Settleable Dust and Bioburden in Portuguese Dwellings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Studied Dwellings
2.2. Settled Dust Sampling
2.3. Electrostatic Dust Cloth Extraction and Bioburden Characterization
2.4. Statistical Analysis
3. Results
3.1. Dust Loading Rates
3.2. Bacterial Contamination
3.3. Fungal Contamination
3.4. Azole-Resistance Screening
3.5. Molecular Assessment
3.6. Correlation Analyses
3.7. Comparison Analysis
4. Discussion
5. Conclusions
- (a)
- Passive sampling methods in campaigns to assess sedimentable dust and bioburden in dwellings;
- (b)
- MEA and DG18 when using culture-based methods to assess fungi;
- (c)
- In parallel, with culture methods, molecular tools targeting the most suitable indicators of fungal contamination indoors;
- (d)
- Azole resistance screening to unveil azole resistance detection in fungal species besides Aspergillus section Fumigati.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almeida-Silva, M.; Almeida, S.M.; Wolterbeek, T.H. Elderly exposure to indoor air pollutants. Atmos. Environ. 2014, 85, 54–63. [Google Scholar] [CrossRef]
- Viegas, C.; Viegas, S.; Quintal Gomes, A.; Taubel, M.; Sabino, R. Exposure to Microbiological Agents in Indoor and Occupational Environments; Springer Nature: London, UK; Berlin, Germany; New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Sturm, R. Bioaerosol sin the lungs of subjects with different ages-part1: Deposition modeling. Ann. Transl. Med. 2016, 4, 211. [Google Scholar] [CrossRef] [Green Version]
- Bunger, J.; Antlauf-Lammers, M.; Schulz, T.; Westphal, G.; Muller, M.; Ruhnau, P.; Hallier, E. Health complaints and immunological markers of exposure to bioaerosols among biowaste collectors and compost workers. Occup. Environ. Med. 2000, 57, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed] [Green Version]
- Heldal, K.; Halstensen, A.S.; Thorn, J.; Djupesland, P.; Wouters, I.; Eduard, W.; Halstensen, T.S. Upper airway inflammation in waste handlers exposed to bioaerosols. Occup. Environ. Med. 2003, 60, 444–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eduard, W.; Halstensen, A. Quantitative exposure assessment of organic dust. SJWEH Suppl. 2009, 7, 30. [Google Scholar]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [Green Version]
- Adams, K.; Greenbaum, D.S.; Shaikh, R.; van Erp, A.M.; Russell, A.G. Particulate matter components, sources, and health: Systematic approaches to testing effects. J. Air Waste Manag. Assoc. 2015, 65, 544–558. [Google Scholar] [CrossRef]
- Jayaprakash, B.; Adams, R.I.; Kirjavainen, P.; Karvonen, A.; Vepsäläinen, A.; Valkonen, M.; Järvi, K.; Sulyok, M.; Pekkanen, J.; Hyvärinen, A.; et al. Indoor microbiota in severely moisture damaged homes and the impact of interventions. Microbiome 2017, 5, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentese, S.; Arisoy, A.; Rad, A.Y.; Güllü, G. Bacteria and Fungi Levels in Various Indoor and Outdoor Environments in Ankara, Turkey. Clean-Soil Air Water 2009, 37, 487–493. [Google Scholar] [CrossRef]
- Ayanbimpe, G.M.; Wapwera, S.D.; Kuchin, D. Indoor air mycoflora of residential dwellings in Jos metropolis. Afr. Health Sci. 2010, 10, 172–176. [Google Scholar] [PubMed]
- Ekhaise, F.O.; Isitor, E.E.; Idehen, O.; Emoghene, A.O. Airborne Microflora in the Atmosphere of an Hospital Environment of University of Benin Teaching Hospital (UBTH), Benin City, Nigeria. World J. Agric. Sci. 2010, 6, 166–170. [Google Scholar]
- Ekhaise, F.O.; Ogboghodo, B.I. Microbiological indoor and outdoor air quality of two major hospitals in Benin City, Nigeria. Sierra Leone J. Biomed. Res. 2011, 3, 169–174. [Google Scholar]
- Sudharsanam, S.; Swaminathan, S.; Ramalingam, A.; Thangavel, G.; Annamalai, R.; Steinberg, R.; Balakrishnan, K.; Srikanth, P. Characterization of indoor bioaerosols from a hospital ward in a tropical setting. Afr. Health Sci. 2012, 12, 217–225. [Google Scholar] [CrossRef]
- Salama, K.F.; Berekaa, M.M. Assessment of air quality in Dammam slaughter houses, Saudi Arabia. Int. J. Med. Sci. Public Health 2015, 5, 287–291. [Google Scholar] [CrossRef]
- Park, D.U.; Yeom, J.K.; Lee, W.J.; Lee, K.M. Assessment of the levels of airborne bacteria, gram-negative bacteria, and fungi in hospital lobbies. Int. J. Environ. Res. Public Health 2013, 10, 541–555. [Google Scholar] [CrossRef]
- Tang, C.S.; Wan, G.H. Air quality monitoring of the post-operative recovery room and locations surrounding operating theatres in a medical center in Taiwan. PLoS ONE 2013, 8, e61093. [Google Scholar]
- Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef]
- Viegas, C.; Twarużek, M.; Lourenço, R.; Dias, M.; Almeida, B.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Kosicki, R.; Soszczyńska, E.; et al. Bioburden Assessment by Passive Methods on a Clinical Pathology Service in One Central Hospital from Lisbon: What Can it Tell Us Regarding Patients and Staff Exposure? Atmosphere 2020, 11, 351. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A.; Candeias, C.; Nunes, T.V.; Tome, M.J.C.; Vicente, E.D.; Avila, P.F.; Rocha, F. Passive monitoring of particulate matter and gaseous pollutants in Fogo Island, Cape Verde. Atmos. Res. 2018, 214, 250–262. [Google Scholar] [CrossRef]
- Beamer, P.I.; Sugeng, A.J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loha, M. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings. Environ. Sci. Process. Impacts 2014, 16, 1275–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canha, N.; Almeida, S.M.; Freitas, M.C.; Trancoso, M.; Sousa, A.; Mouro, F.; Wolterbeek, H.T. Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmos. Environ. 2014, 83, 21–34. [Google Scholar] [CrossRef] [Green Version]
- American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2009. [Google Scholar]
- Kilburg-Basnyat, B.; Metwali, N.; Thorne, P.S. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating and electrostatic charge. J. Occup. Environ. Hyg. 2016, 13, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Normand, A.C.; Vacheyrou, M.; Sudre, B.; Heederik, D.J.J.; Piarroux, R. Assessment of dust sampling methods for the study of cultivable- microorganism exposure in stables. Appl. Environ. Microbiol. 2009, 75, 7617–7623. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Monteiro, A.; Aranha Caetano, L.; Faria, T.; Carolino, E.; Viegas, S. Electrostatic Dust Cloth: A Passive Screening Method to Assess Occupational Exposure to Organic Dust in Bakeries. Atmosphere 2018, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Santos, P.; Almeida, B.; Monteiro, A.; Carolino, E.; Quintal Gomes, A.; Viegas, S. Electrostatic dust collector: A passive screening method to assess occupational exposure to organic dust in primary health care centers. Air Qual. Atmos. Health 2019, 12, 573–583. [Google Scholar] [CrossRef]
- Viegas, C.; Almeida, B.; Caetano, L.A.; Afanou, A.; Straumfors, A.; Veríssimo, C.; Gonçalves, P.; Sabino, R. Algorithm to assess the presence of Aspergillus fumigatus resistant strains: The case of Norwegian sawmills. Int. J. Environ. Health Res. 2020. [Google Scholar] [CrossRef]
- Denning, D.W.; Perlin, D.S. Azole resistance in Aspergillus: A growing public health menace. Future Microbiol. 2011, 6, 1229–1232. [Google Scholar] [CrossRef]
- Snelders, E.; Melchers, W.J.; Verweij, P.E. Azole resistance in Aspergillus fumigatus: A new challenge in the management of invasive aspergillosis? Future Microbiol. 2011, 6, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.G.; Meis, J.F. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin. Infect Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.; Pinheiro, D.; Maia, M.; Faria, M.A.; Lameiras, C.; Pinto, E. Aspergillus species collected from environmental air samples in Portugal-molecular identification, antifungal susceptibility and sequencing of cyp51A gene on A. fumigatus sensu stricto itraconazole resistant. J. Appl. Microbiol. 2019, 126, 1140–1148. [Google Scholar] [CrossRef]
- American Industrial Hygiene Association. Field Guide for the Determination of Biological Contaminants in Environmental Samples, 2nd ed.; AIHA: Fairfax, VA, USA, 1996. [Google Scholar]
- Madsen, A.M.; Matthiesen, C.B.; Frederiksen, M.W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Timm, M. Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J. Environ. Monit. 2012, 14, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- Mayer, Z.; Bagnara, A.; FaÅNrber, P.; Geisen, R. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the CFU of Aspergillus flavus in foods. Int. J. Food Microbiol. 2003, 82, 143–151. [Google Scholar] [CrossRef]
- Cruz-Perez, P.; Buttner, M.P.; Stetzenbach, L.D. Detection and quantitation of Aspergillus fumigatus in pure culture using polymerase chain reaction. Mol. Cell. Probes 2001, 15, 81–88. [Google Scholar] [CrossRef]
- Viegas, C.; Faria, T.; de Oliveira, A.C.; Caetano, L.A.; Carolino, E.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Soszczyńska, E.; Viegas, S. A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxins Res. 2017, 33, 285–295. [Google Scholar] [CrossRef]
- EPA, United States Environmental Protection Agency. About the National Exposure Research Laboratory (NERL). 2017. Available online: http://www.epa.gov/nerlcwww/moldtech.htm (accessed on 19 June 2017).
- Viegas, C.; Almeida, B.; Dias, M.; Caetano, L.A.; Carolino, E.; Gomes, A.Q.; Faria, T.; Martins, V.; Marta Almeida, S. Assessment of Children’s Potential Exposure to Bioburden in Indoor Environments. Atmosphere 2020, 11, 993. [Google Scholar] [CrossRef]
- Institute of Medicine. Damp Indoor Spaces and Health; The National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Estokova, A.; Stevulova, N. Investigation of Suspended and Settled Particulate Matter in Indoor Air. In Atmospheric Aerosols–Regional Characteristics–Chemistry and Physics; Abdul-Razzak, H., Ed.; IntechOpen: London, UK, 2012; pp. 455–480. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, T.L.; Lai, A.C.K.; Moreno-Jackson, R.; Sextro, R.G.; Nazaroff, W.W. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 2002, 36, 1811–1819. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Khoder, M.I.; Hassan, S.K.; El-Abssawy, A.A. An evaluation of loading rate ofd, Pb, Cd, and Ni and metals mass concentration in the settled surface dust in domestic houses and factors affecting them. Indoor Built Environ. 2010, 19, 391–399. [Google Scholar] [CrossRef]
- Shraim, A.M.; Alenazi, D.A.; Abdel-Salam, A.S.G.; Kumar, P. Loading rates of dust and metals in residential houses of arid and dry climatic regions. Aerosol Air Qual. Res. 2016, 16, 2462–2473. [Google Scholar] [CrossRef] [Green Version]
- Seifert, B.; Becker, K.; Helm, D.; Krause, C.; Schulz, C.; Seiwert, M. The German Environmental Survey 1990/1992 (GerES II): Reference concentrations of selected environmental pollutants in blood, urine, hair, house dust, drinking water and indoor air. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 552–565. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Ferro, A.R.; Fowler, K.R. Estimating the resuspension rate and residence time of indoor particles. J. Air Waste Manag. Assoc. 2008, 58, 502–516. [Google Scholar] [CrossRef]
- Frankel, M.; Bekö, G.; Timm, M.; Gustavsen, S.; Hansen, E.W.; Madsen, A.M. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl. Environ. Microbiol. 2012, 78, 8289–8297. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Qi, J.; Shao, C.; Zhong, X.; Gao, D.; Cao, W. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 2016, 541, 1011–1018. [Google Scholar] [CrossRef]
- Madelin, T.M.; Johnson, H.E. Fungal and actinomycete spore aerosols measured at different humidities with an aerodynamic particle sizer. J. Appl. Bacteriol. 1992, 72, 400–409. [Google Scholar] [CrossRef]
- Aydogdu, H.; Asan, A.; Otkun, M.T. Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ. Monit. Assess. 2010, 164, 53–66. [Google Scholar] [CrossRef]
- Bouakline, A.; Lacroix, C.; Roux, N.; Gangneux, J.P.; Derouin, F. Fungal contamination of food in hematology units. J. Clin. Microbiol. 2000, 38, 4272–4273. [Google Scholar] [CrossRef] [Green Version]
- Dunn, R.R.; Fierer, N.; Henley, J.B.; Leff, J.W.; Menninger, H.L. Home life: Factors structuring the bacterial diversity found within and between homes. PLoS ONE 2013, 8, e64133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Hospodsky, D.; Dannemiller, K.C.; Nazaroff, W.W.; Peccia, J. Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environ. Sci. Technol. 2015, 49, 5098–5106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mille-Lindblom, C.; Fischer, H.; Tranvik, L.J. Antagonism between bacteria and fungi: Substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 2006, 113, 233–242. [Google Scholar] [CrossRef]
- Viegas, C.; Faria, T.; Monteiro, A.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. A Novel Multi-Approach Protocol for the Characterization of Occupational Exposure to Organic Dust—Swine Production Case Study. Toxics 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, L.L.; Miller, J.D.; Dillon, H.K. Field Guide for the Determination of Biological Contaminants in Environmental Samples, 2nd ed.; Fairfax, V., Ed.; American Industrial Hygiene Association: Fairfax, VA, USA, 2005; pp. 3–100. [Google Scholar]
- Wu, P.; Su, H.J.; Ho, H. A comparison of sampling media for environmental viable fungi collected in a hospital environment. Environ. Res. 2000, 82, 253–257. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Bilodeau, G.J.; Duchaine, C. Fungal aerosols at dairy farms using molecular and culture techniques. Sci. Total Environ. 2019, 653, 253–263. [Google Scholar] [CrossRef]
- Madsen, A.M.; Frederiksen, M.W.; Jacobsen, M.H.; Tendal, K. Towards a risk evaluation of workers’ exposure to handborne and airborne microbial species as exempli fied with waste collection workers. Environ Res. 2020, 183, 109177. [Google Scholar] [CrossRef]
- Croston, T.L.; Nayak, A.P.; Lemons, A.R.; Goldsmith, W.; Gu, J.K.; Germolec, D.R.; Beezhold, D.H.; Green, B.J. Influence of Aspergillus fumigatus conidia viability on murine pulmonary micro RNA and m RNA expression following subchronic inhalation exposure. Clin. Exp. Allergy 2016, 46, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrob. Agents Chem. 2010, 54, 4545–4549. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Sharma, C.; Sundar, G.; Singh, P.; Gaur, S.; Hagen, F.; Klaassen, C.H.; Meis, J.F. Clonal Expansion and Emergence of Environmental Multiple-Triazole-Resistant Aspergillus fumigatus Strains Carrying the TR34/L98H Mutations in the cyp51A Gene in India. PLoS ONE 2012, 7, e52871. [Google Scholar] [CrossRef]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Meis, J.F. Emergence of Azole-Resistant Aspergillus fumigatus Strains due to Agricultural Azole Use Creates an Increasing Threat to Human Health. PLoS Pathog. 2013, 9, e1003633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caetano, L.A.; Almeida, B.; Viegas, C. Assessment of azole resistance in clinical settings by passive sampling. In Health and Social Care Systems of the Future: Demographic Changes, Digital Age and Human Factors–HEPS 2019: Advances in Intelligent Systems and Computing; Cotrim, T., Serranheira, F., Sousa, P., Hignett, S., Albolino, S., Tartaglia, R., Eds.; Springer: Cham, Switzerland, 2019; Volume 1012, pp. 248–256. [Google Scholar]
Dwelling | Type | Location | Number of Occupants | Wood Heating | Plants | Floor Bedroom | Rugs Bedroom | Floor Living Room | Rugs Living Room | Floor Kitchen | Rugs Kitchen | Exhaust Kitchen | Smokers | Pets |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Apartment | Urban | 5 | No | No | Wood | Yes | Marble | Yes | Tile | No | Yes | No | No |
2 | Apartment | Urban | 4 | Yes | Yes | Wood | Yes | Wood | Yes | Tile | No | Yes | No | No |
3 | Apartment | Urban | 4 | Yes | No | Tile | Yes | Tile | No | Tile | No | No | No | No |
4 | Apartment | Urban | 3 | No | No | Wood | Yes | Tile | No | Tile | No | Yes | No | No |
5 | Apartment | Urban | 1 | No | No | Parquet | Yes | Parquet | Yes | Vinyl | No | Yes | No | No |
6 | Apartment | Urban | 2 | No | Yes | Parquet | Yes | Parquet | Yes | Tile | Yes | Yes | Yes (Living room) | No |
7 | Detached house | Rural | 3 | Yes | Yes | Wood | Yes | Tile | Yes | Tile | Yes | Yes | No | No |
8 | Apartment | Urban | 4 | Yes | Yes | Wood | No | Wood | Yes | Granite | No | Yes | No | No |
9 | Apartment | Urban | 4 | No | No | Wood | No | Wood | Yes | Granite | Yes | Yes | No | Yes (1 Bird) |
10 | Detached house | Rural | 3 | No | Yes | Wood | Yes | Tile | Yes | Tile | Yes | Yes | No | Yes (1 Cat) |
11 | Apartment | Suburban | 2 | No | Yes | Wood | Yes | Carpet | Yes | Tile | Yes | Yes | No | Yes (1 Hamster) |
12 | Detached house | Rural | 3 | Yes | Yes | Wood | Yes | Wood | Yes | Granite | Yes | Yes | No | No |
13 | Apartment | Urban | 4 | No | Yes | Wood | Yes | Tile | Yes | Tile | Yes | Yes | Yes (Kitchen) | Yes (1 Dog) |
14 | Detached house | Rural | 4 | No | Yes | Wood | Yes | Tile | Yes | Tile | Yes | No | No | Yes (4 Cats) |
15 | Apartment | Urban | 3 | Yes | Yes | Wood | Yes | Wood | Yes | Tile | Yes | Yes | No | Yes (1 Dog) |
16 | Terraced house | Urban | 5 | No | No | Wood | Yes | Wood | Yes | Tile and Wood | Yes | Yes | No | No |
17 | Detached house | Suburban | 4 | Yes | Yes | Wood | No | Tile | Yes | Tile | No | Yes | No | No |
18 | Terraced house | Urban | 2 | Yes | Yes | Wood | Yes | Tile | Yes | Tile | No | Yes | No | No |
19 | Detached house | Suburban | 3 | No | Yes | Wood | Yes | Tile | Yes | Tile | No | Yes | No | No |
20 | Apartment | Suburban | 2 | Yes | Yes | Parquet | Yes | Parquet | Yes | Tile | Yes | Yes | Yes (Kitchen) | No |
21 | Semi-detached house | Rural | 4 | No | Yes | Wood | Yes | Wood | Yes | Tile | Yes | Yes | No | No |
22 | Apartment | Urban | 3 | Yes | Yes | Wood | Yes | Wood | Yes | Tile | No | Yes | No | No |
23 | Apartment | Urban | 2 | Yes | Yes | Wood | Yes | Wood | Yes | PVC | No | Yes | No | No |
Aspergillus Sections Targeted | Sequences | Reference |
---|---|---|
Flavi (Toxigenic Strains) | ||
Forward Primer | 5′-GTCCAAGCAACAGGCCAAGT-3′ | [39] |
Reverse Primer | 5′-TCGTGCATGTTGGTGATGGT-3′ | |
Probe | 5′-TGTCTTGATCGGCGCCCG-3′ | |
Fumigati | ||
Forward Primer | 5′-CGCGTCCGGTCCTCG-3′ | [40] |
Reverse Primer | 5′-TTAGAAAAATAAAGTTGGGTGTCGG-3′ | |
Probe | 5′-TGTCACCTGCTCTGTAGGCCCG-3′ | |
Circumdati | ||
Forward Primer | 5′-CGGGTCTAATGCAGCTCCAA-3′ | [41] |
Reverse Primer | 5′-CGGGCACCAATCCTTTCA-3′ | |
Probe | 5′-CGTCAATAAGCGCTTTT-3′ | |
Nidulantes | ||
Forward Primer | 5′-CGGCGGGGAGCCCT-3′ | [42] |
Reverse Primer | 5′-CCATTGTTGAAAGTTTTGACTGATcTTA-3′ |
Winter | Summer | |
---|---|---|
Global mean | 4.29 ± 4.51 | 5.70 ± 2.70 |
Bedrooms | 4.03 ± 4.04 | 6.26 ± 2.74 |
Living rooms | 3.55 ± 4.28 | 5.08 ± 2.63 |
Kitchens | 5.38 ± 5.11 | 6.19 ± 2.68 |
Ranks | Test Statistics d | ||||||
---|---|---|---|---|---|---|---|
N | Mean Rank | Sum of Ranks | Z | p | |||
Dust loadings Winter–Dust loadings Summer | Negative Ranks | 16 a | 35.22 | 563.50 | −3.187 d | 0.001 * | |
Positive Ranks | 48 b | 31.59 | 1516.50 | ||||
Ties | 0 c | ||||||
Total | 64 | ||||||
Bedroom | Dust loadings Winter–Dust loadings Summer | Negative Ranks | 4 a | 10.63 | 42.50 | −2.538 e | 0.011 * |
Positive Ranks | 17 b | 11.09 | 188.50 | ||||
Ties | 0 c | ||||||
Total | |||||||
Living room | Dust loadings Winter–Dust loadings Summer | Negative Ranks | 5 a | 10.00 | 50.00 | −2.053 d | 0.040 * |
Positive Ranks | 15 b | 10.67 | 160.00 | ||||
Ties | 0 c | ||||||
Total | |||||||
Kitchen | Dust loadings Winter–Dust loadings Summer | Negative Ranks | 6 a | 14.50 | 87.00 | −1.282 e | 0.200 |
Positive Ranks | 16 b | 10.38 | 166.00 | ||||
Ties | 0 c | ||||||
Total |
Summer | |
Mean (SD) CFU/m2/Day | |
TSA | 6.03 × 103 (1.84 × 104) |
VRBA | 1.33 × 102 (5.50 × 102) |
Winter | |
Mean (SD) CFU/m2/day | |
TSA | 5.17 × 101 (1.73 × 102) |
VRBA | 1.15 × 101 (9.81 × 101) |
Summer | |||||
MEA | DG18 | ||||
Fungi | CFU/m2/Day | % | Fungi | CFU/m2/Day | % |
Penicillium sp. | 1.45 × 103 | 58.1 | Cladosporium sp. | 1.45 × 103 | 46.3 |
C. sitophila | 2.48 × 102 | 9.92 | Penicillium sp. | 1.09 × 103 | 34.9 |
Cladosporium sp. | 1.92 × 102 | 7.65 | C. sitophila | 2.25 × 102 | 7.16 |
Aspergillus sp. | 1.67 × 102 | 6.67 | Aspergillus sp. | 1.99 × 102 | 6.35 |
Other species | 4.43 × 102 | 17.7 | Other species | 1.68 × 102 | 5.37 |
TOTAL | 2.50 × 103 | 100 | TOTAL | 3.14 × 103 | 100 |
Winter | |||||
MEA | DG18 | ||||
Fungi | CFU/m2/day | % | Fungi | CFU/m2/day | % |
Penicillium sp. | 1.47 × 103 | 59.1 | Penicillium sp. | 1.69 × 103 | 52.2 |
Aspergillus sp. | 3.22 × 102 | 13.0 | Cladosporium sp. | 7.11 × 102 | 21.9 |
Fusarium sp. | 2.21 × 102 | 8.90 | Chrysosporium sp. | 5.49 × 102 | 16.9 |
Cladosporium sp. | 2.17 × 102 | 8.75 | Aspergillus sp. | 1.61 × 102 | 4.98 |
Other species | 2.55 × 102 | 10.3 | Other species | 1.30 × 102 | 4.00 |
TOTAL | 2.48 × 103 | 100 | TOTAL | 324 × 104 | 100 |
Season | ITR | VOR | POS | ||||
---|---|---|---|---|---|---|---|
Location | CFU/m2/Day | % | CFU/m2/Day | % | CFU/m2/Day | % | |
summer | Bedroom | 2.58 × 103 | 14.1 | 7.82 × 103 | 21.5 | 1.43 × 103 | 28.2 |
Kitchen | 9.04 × 103 | 49.2 | 1.66 × 104 | 45.7 | 1.88 × 103 | 37.0 | |
Living room | 6.74 × 103 | 36.7 | 1.19 × 104 | 32.8 | 1.77 × 103 | 34.8 | |
TOTAL | 1.84 × 104 | 100 | 3.64 × 104 | 100 | 5.09 × 103 | 100 | |
winter | Bedroom | 1.77 × 102 | 0.9 | 1.28 × 104 | 15.8 | 4.56 × 103 | 21.2 |
Kitchen | 5.08 × 103 | 25.1 | 4.54 × 104 | 56.1 | 1.41 × 104 | 65.5 | |
Living room | 1.50 × 104 | 74.1 | 2.28 × 104 | 28.1 | 2.85 × 103 | 13.3 | |
TOTAL | 2.03 × 104 | 100 | 8.11 × 104 | 100 | 2.15 × 104 | 100 |
SDA | ITR | VOR | POS | ||||||
---|---|---|---|---|---|---|---|---|---|
Season | Fungi | CFU/m2/Day | % | CFU/m2/Day | % | CFU/m2/Day | % | CFU/m2/Day | % |
summer | Aspergillus sp. | 1.26 × 103 | 13.9 | n.d. | 0.0 | n.d. | 0.0 | n.d. | 0.0 |
Chrysosporium sp. | 4.71 × 101 | 0.5 | 3.73 × 101 | 3.0 | 4.62 × 101 | 1.0 | 0.83 × 101 | 7.6 | |
Cladosporium sp. | 1.04 × 102 | 1.1 | 2.50 × 101 | 2.0 | 5.45 × 101 | 1.2 | n.d. | 0.0 | |
Fusarium sp. | 0.83 × 101 | 0.1 | 0.83 × 101 | 0.7 | 0.41 × 101 | 0.1 | 0.41 × 101 | 3.8 | |
Mucor sp. | 2.07 × 103 | 22.9 | n.d. | 0.0 | 2.03 × 103 | 45.1 | n.d. | 0.0 | |
Penicillium sp. | 4.46 × 102 | 4.9 | 1.99 × 102 | 15.9 | 3.05 × 102 | 6.8 | 9.64 × 101 | 88.6 | |
Rhizopus sp. | 4.07 × 103 | 45.0 | 9.84 × 102 | 78.5 | 2.05 × 103 | 45.6 | n.d. | 0.0 | |
Other species | 1.04 × 103 | 11.5 | n.d. | 0.0 | 0.43 × 101 | 0.1 | n.d. | 0.0 | |
TOTAL | 9.05 × 103 | 100 | 1.25 × 103 | 100 | 4.50 × 103 | 100 | 1.09 × 102 | 100 | |
Winter | Aspergillus sp. | 1.75 × 102 | 4.6 | n.d. | 0.0 | 0.72 × 101 | 1.3 | n.d. | 0.0 |
Chrysosporium sp. | 1.12 × 102 | 3.0 | 0.17 × 101 | 3.2 | 2.02 × 101 | 3.8 | n.d. | 0.0 | |
Cladosporium sp. | 2.44 × 101 | 0.6 | 0.90 × 101 | 17.5 | 2.25 × 102 | 42.0 | 1.23 × 102 | 70.2 | |
Fusarium sp. | 0.35 × 101 | 0.1 | n.d. | 0.0 | n.d. | 0.0 | 0.18 × 101 | 1.0 | |
Mucor sp. | 9.28 × 102 | 24.3 | n.d. | 0.0 | n.d. | 0.0 | n.d. | 0.0 | |
Penicillium sp. | 8.36 × 102 | 21.9 | 4.06 × 101 | 79.3 | 2.84 × 102 | 52.9 | 5.02 × 101 | 28.8 | |
Rhizopus sp. | 1.71 × 103 | 44.8 | n.d. | 0.0 | n.d. | 0.0 | n.d. | 0.0 | |
Other species | 2.56 × 101 | 0.7 | n.d. | 0.0 | n.d. | 0.0 | n.d. | 0.0 | |
TOTAL | 3.81 × 103 | 100 | 5.13 × 101 | 100 | 5.37 × 102 | 100 | 1.75 × 102 | 100 |
Aspergillus Section Detected | Sample Origin | CFU.m−2 (in MEA/DG18) | Cq |
---|---|---|---|
Fumigati | Bedroom | 0/0 | 32.6 |
0/0 | 34.9 | ||
Living room | 1.06 × 102/0 | 33.8 | |
0/0 | 31.1 | ||
Kitchen | 0/0 | 30.3 | |
0/0 | 31.4 | ||
0/0 | 29.7 | ||
Nidulantes | Bedroom | 0/0 | 38.1 |
Kitchen | 0/0 | 37.7 |
Summer | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days | Bacteria (CFU/m−2/Day) | Fungi (CFU/m−2/Day) | Fungi in Azole-Screening Media (CFU/m−2/day) | Molecular Tools | |||||||
TSA | VRBA | MEA | DG18 | ITR | VOR | POS | Cq | ||||
summer | Dust loadings (µg/cm2/day | 0.163 | 0.151 | −0.026 | 0.159 | 0.022 | 0.190 | 0.049 | 0.013 | ||
Days | 0.054 | 0.103 | −0.061 | 0.162 | 0.052 | −0.034 | 0.014 | ||||
Bacteria (CFU/m2/day) | TSA | 0.233 | 0.096 | 0.122 | −0.016 | 0.051 | 0.168 | ||||
VRBA | 0.129 | 0.062 | −0.071 | −0.025 | −0.072 | ||||||
Fungi (CFU/m2/day) | MEA | 0.430 ** | 0.064 | 0.103 | −0.146 | ||||||
DG18 | 0.077 | 0.041 | −0.121 | ||||||||
Fungi in azole-screening media (CFU/m2/day) | ITR | 0.213 | 0.150 | ||||||||
VOR | 0.053 | ||||||||||
POS | |||||||||||
Winter | |||||||||||
winter | Dust loadings (µg/cm2/day | 0.174 | 0.397 ** | 0.161 | 0.087 | 0.171 | 0.124 | 0.119 | 0.244 * | 0.650 | |
Days | 0.060 | −0.083 | 0.013 | 0.087 | 0.028 | −0.060 | −0.073 | −0.522 | |||
Bacteria (CFU/m2/day) | TSA | 0.305 ** | 0.074 | 0.144 | −0.128 | 0.184 | −0.008 | 0.609 | |||
VRBA | −0.136 | −0.181 | −0.129 | 0.059 | 0.144 | ||||||
Fungi (CFU/m2/day) | MEA | 0.710 ** | 0.380 ** | 0.382 ** | 0.281 * | −0.092 | |||||
DG18 | 0.246 * | 0.419 ** | 0.213 | −0.360 | |||||||
Fungi in azole-screening media (CFU/m2/day) | ITR | 0.180 | 0.312 ** | 0.525 | |||||||
VOR | 0.463 ** | 0.424 | |||||||||
POS | 0.772 * |
Ranks | Test Statistics v | |||||
---|---|---|---|---|---|---|
N | Mean Rank | Sum of Ranks | z | p | ||
TSA Winter (CFU/m2/day)-TSA Summer (CFU/m2/day) | Negative Ranks | 58 a | 29.50 | 1711.00 | −6.624 w | 0.000 * |
Positive Ranks | 0 b | 0.00 | 0.00 | |||
Ties | 6 c | |||||
Total | 64 | |||||
VRBA Winter (CFU/m2/day)-VRBA Summer (CFU/m2/day) | Negative Ranks | 10 d | 8.50 | 85.00 | −2.761 w | 0.006 * |
Positive Ranks | 3 e | 2.00 | 6.00 | |||
Ties | 53 f | |||||
Total | 66 | |||||
MEA Winter (CFU/m2/day)-MEA Summer (CFU/m2/day) | Negative Ranks | 16 g | 13.63 | 218.00 | −5.584 x | 0.000 * |
Positive Ranks | 49 h | 39.33 | 1927.00 | |||
Ties | 0 i | |||||
Total | 65 | |||||
DG18 Winter (CFU/m2/day)-DG18 Summer (CFU/m2/day) | Negative Ranks | 8 j | 15.13 | 121.00 | −6.073 x | 0.000 * |
Positive Ranks | 55 k | 34.45 | 1895.00 | |||
Ties | 3 l | |||||
Total | 66 | |||||
ITR Winter (CFU/m2/day)-ITR Summer (CFU/m2/day) | Negative Ranks | 15 m | 14.97 | 224.50 | −1.245 w | 0.213 |
Positive Ranks | 11 n | 11.50 | 126.50 | |||
Ties | 40 o | |||||
Total | 66 | |||||
VOR Winter (CFU/m2/day)-VOR Summer (CFU/m2/day) | Negative Ranks | 23 p | 25.39 | 584.00 | −1.558 x | 0.119 |
Positive Ranks | 32 q | 29.88 | 956.00 | |||
Ties | 11 r | |||||
Total | 66 | |||||
POS Winter (CFU/m2/day)-POS Summer (CFU/m2/day) | Negative Ranks | 10 s | 10.70 | 107.00 | −1.229 x | 0.219 |
Positive Ranks | 14 t | 13.79 | 193.00 | |||
Ties | 42 u | |||||
Total | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viegas, C.; Dias, M.; Almeida, B.; Vicente, E.; Caetano, L.A.; Carolino, E.; Alves, C. Settleable Dust and Bioburden in Portuguese Dwellings. Microorganisms 2020, 8, 1799. https://doi.org/10.3390/microorganisms8111799
Viegas C, Dias M, Almeida B, Vicente E, Caetano LA, Carolino E, Alves C. Settleable Dust and Bioburden in Portuguese Dwellings. Microorganisms. 2020; 8(11):1799. https://doi.org/10.3390/microorganisms8111799
Chicago/Turabian StyleViegas, Carla, Marta Dias, Beatriz Almeida, Estela Vicente, Liliana Aranha Caetano, Elisabete Carolino, and Célia Alves. 2020. "Settleable Dust and Bioburden in Portuguese Dwellings" Microorganisms 8, no. 11: 1799. https://doi.org/10.3390/microorganisms8111799
APA StyleViegas, C., Dias, M., Almeida, B., Vicente, E., Caetano, L. A., Carolino, E., & Alves, C. (2020). Settleable Dust and Bioburden in Portuguese Dwellings. Microorganisms, 8(11), 1799. https://doi.org/10.3390/microorganisms8111799