Association of Ct Values from Real-Time PCR with Culture in Microbiological Clearance Samples for Shiga Toxin-Producing Escherichia coli (STEC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Detection and Characterization of STEC
2.3. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomas, M.K.; Murray, R.; Flockhart, L.; Pintar, K.; Fazil, A.; Nesbitt, A.; Marshall, B.; Tataryn, J.; Pollari, F. Estimates of foodborne illness–related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents. Foodborne Pathog. Dis. 2015, 12, 820–827. [Google Scholar] [CrossRef]
- Thomas, M.K.; Murray, R.; Nesbitt, A.; Pollari, F. The incidence of acute gastrointestinal illness in Canada, foodbook survey 2014–2015. Can. J. Infect. Dis. Med. Microbiol. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Henson, S.; Majowicz, S.E.; Masakure, O.; Sockett, P.; MacDougall, L.; Edge, V.L.; Thomas, M.; Fyfe, M.; Kovács, S.; Jones, A. Estimation of the costs of acute gastrointestinal illness in British Columbia, Canada. Int. J. Food Microbiol. 2008, 127, 43–52. [Google Scholar] [CrossRef]
- Majowicz, S.E.; McNab, W.B.; Sockett, P.; Henson, S.; Doré, K.; Edge, V.L.; Buffett, M.C.; Fazil, A.; Read, S.; McEwen, S.; et al. Burden and cost of gastroenteritis in a Canadian community. J. Food Prot. 2006, 69, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.; Youngster, I.; McAdam, A.J. Shiga toxin producing Escherichia coli. Clin. Lab. Med. 2015, 35, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Yoon, J.; Hovde, C.J. A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelyas, N.; Poon, A.; Patterson-Fortin, L.; Johnson, R.P.; Lee, W.; Chui, L. Assessment of commercial chromogenic solid media for the detection of non-O157 Shiga toxin-producing Escherichia coli (STEC). Diagn. Microbiol. Infect. Dis. 2016, 85, 302–308. [Google Scholar] [CrossRef]
- Bruyand, M.; Mariani-Kurkdjian, P.; Gouali, M.; De Valk, H.; King, L.A.; Le Hello, S.; Bonacorsi, S.; Loirat, C. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med. Mal. Infect. 2018, 48, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.P.; Borua, P.C.; Rathore, B.S. Value of pilocarpine test in early diagnosis of leprosy. Indian J. Lepr. 1984, 56, 877–883. [Google Scholar]
- Morton, V.; Cheng, J.; Sharma, D.; Kearney, A. An outbreak of Shiga toxin-producing Escherichia coli O121 infections associated with flour—Canada, 2016–2017†. Can. Commun. Dis. Rep. 2017, 43, 154–155. [Google Scholar] [CrossRef]
- Government of Alberta. Escherichia coli Verotoxigenic Infections. May 2018. Available online: https://open.alberta.ca/dataset/2b77e542-cfcb-4f93-b825-dca7d140e024/resource/084c05ea-b5dd-4c07-8561-56da709b2ac3/download/guidelines-escherichia-coli-verotoxigenic-infections-2018-05.pdf (accessed on 7 September 2019).
- McAdam, A.J. Unforeseen consequences: Culture-independent diagnostic tests and epidemiologic tracking of foodborne pathogens. J. Clin. Microbiol. 2017, 55, 1978–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokes, W.; Simner, P.J.; Mortensen, J.; Oethinger, M.; Stellrecht, K.; Lockamy, E.; Lay, T.; Bouchy, P.; Pillai, D.R. Multicenter clinical validation of the molecular BD max enteric viral panel for detection of enteric pathogens. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouali, M.; Ruckly, C.; Carle, I.; Lejay-Collin, M.; Weill, F.-X. Evaluation of CHROMagar STEC and STEC O104 chromogenic agar media for detection of shiga toxin-producing Escherichia coli in stool specimens. J. Clin. Microbiol. 2013, 51, 894–900. [Google Scholar] [CrossRef] [Green Version]
- Delannoy, S.; Chaves, B.D.; Ison, S.A.; Webb, H.E.; Beutin, L.; Delaval, J.; Billet, I.; Fach, P. Revisiting the STEC testing approach: Using espK and espV to make enterohemorrhagic Escherichia coli (EHEC) detection more reliable in beef. Front. Microbiol. 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, B.W. The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B Stat. Methodol. 1976, 38, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Fay, M.P.; Shaw, P.A. Exact and asymptotic weighted logrank tests for interval censored data: The interval R Package. J. Stat. Softw. 2010, 36, 1–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, R.H.B. Ordinal: Regression Models for Ordinal Data. 2019. Available online: https://CRAN.R-project.org/package=ordinal (accessed on 28 October 2020).
- Collins, A.; Fallon, U.B.; Cosgrove, M.; Meagher, G.; Ni Shuileabhan, C. A 10-year analysis of VTEC microbiological clearance times, in the under-six population of the Midlands, Ireland. Epidemiol. Infect. 2017, 145, 1577–1583. [Google Scholar] [CrossRef] [Green Version]
- Alconcher, L.F.; Rivas, M.; Lucarelli, L.I.; Galavotti, J.; Rizzo, M. Shiga toxin-producing Escherichia coli in household members of children with hemolytic uremic syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 39, 427–432. [Google Scholar] [CrossRef]
- Vonberg, R.P.; Höhle, M.; Aepfelbacher, M.; Bange, F.C.; Campos, C.B.; Claussen, K.; Christner, M.; Cramer, J.P.; Haller, H.; Hornef, M.; et al. Duration of fecal shedding of shiga toxin–producing Escherichia coli O104:H4 in patients infected during the 2011 outbreak in Germany: A multicenter study. Clin. Infect. Dis. 2013, 56, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Graham, D.Y. Norwalk virus shedding after experimental human infection. Emerg. Infect. Dis. 2008, 14, 1553–1557. [Google Scholar] [CrossRef]
- Kirby, A.; Shi, J.; Montes, J.; Lichtenstein, M.; Moe, C.L. Disease course and viral shedding in experimental Norwalk virus and snow mountain virus infection. J. Med. Virol. 2014, 86, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Mohawk, K.L.; O’Brien, A.D. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J. Biomed. Biotechnol. 2011, 2011, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zangari, T.; Melton-Celsa, A.R.; Panda, A.; Boisen, N.; Smith, M.A.; Tatarov, I.; De Tolla, L.J.; Nataro, J.P.; O’Brien, A.D. Virulence of the shiga toxin type 2-expressing Escherichia coli O104:H4 german outbreak isolate in two animal models. Infect. Immun. 2013, 81, 1562–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstraete, K.; Van Coillie, E.; Werbrouck, H.; Van Weyenberg, S.; Herman, L.; Del-Favero, J.; De Rijk, P.; De Zutter, L.; Joris, M.-A.; Heyndrickx, M.; et al. A qPCR assay to detect and quantify shiga toxin-producing E. coli (STEC) in cattle and on farms: A potential predictive tool for STEC culture-positive farms. Toxins 2014, 6, 1201–1221. [Google Scholar] [CrossRef]
- Schmidt, H. Shiga-toxin-converting bacteriophages. Res. Microbiol. 2001, 152, 687–695. [Google Scholar] [CrossRef]
- Rhoads, D.D.; Wolcott, R.D.; Sun, Y.; Dowd, S.E. Comparison of culture and molecular identification of bacteria in chronic wounds. Int. J. Mol. Sci. 2012, 13, 2535–2550. [Google Scholar] [CrossRef]
Reference Gene, Primer/Probe | Sequence 5′-3′ |
---|---|
stx1-F | TTT GTY ACT GTS ACA GCW GAA GCY TTA CG |
stx1-R | CCC CAG TTC ARW GTR AGR TCM ACR TC |
stx1-P | CTG GAT GAT CTC AGT GGG CGT TCT TAT GTA A |
stx2-F | TTT GTY ACT GTS ACA GCW GAA GCY TTA CG |
stx2-R | CCC CAG TTC ARW GTR AGR TCM ACR TC |
stx2-P | TCG TCA GGC ACT GTC TGA AAC TGC TCC |
In the sequences: Y is (C, T), S is (C, G), W is (A, T), R is (A, G), M is (A, C) |
Patients | A | B | C | D | E | F | G | H | I | J | K | L | M | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of samples submitted | 4 | 2 | 10 | 4 | 12 | 15 | 6 | 5 | 10 | 7 | 8 | 4 | 19 | 4 |
Duration of sample submission (days) | 19 | 6 | 49 | 45 | 48 | 32 | 10 | 18 | 20 | 43 | 34 | 10 | 31 | 19 |
Culture-negative (days) | 15 | 6 | 33 | 38 | 35 | 26 | 3 | 16 | 12 | 38 | 29 | 9 | 23 | 17 |
Real-time PCR-negative (days) | 19 | 6 | 29 | 38 | 35 | 26 | 6 | 16 | 19 | 38 | 29 | 9 | 23 | 19 |
Stx status | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 and 2 | 2 | 1 | 1 and 2 | 1 |
Serotyped | O121 | O26 | O111 | O26 | O103 | O186 | O118 | O186 | O103 | O157 | O157 | O26 | O157 | O111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bording-Jorgensen, M.; Parsons, B.D.; Tarr, G.A.M.; Shah-Gandhi, B.; Lloyd, C.; Chui, L. Association of Ct Values from Real-Time PCR with Culture in Microbiological Clearance Samples for Shiga Toxin-Producing Escherichia coli (STEC). Microorganisms 2020, 8, 1801. https://doi.org/10.3390/microorganisms8111801
Bording-Jorgensen M, Parsons BD, Tarr GAM, Shah-Gandhi B, Lloyd C, Chui L. Association of Ct Values from Real-Time PCR with Culture in Microbiological Clearance Samples for Shiga Toxin-Producing Escherichia coli (STEC). Microorganisms. 2020; 8(11):1801. https://doi.org/10.3390/microorganisms8111801
Chicago/Turabian StyleBording-Jorgensen, Michael, Brendon D. Parsons, Gillian A.M. Tarr, Binal Shah-Gandhi, Colin Lloyd, and Linda Chui. 2020. "Association of Ct Values from Real-Time PCR with Culture in Microbiological Clearance Samples for Shiga Toxin-Producing Escherichia coli (STEC)" Microorganisms 8, no. 11: 1801. https://doi.org/10.3390/microorganisms8111801
APA StyleBording-Jorgensen, M., Parsons, B. D., Tarr, G. A. M., Shah-Gandhi, B., Lloyd, C., & Chui, L. (2020). Association of Ct Values from Real-Time PCR with Culture in Microbiological Clearance Samples for Shiga Toxin-Producing Escherichia coli (STEC). Microorganisms, 8(11), 1801. https://doi.org/10.3390/microorganisms8111801