving quality of Korean persimmon wine and apple cider. Int. J. Food Microbiol. 2019, 290, 193–204. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Escott, C.; del Fresno, J.M.; Bañuelos, M.A.; Suárez-Lepe, J.A. Applications of Metschnikowia pulcherrima in wine biotechnology. Fermentation 2019, 5, 63. [Google Scholar] [CrossRef] [Green Version]
Species | Strains | Origin | GenBank Accession Number | Reference |
---|---|---|---|---|
Saccharomyces cerevisiae | W-3 | - | - | [35] |
Wickerhamomyces anomalus | JK04 | Nuruk | MF574300 | [22] |
Torulaspora delbrueckii | JK08 | Nuruk | MF574301 | [22] |
Starmerella bacillaris | MR35 | Muscat Bailey A(MBA) grape | MF574302 | This study |
Candida quercitrusa | P6 | Persimmon | MF574303 | This study |
Pichia kluyveri | P11 | Persimmon | MF574304 | This study |
Hanseniaspora vineae | S7 | Sémillon | MF574305 | This study |
Hanseniaspora uvarum | S8 | Sémillon | MF574306 | This study |
Candida railenensis | S18 | Sémillon | MF574307 | This study |
Metschnikowia pulcherrima | S36 | Sémillon | MF574308 | This study |
Carbon Source | Strains | Carbon Source | Strains | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W-3 | JK04 | JK08 | MR35 | P6 | P11 | S7 | S8 | S18 | S36 | W-3 | JK04 | JK08 | MR35 | P6 | P11 | S7 | S8 | S18 | S36 | ||
Fermentation | d-Xylose | - | + | - | - | + | - | - | - | + | + | ||||||||||
d-Glucose | + | + | + | + | + | + | + | + | + | + | Erythritol | - | + | - | - | - | - | - | - | - | - |
d-Galactose | + | d | + | - | + | - | - | - | + | - | Galactitol | - | - | - | - | - | - | - | - | - | - |
Maltose | + | + | - | - | - | - | - | - | - | - | d-Glucitol | - | + | + | - | + | - | - | - | + | + |
Sucrose | + | + | + | + | - | - | - | - | - | - | Glycerol | - | + | - | - | + | + | - | - | + | + |
Lactose | - | - | - | - | - | - | - | - | - | - | myo-Inositol | - | - | - | - | - | - | - | - | - | - |
Trehalose | - | - | - | - | - | - | - | - | - | - | d-Mannitol | - | + | + | - | + | - | - | - | + | + |
Raffinose | + | + | + | + | - | - | - | - | - | - | Ribitol | - | - | - | - | + | - | - | - | + | + |
Assimilation | Ethanol | + | + | + | - | + | + | - | - | + | + | ||||||||||
d-Glucose | + | + | + | + | + | + | + | + | + | + | Methanol | - | - | - | - | - | - | - | - | - | - |
d-Galactose | + | + | + | - | + | - | - | - | + | + | Citrate | - | - | - | - | + | - | - | - | + | + |
l-Sorbose | - | - | - | w | + | - | - | - | + | + | dl-Lactate | - | - | - | - | + | - | - | - | + | - |
Cellobiose | - | + | - | - | - | - | + | + | + | + | Succinate | - | + | - | - | + | s | - | - | + | + |
Lactose | - | - | - | - | - | - | - | - | - | - | d-Gluconate | - | - | - | - | + | s | - | + | w | w |
Maltose | + | + | - | - | + | - | w | - | + | + | α-Methyl-d-glucoside | - | + | - | - | + | - | - | - | + | + |
Melibiose | - | - | + | - | - | - | - | - | - | - | Salicin | - | + | - | - | - | + | + | + | + | + |
Sucrose | + | + | + | + | + | w | - | - | + | + | d-Glucosamine hydrochloride | - | - | - | - | - | s | - | - | - | - |
Trehalose | + | w | s | - | + | - | - | - | + | + | N-Acetyl-d-glucosamine | - | - | - | - | + | + | - | - | + | + |
Melezitose | + | + | w | - | + | - | - | - | + | + | Hexadecane | - | - | - | - | - | - | - | - | w | - |
Raffinose | + | + | + | + | - | - | - | - | - | - | 2-Keto-d-gluconate | + | - | + | - | + | - | - | + | + | + |
Inulin | - | - | - | - | - | - | - | - | - | - | 5-Keto-d-gluconate | + | + | + | - | + | + | - | - | + | + |
Starch | - | + | - | - | - | - | - | - | - | - | Saccharate | - | - | - | - | - | - | - | - | - | - |
d-Arabinose | - | - | - | - | - | - | - | - | d | - | Arbutin | - | + | - | - | d | - | + | + | + | + |
l-Arabinose | - | - | - | - | - | - | - | - | - | - | d-Glucuronate | - | - | - | - | - | - | - | - | - | - |
d-Ribose | - | - | - | - | - | - | - | - | - | - | Xylitol | - | w | - | - | + | + | - | - | + | + |
l-Rhamnose | - | - | - | - | - | - | - | - | - | - | l-Arabinitol | - | - | - | - | - | - | - | - | - | - |
Strains | Environmental Tolerance (OD 600 nm) | Fermentation Rate (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
20% Glucose | 50% Glucose | 8% EtOH | 12% EtOH | pH 4 | pH 2 | 200 mg/L K2S5O2 | 500 mg/L K2S5O2 | ||
W-3 | 42.63 ± 1.24 | 32.70 ± 2.28 | 12.21 ± 1.64 | 3.00 ± 0.53 | 33.60 ± 1.13 | 1.16 ± 0.05 | 18.68 ± 2.11 | 20.78 ± 4.63 | 90.47 ± 1.30 |
JK04 | 28.13 ± 1.66 | 30.08 ± 1.52 | 15.20 ± 2.03 | 1.78 ± 0.66 | 23.63 ± 2.46 | 7.15 ± 0.47 | 27.33 ± 6.47 | 24.13 ± 1.60 | 87.40 ± 1.58 |
JK08 | 43.03 ± 2.51 | 33.73 ± 3.39 | 3.51 ± 0.46 | 1.22 ± 0.07 | 35.70 ± 2.85 | 1.17 ± 0.07 | 20.23 ± 3.57 | 16.98 ± 1.66 | 86.89 ± 0.36 |
MR35 | 38.80 ± 1.91 | 25.93 ± 2.81 | 2.30 ± 0.12 | 1.03 ± 0.42 | 25.48 ± 2.18 | 10.83 ± 1.00 | 15.69 ± 1.52 | 14.00 ± 1.93 | 84.12 ± 2.21 |
P6 | 24.30 ± 1.28 | 18.45 ± 1.49 | 2.14 ± 0.24 | 0.70 ± 0.03 | 30.73 ± 2.16 | 9.60 ± 0.79 | 30.83 ± 3.15 | 28.20 ± 2.21 | 53.32 ± 0.84 |
P11 | 28.85 ± 2.64 | 26.13 ± 2.72 | 1.43 ± 0.07 | 0.41 ± 0.01 | 24.60 ± 1.14 | 1.41 ± 0.21 | 20.38 ± 2.32 | 21.80 ± 3.18 | 37.35 ± 2.12 |
S7 | 31.75 ± 2.26 | 25.13 ± 1.39 | 1.25 ± 0.23 | 0.41 ± 0.04 | 16.03 ± 1.17 | 1.39 ± 0.08 | 16.75 ± 1.78 | 12.43 ± 1.44 | 87.50 ± 0.95 |
S8 | 28.40 ± 1.41 | 23.35 ± 3.75 | 1.12 ± 0.44 | 0.49 ± 0.02 | 10.21 ± 1.85 | 4.35 ± 0.92 | 12.12 ± 1.53 | 11.42 ± 1.25 | 41.55 ± 1.20 |
S18 | 25.68 ± 1.45 | 23.73 ± 2.65 | 1.15 ± 0.48 | 0.37 ± 0.03 | 25.93 ± 3.04 | 5.73 ± 0.25 | 34.18 ± 4.77 | 29.73 ± 3.53 | 49.74 ± 2.54 |
S36 | 29.10 ± 3.32 | 27.65 ± 1.21 | 0.78 ± 0.03 | 0.38 ± 0.02 | 8.05 ± 0.38 | 1.79 ± 0.24 | 26.35 ± 1.48 | 30.20 ± 4.99 | 44.52 ± 1.31 |
Property | Strains | ||
---|---|---|---|
W-3 | W-3 + JK04 | W-3 + S36 | |
Alcohol (%, v/v) | 11.3 ± 0.1a | 11.3 ± 0.1a | 10.3 ± 0.1b |
Soluble solid (°Brix) | 5.0 ± 0.1a | 5.0 ± 0.0a | 5.0 ± 0.1a |
pH | 3.73 ± 0.02a | 3.78 ± 0.02a | 3.77 ± 0.02a |
Total acidity (%) | 0.47 ± 0.00b | 0.55 ± 0.01a | 0.57 ± 0.03a |
Reducing sugar (%) | 0.12 ± 0.01a | 0.12 ± 0.01a | 0.12 ± 0.01a |
Total phenolic compounds (%) | 0.14 ± 0.01a | 0.13 ± 0.01a | 0.13 ± 0.01a |
Organic acids (mg/mL) | |||
Citric acid | 1.07 ± 0.11a | 1.14 ± 0.13a | 1.09 ± 0.10a |
Tartaric acid | 1.58 ± 0.10a | 1.56 ± 0.16a | 1.72 ± 0.13a |
Malic acid | 4.60 ± 0.26a | 4.97 ± 0.32a | 4.82 ± 0.24a |
Succinic acid | 1.67 ± 0.07a | 1.55 ± 0.05a | 1.62 ± 0.09a |
Acetic acid | 0.15 ± 0.01b | 0.26 ± 0.03a | 0.21 ± 0.02a |
Volatile ester compounds (mg/L) | |||
Ethyl acetate | 141.43 ± 12.38b | 261.12 ± 23.05a | 151.05 ± 19.67b |
Isobutyl acetate | 8.84 ± 0.95b | 11.00 ± 0.68a | 12.68 ± 1.04a |
Isoamyl acetate | 545.91 ± 41.94a | 493.13 ± 36.86a | 548.54 ± 46.25a |
Ethyl hexanoate | 153.47 ± 10.12b | 131.47 ± 12.31b | 182.65 ± 16.00a |
n-Hexyl acetate | 7.64 ± 0.35a | 3.64 ± 0.21c | 5.31 ± 0.38b |
Ethyl heptanoate | 1.20 ± 0.08a | 1.20 ± 0.10a | 1.41 ± 0.13a |
Ethyl octanoate | 426.41 ± 35.31b | 430.52 ± 38.14b | 513.40 ± 21.06a |
Isobutyl octanoate | 1.49 ± 0.11b | 1.68 ± 0.13b | 2.28 ± 0.20a |
Ethyl decanoate | 427.18 ± 31.68b | 469.09 ± 29.57ab | 534.14 ± 39.63a |
Isoamyl octanoate | 13.50 ± 1.65b | 12.63 ± 1.21b | 16.53 ± 1.34a |
Methyl salicylate | 31.60 ± 2.15b | 32.54 ± 3.08b | 39.06 ± 3.36a |
2-Phenylethyl acetate | 87.26 ± 6.53a | 36.13 ± 2.62c | 62.22 ± 4.49b |
Ethyl dodecanoate | 162.81 ± 12.36a | 143.79 ± 10.30a | 142.20 ± 11.27a |
Volatile terpene compounds (mg/L)/*Increase level (%) | |||
Linalool | 0.81 ± 0.07c | 1.19 ± 0.06a / 46.9% | 1.03 ± 0.08b / 27.2% |
Citronellol | 5.60 ± 0.25b | 6.37 ± 0.30a / 13.8% | 6.77 ± 0.28a / 20.9% |
Geraniol | 2.00 ± 0.13b | 2.38 ± 0.11a / 19.0% | 2.33 ± 0.13a / 16.5% |
Sensory score | |||
Color | 5.80 ± 1.82a | 5.85 ± 1.95a | 6.15 ± 1.84a |
Flavor | 5.20 ± 1.89a | 5.60 ± 1.79a | 5.45 ± 2.01a |
Taste | 4.15 ± 1.58a | 4.50 ± 1.66a | 4.65 ± 1.38a |
Overall preference | 5.65 ± 1.66a | 6.30 ± 1.62a | 6.20 ± 1.63a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-B.; Park, H.-D. Isolation and Investigation of Potential Non-Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine. Microorganisms 2020, 8, 1552. https://doi.org/10.3390/microorganisms8101552
Lee S-B, Park H-D. Isolation and Investigation of Potential Non-Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine. Microorganisms. 2020; 8(10):1552. https://doi.org/10.3390/microorganisms8101552
Chicago/Turabian StyleLee, Sae-Byuk, and Heui-Dong Park. 2020. "Isolation and Investigation of Potential Non-Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine" Microorganisms 8, no. 10: 1552. https://doi.org/10.3390/microorganisms8101552
APA StyleLee, S. -B., & Park, H. -D. (2020). Isolation and Investigation of Potential Non-Saccharomyces Yeasts to Improve the Volatile Terpene Compounds in Korean Muscat Bailey A Wine. Microorganisms, 8(10), 1552. https://doi.org/10.3390/microorganisms8101552