Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antimicrobial Susceptibility Test
2.3. Toxin Gene Detection
2.4. Statistical analyses
3. Results
3.1. Antimicrobial Susceptibility Testing
3.2. Toxin Gene Prevalence in C. perfringens Isolates
3.3. Associations between Antimicrobial Resistance Outcomes and the Presence of Toxin Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; E Ford, M.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a New Toxin That Is Associated with Avian Necrotic Enteritis Caused by Clostridium perfringens. PLoS Pathog. 2008, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef]
- Coursodon, C.; Glock, R.; Moore, K.; Cooper, K.; Songer, J. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe 2012, 18, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Van Asten, A.J.; Nikolaou, G.N.; Gröne, A. The occurrence of cpb2-toxigenic Clostridium perfringens and the possible role of the β2-toxin in enteric disease of domestic animals, wild animals and humans. Veter. J. 2010, 183, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.F.; Smith, T.J.S.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Animal and Plant Quarantine Agency. Establishment of Antimicrobial Resistance Surveillance System for Livestock, 2016. Ministry of Agriculture, Food and Rural Affairs. 2017. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-804-05%252FSIDE%20EVENTS%252FRepublic_of_Korea.pdf (accessed on 27 November 2017).
- Abid, S.A.; Azeem, T.; Chaudhary, Z.I.; Ahmad, M.U.D.; Rehman, Z.U.; Umar, S. Emerging threat of necrotic enteritis in poultry and its control without use of antibiotics: A review. J. Anim. Plant. Sci. 2016, 26, 1556–1567. [Google Scholar]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial Resistance and Virulence: A Successful or Deleterious Association in the Bacterial World? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [Green Version]
- Vilei, E.M.; Schlatter, Y.; Perreten, V.; Straub, R.; Popoff, M.R.; Gibert, M.; Grone, A.; Frey, J. Antibiotic-induced expression of a cryptic cpb2 gene in equine β2-toxigenic Clostridium perfringens. Mol. Microbiol. 2005, 57, 1570–1581. [Google Scholar] [CrossRef]
- Ahn, D.; Prince, A. Host-Pathogen Interface: Progress in Understanding the Pathogenesis of Infection Due to Multidrug-Resistant Bacteria in the Intensive Care Unit. J. Infect. Dis. 2017, 215, S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Heikinheimo, A.; Korkeala, H. Multiplex PCR assay for toxinotyping Clostridium perfringens isolates obtained from Finnish broiler chickens. Lett. Appl. Microbiol. 2005, 40, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. 2013, Volume M100–S23. Available online: https://clsi.org/media/2663/m100ed29_sample.pdf (accessed on 11 January 2019).
- British Society for Antimicrobial Chemotherapy (BASC). BSAC Methods for Antimicrobial Susceptibility Testing. Available online: http://bsac.org.uk/wp-content/uploads/2012/02/BSAC-disc-susceptibility-testing-method-Jan-2015.pdf (accessed on 14 January 2015).
- The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 7.1. 2017. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 25 January 2020).
- Slavic, D.; Boerlin, P.; Fabri, M.; Klotins, K.C.; Zoethout, J.K.; Weir, P.E.; Bateman, D. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario. Can. J. Veter Res. Rev. Can. Rech. Veter 2011, 75, 89–97. [Google Scholar]
- Gad, W.; Hauck, R.; Kruger, M.; Hafez, H.M. In vitro determination of antibiotic sensitivities of Clostridium perfringens isolates from layer flocks in Germany. Archiv für Geflügelkunde 2012, 76, 234–238. [Google Scholar]
- Park, J.Y.; Kim, S.; Oh, J.Y.; Kim, H.R.; Jang, I.; Lee, H.S.; Kwon, Y.-K. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. Poult. Sci. 2015, 94, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Watkins, K.; Shryock, T.; Dearth, R.; Saif, Y. In-vitro antimicrobial susceptibility of Clostridium perfringens from commercial turkey and broiler chicken origin. Veter Microbiol. 1997, 54, 195–200. [Google Scholar] [CrossRef]
- Fan, Y.-C.; Wang, C.-L.; Wang, C.; Chen, T.-C.; Chou, C.-H.; Tsai, H.-J. Incidence and Antimicrobial Susceptibility to Clostridium perfringens in Premarket Broilers in Taiwan. Avian Dis. 2016, 60, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, J.; Wilkie, D.; Van Kessel, A.; Drew, M. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed. Sci. Technol. 2006, 129, 60–88. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Genet. 2010, 8, 260–271. [Google Scholar] [CrossRef]
- Soge, O.; Tivoli, L.; Meschke, J.; Roberts, M. A conjugative macrolide resistance gene, mef(A), in environmental Clostridium perfringens carrying multiple macrolide and/or tetracycline resistance genes. J. Appl. Microbiol. 2009, 106, 34–40. [Google Scholar] [CrossRef]
- Abildgaard, L.; Sondergaard, T.E.; Engberg, R.; Schramm, A.; Højberg, O. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Veter Microbiol. 2010, 144, 231–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, C.; Lillehoj, H.S.; Sun, Z.; Lee, Y.; Zhao, H.; Xianyu, Z.; Yan, X.; Wang, Y.; Lin, S.; Liu, L.; et al. Characterization of Virulent netB+/tpeL+ Clostridium perfringens Strains from Necrotic Enteritis–Affected Broiler Chicken Farms. Avian Dis. 2019, 63, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.J.; Mendonça, N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence 2012, 3, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velappan, N.; Sblattero, D.; Chasteen, L.; Pavlik, P.; Bradbury, A.R. Plasmid incompatibility: More compatible than previously thought? Protein Eng. Des. Sel. 2007, 20, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, C.; Maiques, E.; Knecht, E.; Lasa, Í.; Novick, R.P.; Penadés, J.R. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 2005, 56, 836–844. [Google Scholar] [CrossRef]
Antimicrobial | Range | Breakpoint (μg/mL) | Total (n = 162) | 2010–2011 (n = 61) | 2012–2016 (n = 101) | p Value a | |||
---|---|---|---|---|---|---|---|---|---|
MIC50/MIC90 | Resistance No. (%) | MIC50/MIC90 | Resistance No. (%) | MIC50/MIC90 | Resistance No. (%) | ||||
Penicillin | ≤0.06 to 2 | 1 | ≤0.06/0.25 | 2 (1.2) | ≤0.06/0.12 | 0 | ≤0.06/0.25 | 2 (2.0) | |
Ampicillin | ≤0.12 to 0.25 | 16 | ≤0.12/0.25 | 0 | ≤0.12/0.25 | 0 | ≤0.12/≤0.12 | 0 | |
Amoxicillin | ≤0.25 | 16 | ≤0.25/≤0.25 | 0 | ≤0.25/≤0.25 | 0 | ≤0.25/≤0.25 | 0 | |
Gentamicin | 4 to ≥16 | 16 | ≥16/≥16 | 151 (93.2) | ≥16/≥16 | 61 (100.0) | ≥16/≥16 | 90 (89.1) | 0.007 |
Spectinomycin | 8 to ≥128 | -b | ≥128/≥128 | -b | ≥128/≥128 | -b | ≥128/≥128 | -b | -b |
Tetracycline | 0.25 to ≥16 | 4 | 4/≥16 | 98 (60.5) | 4/8 | 32 (52.5) | 8/≥16 | 66 (65.3) | |
Tylosin | ≤2 to ≥16 | -b | ≤2/≥16 | -b | ≤2/8 | -b | ≤2/16 | -b | -b |
Erythromycin | 0.12 to ≥16 | 16 | 4/≥16 | 37 (22.8) | 2/≥16 | 16 (26.2) | 4/≥16 | 21 (20.8) | |
Florfenicol | 1 to 8 | 8 | 1/2 | 1 (0.6) | ≤1/≤1 | 0 | 2/2 | 1 (1.0) | |
Bacitracin | 1 to 64 | 32 | 1/32 | 28 (17.3) | ≤1/32 | 9 (14.8) | ≤1/32 | 19 (18.8) | |
Enrofloxacin | 0.12 to ≥32 | 2 | 1/≥32 | 71 (43.8) | 0.25/32 | 15 (24.6) | 2/32 | 56 (55.4) | <0.001 |
Clindamycin | 0.5 to ≥8 | 8 | 2/≥8 | 62 (38.3) | ≥8/≥8 | 32 (52.5) | 2/≥8 | 30 (29.7) | 0.004 |
Virginiamycin | 1 to 16 | 4 | 4/8 | 133 (82.1) | 4/≥16 | 60 (98.4) | 4/≥16 | 73 (72.3) | <0.001 |
Monensin | ≤0.12 to 4 | -b | 1/2 | -b | ≤0.12/0.25 | -b | 1/2 | -b | -b |
Salinomycin | ≤0.12 to 0.5 | -b | 0.25/0.25 | -b | ≤0.12/≤0.12 | -b | 0.25/0.25 | -b | -b |
Maduramycin | 0.12 to 0.5 | -b | 0.25/0.5 | -b | 0.25/0.25 | -b | 0.25/0.5 | -b | -b |
Trimethoprim-sulfamethoxazole | 0.5/9.5 to >4/76 | >4/76 | 4/76/4/76 | 126 (77.8) | ≥4/76/≥4/76 | 44 (72.1) | ≥4/76/≥4/76 | 82 (81.2) |
Antimicrobial | Antibiotic Resistance, n/(%) | p Value a | |
---|---|---|---|
Enteritis (n = 65) | Health (n = 97) | ||
Penicillin | 0 | 2 (2.1) | |
Gentamicin | 65 (100.0) | 86 (88.7) | 0.007 |
Tetracycline | 33 (50.8) | 65 (67.0) | |
Erythromycin | 19 (29.2) | 18 (18.6) | |
Bacitracin | 12 (18.5) | 16 (16.5) | |
Enrofloxacin | 18 (27.7) | 53 (54.6) | <0.001 |
Clindamycin | 35 (53.8) | 27 (27.8) | 0.004 |
Virginiamycin | 64 (98.5) | 69 (71.1) | <0.001 |
Trimethoprim-sulfamethoxazole | 48 (73.8) | 78 (80.4) |
No. of Isolates | No. (%) of Toxin Genes | Toxin Gene Pattern, n/(%) | |||||||
---|---|---|---|---|---|---|---|---|---|
cpb2 | netB | tpeL | cpb2/netB/tpeL | cpb2/netB | cpb2 | netB | No Toxin Gene | ||
Total | 162 | 126 (77.8) | 38 (23.5) | 8 (4.9) | 8 (4.9) | 28 (17.3) | 90 (55.6) | 2 (1.2) | 34 (21.0) |
Enteritis | 65 | 57 (87.7) | 24 (36.9) | 8 (12.3) | 8 (12.3) | 15 (23.1) | 34 (52.3) | 1 (1.5) | 7 (10.8) |
Healthy | 97 | 69 (71.1) | 14 (14.4) | 0 (0.0) | 0 | 13 (13.4) | 56 (57.7) | 1 (1.0) | 27 (27.8) |
p value a | 0.013 | 0.001 | 0.001 | 0.001 | 0.009 |
Antimicrobial | % of the Isolates Positive for Toxin Genes a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cpb2 | netB | tpeL | ||||||||||
R | S | OR (95% CI) | p Value b | R | S | OR (95% CI) | p Value b | R | S | OR (95% CI) | p Value b | |
Gentamicin | 80.8 | 36.4 | 2.222 (1.013–4.874) | 0.001 | 25.2 | 0 | 3.314 (0.494–22.210) | 5.3 | 0 | 0.765 (0.105–5.577) | ||
Tetracycline | 89.8 | 59.4 | 1.512 (1.222–1.872) | <0.001 | 11.2 | 42.2 | 0.266 (0.142–0.498) | <0.001 | 2.0 | 9.4 | 0.218 (0.045–1.045) | 0.035 |
Erythromycin | 70.3 | 80.0 | 0.878 (0.7–1.102) | 8.1 | 28.0 | 0.29 (0.094–0.888) | 0.012 | 0 | 6.4 | 0.362 (0.047–2.768) | ||
Bacitracin | 57.1 | 82.1 | 0.696 (0.5–0.969) | 0.004 | 10.7 | 26.1 | 0.41 (0.136–1.24) | 0 | 6 | 0.504 (0.066–3.827) | ||
Enrofloxacin | 77.5 | 78.0 | 0.993 (0.841–1.172) | 14.1 | 30.8 | 0.458 (0.239–0.879) | 0.013 | 0.0 | 8.8 | 0.142 (0.018–1.092) | 0.01 | |
Clindamycin | 79.0 | 77.0 | 1.026 (0.868–1.213) | 14.5 | 29.0 | 0.501 (0.254–0.986) | 0.034 | 3.2 | 6.0 | 0.538 (0.112–2.581) | ||
Virginiamycin | 80.5 | 65.5 | 1.228 (0.931–1.62) | 27.8 | 3.4 | 8.068 (1.153–56.436) | 0.005 | 6.0 | 0 | 2.067 (0.272–15.716) | ||
Trimethoprim-sulfamethoxazole | 82.5 | 61.1 | 1.351 (1.028–1.774) | 0.006 | 25.4 | 16.7 | 1.524 (0.692–3.355) | 3.2 | 11.1 | 0.286 (0.075–1.086) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, B.; Cha, S.-Y.; Zhang, J.-F.; Shang, K.; Park, H.-C.; Kang, J.; Lee, K.-J.; Kang, M.; Jang, H.-K. Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens. Microorganisms 2020, 8, 1825. https://doi.org/10.3390/microorganisms8111825
Wei B, Cha S-Y, Zhang J-F, Shang K, Park H-C, Kang J, Lee K-J, Kang M, Jang H-K. Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens. Microorganisms. 2020; 8(11):1825. https://doi.org/10.3390/microorganisms8111825
Chicago/Turabian StyleWei, Bai, Se-Yeoun Cha, Jun-Feng Zhang, Ke Shang, Hae-Chul Park, JeongWoo Kang, Kwang-Jick Lee, Min Kang, and Hyung-Kwan Jang. 2020. "Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens" Microorganisms 8, no. 11: 1825. https://doi.org/10.3390/microorganisms8111825
APA StyleWei, B., Cha, S.-Y., Zhang, J.-F., Shang, K., Park, H.-C., Kang, J., Lee, K.-J., Kang, M., & Jang, H.-K. (2020). Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens. Microorganisms, 8(11), 1825. https://doi.org/10.3390/microorganisms8111825