Aspegillus terreus: From Soil to Industry and Back
Abstract
:1. Introduction
2. Aspergillus terreus as Itaconic Acid Producer
3. Aspergillus terreus as a Part of the Soil-Plant Systems: Friend or Foe?
4. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Zilber-Rosenberg, I.; Rosenberg, E. Role of Microorganisms in the Evolution of Animals and Plants: The Hologenome Theory of Evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.E.H.; Zechmeister-Boltenstern, S.; Keiblinger, K.M. Does Soil Contribute to the Human Gut Microbiome? Microorganisms 2019, 7, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbio. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.E.; Triplett, L.R.; Argueso, C.T.; Trivedi, P. Communication in the Phytobiome. Cell 2017, 169, 587–598. [Google Scholar] [CrossRef] [Green Version]
- Sylvia, D.M. Principles and Application of Soil Microbiology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Worrich, A.; Stryhanyuk, H.; Musat, N.; König, S.; Banitz, T.; Centler, F.; Frank, K.; Thullner, M.; Harms, H.; Richnow, H.H.; et al. Mycelium-Mediated Transfer of Water and Nutrients Stimulates Bacterial Activity in Dry and Oligotrophic Environments. Nat. Commun. 2017, 8, 15472. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Haq, I.U.; Zhang, M.; Yang, P.; Van Elsas, J.D. The Interactions of Bacteria with Fungi in SoilP: Emerging Concepts. Adv. App. Microbiol. 2014, 89, 185–215. [Google Scholar] [CrossRef]
- Park, H.S.; Jun, S.C.; Han, K.H.; Hong, S.B.; Yu, J.H. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. Adv. Appl. Microbiol. 2017, 100, 161–202. [Google Scholar] [CrossRef]
- Kamata, S.; Sakai, H.; Hirota, A. Isolation of Acetylaranotin, Bisdethiodi(Methylthio)—Acetylaranotin and Terrein as Plant Growth Inhibitors from a Strain of Aspergillus terreus. Agric. Biol. Chem. 1983, 47, 2637–2638. [Google Scholar] [CrossRef]
- Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. Biotechnological Production of Itaconic Acid and Its Biosynthesis in Aspergillus terreus. App. Microbiol. Biotechnol. 2009, 84, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Nadumane, V.K.; Venkatachalam, P.; Gajaraj, B. Aspergillus Applications in Cancer Research. In New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications; Gupta, V., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2016; pp. 243–252. [Google Scholar] [CrossRef]
- Evans, T.J.; Gupta, R.C. Tremorgenic Mycotoxins. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 1033–1041. [Google Scholar] [CrossRef]
- Louis, B.; Waikhom, S.D.; Roy, P.; Bhardwaj, P.K.; Singh, M.W.; Chandradev, S.K.; Talukdar, N.C. Invasion of Solanum Tuberosum, L. by Aspergillus terreus: A Microscopic and Proteomics Insight on Pathogenicity. BMC Res. Notes 2014, 7, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.A.; Peterson, S.W.; Frisvad, J.C.; Varga, J. New Species in Aspergillus Section Terrei. Stud. Mycol. 2011, 69, 39–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha da Cruz, J.; Machado de Castro, A.; Camporese Sérvulo, E.F. World Market and Biotechnological Production of Itaconic Acid. 3 Biotech 2018, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K. Production of Itaconic Acid and Mannitol by a New Mold, Aspergillus Itaconicus. Acta Phytochim. 1931, 5, 271–287. [Google Scholar]
- Kawamura, D.; Furuhashi, M.; Saito, O.; Matsui, H. Production of Itaconic Acid by Fermentation. JP Patent 56,137,893, 1981. [Google Scholar]
- Bonnarme, P.; Gillet, B.; Sepulchre, A.M.; Role, C.; Beloeil, J.C.; Ducrocq, C. Itaconate Biosynthesis in Aspergillus terreus. J. Bacteriol. 1995, 177, 3573–3578. [Google Scholar] [CrossRef] [Green Version]
- Kanamasa, S.; Dwiarti, L.; Okabe, M.; Park, E.Y. Cloning and Functional Characterization of the Cis-Aconitic Acid Decarboxylase (CAD) Gene from Aspergillus terreus. Appl. Microbiol. Biotechnol. 2008, 80, 223–229. [Google Scholar] [CrossRef]
- Steel, R.; Lentz, C.P.; Martin, S.M. Submerged Citric Acid Fermentation of Sugar Beet Molasses: Increase in Scale. Can. J. Microbiol. 1955, 1, 299–311. [Google Scholar] [CrossRef]
- Magalhães, A.I.; de Carvalho, J.C.; Medina, J.D.C.; Soccol, C.R. Downstream Process Development in Biotechnological Itaconic Acid Manufacturing. Appl. Microbiol. Biotechnol. 2017, 101, 1–12. [Google Scholar] [CrossRef]
- Bafana, R.; Pandey, R.A. New Approaches for Itaconic Acid Production: Bottlenecks and Possible Remedies. Crit. Rev. Biotechnol. 2018, 38, 68–82. [Google Scholar] [CrossRef]
- Di Donato, P.; Fiorentino, G.; Anzelmo, G.; Tommonaro, G.; Nicolaus, B.; Poli, A. Re-Use of Vegetable Wastes as Cheap Substrates for Extremophile Biomass Production. Waste Biomass Valorization 2011, 2, 103–111. [Google Scholar] [CrossRef]
- Banat, I.M.; Satpute, S.K.; Cameotra, S.S.; Patil, R.; Nyayanit, N.V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production. Front. Microbiol. 2014, 5, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuenz, A.; Krull, S. Biotechnological Production of Itaconic Acid—Things You Have to Know. Appl. Microbiol. Biotechnol. 2018, 102, 3901–3914. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.; Rendueles, M.; Díaz, M. Microbial Production of Specialty Organic Acids from Renewable and Waste Materials. Crit. Rev. Biotechnol. 2015, 35, 497–513. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, N.; Vassileva, M.; Spassova, D.; Hadjiev, P. Citric Acid Production by Immobilized Aspergillus Niger on Starch Hydrolysate Medium. In Recent Advances in Biotechnology; Vardar-Sukan, F., Sukan, Ş.S., Eds.; NATO ASI Series (Series E: Applied Sciences); Springer: Berlin/Heidelberg, Germany, 1992; Volume 210. [Google Scholar] [CrossRef]
- Yahiro, K.; Shibata, S.; Jia, S.R.; Park, Y.; Okabe, M. Efficient Itaconic Acid Production from Raw Corn Starch. J. Ferment. Bioeng. 1997, 84, 375–377. [Google Scholar] [CrossRef]
- Petruccioli, M.; Pulci, V.; Federici, F. Itaconic Acid Production by Aspergillus terreus on Raw Starchy Materials. Lett. Appl. Microbiol. 1999, 28, 309–312. [Google Scholar] [CrossRef]
- Reddy, C.S.K.; Singh, R.P. Enhanced Production of Itaconic Acid from Corn Starch and Market Refuse Fruits by Genetically Manipulated Aspergillus terreus SKR10. Bioresour. Technol. 2002, 85, 69–71. [Google Scholar] [CrossRef]
- Hevekerl, A.; Kuenz, A.; Vorlop, K.D. Filamentous Fungi in Microtiter Plates—An Easy Way to Optimize Itaconic Acid Production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 2014, 98, 6983–6989. [Google Scholar] [CrossRef]
- Krull, S.; Eidt, L.; Hevekerl, A.; Kuenz, A.; Prüße, U. Itaconic Acid Production from Wheat Chaff by Aspergillus terreus. Process Biochem. 2017, 63, 169–176. [Google Scholar] [CrossRef]
- Magalhães, A.I.; de Carvalho, J.C.; Thoms, J.F.; Souza Silva, R.; Soccol, C.R. Second-Generation Itaconic Acid: An Alternative Product for Biorefineries? Bioresour. Technol. 2020, 308, 123319. [Google Scholar] [CrossRef]
- Vassiliev, N.; Medina, A.; Martos, G.; Galvez, A.; Martos, V.; Vassileva, M. Solubilization of Animal Bonechar by a Filamentous Fungus Employed in Solid State Fermentation. Ecol. Eng. 2013, 58, 166–169. [Google Scholar] [CrossRef]
- Jiménez-Quero, A.; Pollet, E.; Avérous, L.; Phalip, V. Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass. Molecules 2020, 25, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, B.C.; Kennedy, G.J.; Qureshi, N.; Bowman, M.J. Production of Itaconic Acid from Pentose Sugars by Aspergillus terreus. Biotechnol. Prog. 2017, 33, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C.; Kennedy, G.J.; Bowman, M.J.; Qureshi, N.; Dunn, R.O. Factors Affecting Production of Itaconic Acid from Mixed Sugars by Aspergillus terreus. Appl. Biochem. Biotechnol. 2019, 187, 449–460. [Google Scholar] [CrossRef]
- Kuenz, A.; Gallenmüller, Y.; Willke, T.; Vorlop, K.D. Microbial Production of Itaconic Acid: Developing a Stable Platform for High Product Concentrations. Appl. Microbiol. Biotechnol. 2012, 96, 1029–1216. [Google Scholar] [CrossRef]
- Krull, S.; Hevekerl, A.; Kuenz, A.; Prüße, U. Process Development of Itaconic Acid Production by a Natural Wild Type Strain of Aspergillus terreus to Reach Industrially Relevant Final Titers. Appl. Microbiol. Biotechnol. 2017, 101, 4063–4072. [Google Scholar] [CrossRef]
- Vassilev, N.; Malusá, E.; Requena, A.R.; Martos, V.; López, A.; Maksimovic, I.; Vassileva, M. Potential Application of Glycerol in the Production of Plant Beneficial Microorganisms. J. Ind. Microbiol. Biotechnol. 2017, 44, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Kuenz, A. Itaconsäureherstellung Aus Nachwachsenden Rohstoffen Als Ersatz Für Petrochemisch Hergestellte Acrylsäure. Ph.D. Thesis, Technical University of Braunschweig, Braunschweig, Germany, 2008. [Google Scholar]
- Juy, M.L.; Orejas, J.A.; Lucca, M.E. Study of Itaconic Acid Production by Aspergillus Terrus MJL05 Strain with Different Variable. Rev. Colomb. Biotecnol. 2010, 12, 187–193. [Google Scholar]
- Vassilev, N.; Medina, A.; Eichler-Löbermann, B.; Flor-Peregrín, E.; Vassileva, M. Animal Bone Char Solubilization with Itaconic Acid Produced by Free and Immobilized Aspergillus terreus Grown on Glycerol-Based Medium. Appl. Biochem. Biotechnol. 2012, 168, 1311–1318. [Google Scholar] [CrossRef]
- Rychtera, M.; Wase, D.A.J. Growth of Aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH. J. Chem. Technol. Biotechnol. 1981, 3, 509–521. [Google Scholar] [CrossRef]
- Kautola, H.; Vahvaselkä, M.; Linko, Y.Y.; Linko, P. Itaconic Acid Production by Immobilized Aspergillus terreus from Xylose and Glucose. Biotechnol. Lett. 1985, 7, 167–172. [Google Scholar] [CrossRef]
- Kautola, H.; Vassilev, N.; Linko, Y.Y. Itaconic Acid Production by Immobilized Aspergillus terreus on Sucrose Medium. Biotechnol. Lett. 1989, 11, 313–318. [Google Scholar] [CrossRef]
- Kautola, H.; Vassilev, N.; Linko, Y.Y. Continuous Itaconic Acid Production by Immobilized Biocatalysts. J. Biotechnol. 1990, 116, 369–378. [Google Scholar] [CrossRef]
- Vassilev, N.; Kautola, H.; Linko, Y.Y. Immobilized Aspergillus terreus in Itaconic Acid Production from Glucose. Biotechnol. Lett. 1992, 14, 201–206. [Google Scholar] [CrossRef]
- Nemestóthy, N.; Bakonyi, P.; Komáromy, P.; Bélafi-Bakó, K. Evaluating Aeration and Stirring Effects to Improve Itaconic Acid Production from Glucose Using Aspergillus terreus. Biotechnol. Lett. 2019, 41, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Yahiro, K.; Takahama, T.; Jai, S.R.; Park, Y.; Okabe, M. Comparison of Air-Lift and Stirred Tank Reactors for Itaconic Acid Production by Aspergillus terreus. Biotechnol. Lett. 1997, 19, 619–621. [Google Scholar] [CrossRef]
- Kreyenschulte, D.; Heyman, B.; Eggert, A.; Maßmann, T.; Kalvelage, C.; Kossack, R.; Regestein, L.; Jupke, A.; Büchs, J. In Situ Reactive Extraction of Itaconic Acid during Fermentation of Aspergillus terreus. Biochem. Eng. J. 2018, 135, 133–141. [Google Scholar] [CrossRef]
- Steiger, M.G.; Blumhoff, M.L.; Mattanovich, D.; Sauer, M. Biochemistry of Microbial Itaconic Acid Production. Front. Microbiol. 2013, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Ma, Q.; Wei, D.; Wang, F. Metabolic Engineering of an Industrial Aspergillus Niger Strain for Itaconic Acid Production. 3 Biotech 2020, 10, 113. [Google Scholar] [CrossRef]
- Karaffa, L.; Kubicek, C.P. Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story? Appl. Microbiol. Biotechnol. 2019, 103, 2889–2902. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.; Shah, A.H.; Hussain, A.; Shinwari, Z.K.; Khan, S.A.; Khan, W.; Jan, S.A. Potential of Endophytic Fungus Aspergillus terreus as Potent Plant Growth Promoter. Pak. J. Bot. 2020, 52, 1083–1086. [Google Scholar] [CrossRef]
- Waqas, M.; Khana, A.L.; Hamayuna, M.; Shahzad, R.; Kang, S.M.; Kim, J.G.; Lee, I.J. Endophytic Fungi Promote Plant Growth and Mitigate the Adverse Effects of Stem Rot: An Example of Penicillium Citrinum and Aspergillus terreus. J. Plant Interact. 2015, 10, 280–287. [Google Scholar] [CrossRef]
- Yoo, S.J.; Shin, D.J.; Won, H.Y.; Song, J.; Sang, M.K. Aspergillus terreus JF27 Promotes the Growth of Tomato Plants and Induces Resistance against Pseudomonas Syringae Pv. Tomato. Mycobiology 2018, 46, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Ghany, T.M.; Alawlaqi, M.M. Molecular Identification of Rhizospheric Thermo-Halotolerant Aspergillus terreus and Its Correlation to Sustainable Agriculture. BioResources 2018, 13, 8012–8023. [Google Scholar] [CrossRef]
- Shimada, A.; Inokuchi, T.; Kusano, M.; Takeuchi, S.; Inoue, R.; Tanita, M.; Fujioka, S.; Kimura, Y. 4-Hydroxykigelin and 6-Demethylkigelin, Root Growth Promoters, Produced by Aspergillus terreus. Zeitschrift für Naturforschung 2004, 59, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C.; Larsen, T.O. Chemodiversity in the Genus Aspergillus. Appl. Microbiol. Biotechnol. 2015, 99, 7859–7877. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdallah, R.A.; Khiareddine, H.J.; Mejdoub-Trabelsi, B. Soil-Borne and Compost-Borne Aspergillus Species for Biologically Controlling Post-Harvest Diseases of Potatoes Incited by Fusarium Sambucinum and Phytophthora Erythroseptica. J. Plant Pathol. Microbiol. 2015, 6, 313. [Google Scholar] [CrossRef] [Green Version]
- Joncy, A.M.; Angappan, K.; Nakkeeran, S.; Tilak, M.; Umapathy, G. Exploration of Antifungal Metabolites of Aspergillus terreus (ENF12), an Endophytic Fungus Isolated from Mulberry (Morus Indica, L.) Leaf. Curr. J. Appl. Sci. Technol. 2019, 38, 1–15. [Google Scholar] [CrossRef]
- Kim, K.; Kang, J.; Choi, Y.; Yun, H.; Ha, H.; Kang, K. Characterization of an Antifungal Compound Isolated from an Antagonistic Fungus Aspergillus terreus against Phytopathogenic Fungi. Korean J. Pestic. Sci. 1998, 2, 40–45. [Google Scholar]
- Al-Shibli, H.; Dobretsov, S.; Al-Nabhani, A.; Maharachchikumbura, S.S.N.; Rethinasamy, V.; Al-Sadi, A.M. Aspergillus terreus Obtained from Mangrove Exhibits Antagonistic Activities against Pythium Aphanidermatum-Induced Damping-off of Cucumber. PeerJ 2019, 7, 7884. [Google Scholar] [CrossRef] [Green Version]
- Halo, B.A.; Al-Yahyai, R.A.; Al-Sadi, A.M. Aspergillus terreus Inhibits Growth and Induces Morphological Abnormalities in Pythium Aphanidermatum and Suppresses Pythium-Induced Damping-off of Cucumber. Front. Microbiol. 2018, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Melo, I.S.; Faull, J.L.; Nascimento, R.S. Antagonism of Aspergillus terreus to Sclerotinia Sclerotiorum. Braz. J. Microbiol. 2006, 37, 417–419. [Google Scholar] [CrossRef] [Green Version]
- El-Halim, A.; Saad, A.; Khalil, M.T.; Ragab, F.M.A.; Mekawey, A.A.I.; Abd El-Wareth, M.T.A. Efficacy of the Fungi Aspergillus terreus and Penicillium Janthinellum as Biological Control Agents against Biomphalaria Alexandrina Snails. Int. J. Environ. Sci. Eng. 2014, 5, 25–37. [Google Scholar]
- De Lucca, A.J. Harmful Fungi in Both Agriculture and Medicine. Rev. Iberoam. Micol. 2007, 24, 3–13. [Google Scholar] [CrossRef]
- Bengyella, L.; Yekwa, E.L.; Subhani, M.N.; Tambo, E.; Nawaz, K.; Hetsa, B.A.; Iftikhar, S.; Waikhom, S.D.; Roy, P. Invasive Aspergillus terreus Morphological Transitions and Immunoadaptations Mediating Antifungal Resistance. Infect. Drug Resist. 2017, 10, 425–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noorabadi, M.T.; Babaeizad, V.; Zare, R.; Asgari, B.; Haidukowski, M.; Epifani, F.; Stea, G.; Moretti, A.; Logrieco, A.F.; Susca, A. Isolation, Molecular Identification, and Mycotoxin Production of Aspergillus Species Isolated from the Rhizosphere of Sugarcane in the South of Iran. Toxins 2020, 12, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, H. How to Trigger a Fungal Weapon. Elife 2015, e10504. [Google Scholar] [CrossRef]
- Gressler, M.; Meyer, F.; Heine, D.; Hortschansky, P.; Hertweck, C.; Brock, M. Phytotoxin Production in Aspergillus terreus Is Regulated by Independent Environmental Signals. Elife 2015, 4, e07861. [Google Scholar] [CrossRef]
- Zaehle, C.; Gressler, M.; Shelest, E.; Geib, E.; Hertweck, C.; Brock, M. Terrein Biosynthesis in Aspergillus terreus and Its Impact on Phytotoxicity. Chem. Biol. 2014, 21, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Bartash, R.; Guo, Y.; Pope, J.B.; Levi, M.H.; Szymczak, W.; Saraiya, N.; Nori, P. Periprosthetic Hip Joint Infection with Aspergillus terreus: A Clinical Case and a Review of the Literature. Med. Mycol. Case Rep. 2017, 18, 24–27. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ali, G.S.; Sitohy, M.Z. Induction of Taxol Biosynthesis by Aspergillus terreus, Endophyte of Podocarpus Gracilior Pilger, upon Intimate Interaction with the Plant Endogenous Microbes. Process Biochem. 2018, 71, 31–40. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. Front Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef]
- Vassileva, M.; Flor-Peregrin, E.; Malusá, E.; Vassilev, N. Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. Front. Plant Sci. 2020, 11, 1068. [Google Scholar] [CrossRef] [PubMed]
- Aydi-Ben Abdallah, R.; Hassine, M.; Jabnoun-Khiareddine, H.; Haouala, R.; Daami-Remadi, M. Antifungal Activity of Culture Filtrates and Organic Extracts of Aspergillus Spp. against Pythium Ultimum. Tunesian J. Plant Prot. 2014, 9, 17–30. [Google Scholar]
- Boutheina, M.T.; Abdallah Rania, A.B.; Nawaim, A.; Mejda, D.R. Antifungal Potential of Extracellular Metabolites from Penicillium Spp. and Aspergillus Spp. Naturally Associated to Potato against Fusarium Species Causing Tuber Dry Rot. J. Microb. Biochem. Technol. 2017, 9, 181–190. [Google Scholar] [CrossRef]
- Cazar, M.E.; Schmeda-Hirschmann, G.; Astudillo, L. Antimicrobial Butyrolactone I Derivatives from the Ecuadorian Soil Fungus Aspergillus terreus Thorn. Var Terreus. World J. Microbiol. Biotechnol. 2005, 21, 1067–1075. [Google Scholar] [CrossRef]
- Phattanawasin, P.; Pojchanakom, K.; Sotanaphun, U.; Piyapolrungroj, N.; Zungsontiporn, S. Weed Growth Inhibitors from Aspergillus Fischeri TISTR 3272. Nat. Prod. Res. 2007, 21, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.d.O.; Murta, H.M.; Valadares, R.V.; Silveira, W.B.; da Silva, I.R.; da Costa, M.D. Oxalic Acid Is More Efficient than Sulfuric Acid for Rock Phosphate Solubilization. Miner. Eng. 2020, 155, 106458. [Google Scholar] [CrossRef]
- Mendes, G.d.O.; Galvez, A.; Vassileva, M.; Vassilev, N. Fermentation Liquid Containing Microbially Solubilized P Significantly Improved Plant Growth and P Uptake in Both Soil and Soilless Experiments. Appl. Soil Ecol. 2017, 117, 208–211. [Google Scholar] [CrossRef]
- Vassilev, N.; Eichler-Löbermann, B.; Flor-Peregrin, E.; Martos, V.; Reyes, A.; Vassileva, M. Production of a Potential Liquid Plant Bio-Stimulant by Immobilized Piriformospora Indica in Repeated-Batch Fermentation Process. AMB Express 2017, 7, 106. [Google Scholar] [CrossRef]
- Narra, M.; Dixit, G.; Divecha, J.; Madamwar, D.; Shah, A.R. Production of Cellulases by Solid State Fermentation with Aspergillus terreus and Enzymatic Hydrolysis of Mild Alkali-Treated Rice Straw. Bioresour. Technol. 2012, 121, 355–361. [Google Scholar] [CrossRef]
- Malusá, E.; Sas Paszt, L.; Głuszek, S.; Ciesielska, J. Organic Fertilizers to Sustain Soil Fertility. In Fertilizers; Sinha, S., Pant, K., Eds.; Studium Press LLC: Houston, TX, USA, 2014; Volume 1, pp. 255–281. [Google Scholar]
- Deepika, V.B.; Murali, T.S.; Satyamoorthy, K. Modulation of Genetic Clusters for Synthesis of Bioactive Molecules in Fungal Endophytes: A Review. Microbiol. Res. 2016, 182, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.H.; Patil, M.P.; Maheshwari, V.L. Bioactive Secondary Metabolites From Endophytic Fungi: A Review of Biotechnological Production and Their Potential Applications. Stud. Nat. Prod. Chem. 2016, 49, 189–205. [Google Scholar] [CrossRef]
- O’Malley, M.A. “Everything Is Everywhere: But the Environment Selects”: Ubiquitous Distribution and Ecological Determinism in Microbial Biogeography. Stud. Hist. Philos. Biol. Biomed. Sci. 2008, 39, 314–321. [Google Scholar] [CrossRef]
- Wierckx, N.; Agrimi, G.; Lübeck, P.S.; Steiger, M.G.; Mira, N.P.; Punt, P.J. Metabolic Specialization in Itaconic Acid Production: A Tale of Two Fungi. Curr. Opin. Biotechnol. 2020, 62, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Crognale, S.; Petruccioli, M.; Fenice, M.; Federici, F. Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enz. Microb. Technol. 2008, 42, 445–449. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassileva, M.; Malusá, E.; Eichler-Löbermann, B.; Vassilev, N. Aspegillus terreus: From Soil to Industry and Back. Microorganisms 2020, 8, 1655. https://doi.org/10.3390/microorganisms8111655
Vassileva M, Malusá E, Eichler-Löbermann B, Vassilev N. Aspegillus terreus: From Soil to Industry and Back. Microorganisms. 2020; 8(11):1655. https://doi.org/10.3390/microorganisms8111655
Chicago/Turabian StyleVassileva, Maria, Eligio Malusá, Bettina Eichler-Löbermann, and Nikolay Vassilev. 2020. "Aspegillus terreus: From Soil to Industry and Back" Microorganisms 8, no. 11: 1655. https://doi.org/10.3390/microorganisms8111655
APA StyleVassileva, M., Malusá, E., Eichler-Löbermann, B., & Vassilev, N. (2020). Aspegillus terreus: From Soil to Industry and Back. Microorganisms, 8(11), 1655. https://doi.org/10.3390/microorganisms8111655