Anti–SARS-CoV-2 Antibody Responses in Convalescent Plasma Donors Are Increased in Hospitalized Patients; Subanalyses of a Phase 2 Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria for the Plasma Donors
2.3. Endpoints of the Study Regarding Plasma Donors
2.4. Plasma Donors Enrollment
2.5. Detection of Anti-SARS-CoV2 Antibodies
2.6. SARS-CoV-2 Pseudotype and Live Virus Neutralization Assay
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Potential Plasma Donors
3.2. Detection of Anti-SARS-CoV-2 Antibodies
3.3. Correlations of Anti-SARS-CoV-2 Antibody Titer with Clinical Features
3.4. Presence of anti-SARS-CoV-2 Neutralizing Antibodies (NAbs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, A.; Sasaki, T.; Kato, S.; Hayashi, M.; Tsuzuki, S.I.; Ishihara, T.; Iwata, M.; Morise, Z.; Doi, Y. Natural History of Asymptomatic SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 383, 885–886. [Google Scholar] [CrossRef] [PubMed]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe Covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Korompoki, E.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 2020. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef] [Green Version]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Sergentanis, T.N.; Pappa, V.; Politou, M.; Terpos, E.; Tsiodras, S.; Pavlakis, G.N.; Dimopoulos, M.A. The Emerging Role of Convalescent Plasma in the Treatment of COVID-19. HemaSphere 2020, 4, e409. [Google Scholar] [CrossRef]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyner, M.; Senefeld, J.; Klassen, S.; Mills, J.; Johnson, P.; Theel, E.; Wiggins, C.; Bruno, K.; Klompas, A.; Lesser, E.R.; et al. Effect of Convalescent Plasma on Mortality among Hospitalized Patients with COVID-19: Initial Three-Month Experience. MedRxiv 2020. [Google Scholar] [CrossRef]
- Cao, W.C.; Liu, W.; Zhang, P.H.; Zhang, F.; Richardus, J.H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med. 2007, 357, 1162–1163. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mukherjee, A.; Kumar, G.; Chatterjee, P.; Bhatnagar, T.; Malhotra, P.; Collaborators, P.T. Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020, 371, m3939. [Google Scholar] [CrossRef]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Xin, Q.; Pan, Y.; Hu, Y.; Li, J.; Chu, Y.; Feng, Y.; Wang, Q. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Robbiani, D.; Gaebler, C.; Muecksch, F.; Lorenzi, J.; Wang, Z.; Cho, A.; Agudelo, M.; Barnes, C.; Gazumyan, A.; Finkin, S.; et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020, 584, 437–442. [Google Scholar] [CrossRef]
- Schmidt, F.; Weisblum, Y.; Muecksch, F.; Hoffmann, H.; Michailidis, E.; Lorenzi, J.; Mendoza, P.; Rutkowska, M.; Bednarski, E.; Gaebler, C.; et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 2020, 217, e20201181. [Google Scholar] [CrossRef]
- Yu, J.; Tostanoski, L.H.; Peter, L.; Mercado, N.B.; McMahan, K.; Mahrokhian, S.H.; Nkolola, J.P.; Liu, J.; Li, Z.; Chandrashekar, A.; et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020, 369, 806–811. [Google Scholar] [CrossRef]
- Terpos, E.; Mentis, A.; Dimopoulos, M. Loss of Anti-SARS-CoV-2 Antibodies in Mild Covid-19. N. Engl. J. Med. 2020, 383, 1695. [Google Scholar] [CrossRef]
- Chen, X.; Pan, Z.; Yue, S.; Yu, F.; Zhang, J.; Yang, Y.; Li, R.; Liu, B.; Yang, X.; Gao, L.; et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct. Target. Ther. 2020, 5, 180. [Google Scholar] [CrossRef]
- Gozalbo-Rovira, R.; Gimenez, E.; Latorre, V.; Francés-Gómez, C.; Albert, E.; Buesa, J.; Marina, A.; Blasco, M.; Signes-Costa, J.; Rodríguez-Díaz, J.; et al. SARS-CoV-2 antibodies, serum inflammatory biomarkers and clinical severity of hospitalized COVID-19 patients. J. Clin. Virol. 2020, 31. [Google Scholar] [CrossRef]
- Siracusano, G.; Pastori, C.; Lopalco, L. Humoral Immune Responses in COVID-19 Patients: A Window on the State of the Art. Front. Immunol. 2020, 11, 1049. [Google Scholar] [CrossRef]
- Scepanovic, P.; Alanio, C.; Hammer, C.; Hodel, F.; Bergstedt, J.; Patin, E.; Thorball, C.W.; Chaturvedi, N.; Charbit, B.; Abel, L.; et al. Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med. 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Liu, M.; Wang, A.; Lu, L.; Wang, Q.; Gu, C.; Chen, J.; Wu, Y.; Xia, S.; Ling, Y.; et al. Evaluating the Association of Clinical Characteristics With Neutralizing Antibody Levels in Patients Who Have Recovered From Mild COVID-19 in Shanghai, China. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef]
- Dulipsingh, L.; Ibrahim, D.; Schaefer, E.J.; Crowell, R.; Diffenderfer, M.R.; Williams, K.; Lima, C.; McKenzie, J.; Cook, L.; Puff, J.; et al. SARS-CoV-2 serology and virology trends in donors and recipients of convalescent plasma. Transfus. Apher. Sci. 2020, 25, 102922. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Payne, D.C.; Iblan, I.; Rha, B.; Alqasrawi, S.; Haddadin, A.; Al Nsour, M.; Alsanouri, T.; Ali, S.S.; Harcourt, J.; Miao, C.; et al. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg. Infect. Dis. 2016, 22, 1824–1826. [Google Scholar] [CrossRef]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Deng, Y.; Dai, Z.; Meng, Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am. J. Otolaryngol. 2020, 41, 102581. [Google Scholar] [CrossRef] [PubMed]
- Latz, C.A.; DeCarlo, C.; Boitano, L.; Png, C.Y.M.; Patell, R.; Conrad, M.F.; Eagleton, M.; Dua, A. Blood type and outcomes in patients with COVID-19. Ann. Hematol. 2020, 99, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.B.; Gu, D.Z.; Yu, J.N.; Yang, J.; Shen, W.Q. Association between ABO blood groups and COVID-19 infection, severity and demise: A systematic review and meta-analysis. Infect. Genet. Evol. 2020, 84, 104485. [Google Scholar] [CrossRef] [PubMed]
Date of Screening, n = 259 (%) | Date of Plasmapheresis, n = 74 (%) | |
---|---|---|
Gender | ||
Female | 122 (47.1) | 31 (41.9) |
Male | 137 (52.8) | 43 (58.1) |
Age (years) | ||
<50 | 138 (53.2) | 44 (59.5) |
≥50 | 121 (46.7) | 30 (40.5) |
Symptoms | ||
Asymptomatic | 20 (7.7) | 2 (2.7) |
Symptomatic, no hospitalization | 156 (60.2) | 53 (71.6) |
Hospitalization | 83 (32.0) | 19 (25.7) |
Fever | 131 (50.5) | 36 (48.7) |
Fatigue | 143 (55.2) | 37 (50.0) |
Headache | 120 (46.3) | 43 (58.1) |
Cough | 112 (43.2) | 29 (39.2) |
Dyspnea | 72 (27.7) | 25 (33.8) |
Anosmia | 116 (44.7) | 41 (55.4) |
Taste loss | 112 (43.2) | 32 (43.2) |
Time since symptom onset (days) | ||
<60 | 116 (44.7) | 49 (66.2) |
≥60 | 143 (55.2) | 25 (33.8) |
Blood group § | ||
0 | 56 (44.8) | 33 (44.5) |
A | 49 (39.2) | 30 (30.5) |
B | 14 (11.2) | 8 (10.8) |
AB | 6 (4.8) | 1 (1.3) |
Anti-S1–IgG Euroimmun (−) | Anti-S1–IgG Euroimmun (+) | Total | |
---|---|---|---|
Multi-ELISA (−) | 26 | 0 | 26 |
Multi-ELISA (+) | 9 | 178 | 187 |
Total | 35 | 178 | 213 |
Anti-S1–IgG–Euroimmun | Anti-S1–IgG–Euroimmun | Anti-N (Total, Multi-ELISA) | Anti-S1 (Total, Multi-ELISA) | Anti-RBD (Total, Multi-ELISA) | Multi-ELISA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Median OD (IQR) | p | Positivity rate (%) | p | Median MFI (IQR) | p | Median MFI (IQR) | p | Median MFI (IQR) | p | Positivity rate (%) | p |
Gender | 0.036 M | 0.810 C | 0.560 M | 0.087 M | 0.044 M | 0.663 C | ||||||
Female | 4.27 (6.21) | 83.6% (102/122) | 53,886 (33,610) | 41,514 (31,155) | 39,398 (30,705) | 86.7% (85/98) | ||||||
Male | 6.07 (6.36) | 82.5% (113/137) | 53,799 (27,084) | 46,282 (27,372) | 46,097 (28,168) | 88.7% (102/115) | ||||||
Age (years) | <0.0001 M | 0.007 C | <0.0001 M | <0.0001 M | <0.0001 M | 0.011 C | ||||||
<50 | 3.94 (5.10) | 77.4% (106/137) | 44,350 (39,814) | 35,294 (31,707) | 33,714 (32,379) | 82.5% (94/114) | ||||||
≥50 | 7.34 (6.16) | 90.0% (108/120) | 60,060 (14,067) | 54,768 (18,621) | 52,254 (19,002) | 92.9% (93/99) | ||||||
Symptoms | 0.0001 KW | 0.001 C | 0.0001 KW | 0.002 KW | 0.002 KW | 0.002 C | ||||||
Asymptomatic | 1.69 (2.59) | 55.6% (10/18) | 18,875 (38,803) | 22,806 (26,735) | 21,515 (24,077) | 54.6% (6/11) | ||||||
Symptomatic, no hospitalization | 4.40 (5.42) | 82.1% (128/156) | 48,703 (30,981) | 40,436 (27,154) | 38,556 (26,393) | 88.0% (117/133) | ||||||
Hospitalization | 8.04 (4.69) | 91.6% (76/83) | 60,913 (12,810) | 58,377 (15,733) | 55,869 (14,522) | 92.7% (63/68) | ||||||
Time since symptom onset (days) | 0.024 M | 0.401 C | 0.865 M | 0.298 M | 0.306 M | 0.082 C | ||||||
<60 | 6.09 (6.52) | 85.3% (93/109) | 54,381 (24,571) | 46,547 (25,020) | 45,849 (25,130) | 92.0% (92/100) | ||||||
≥60 | 4.68 (6.12) | 81.3% (113/139) | 53,672 (34,210) | 42,246 (33,656) | 41,566 (33,483) | 84.1% (90/107) | ||||||
Blood group § | 0.149 KW | 0.323 F | 0.566 KW | 0.124 KW | 0.159 KW | 0.102 F | ||||||
0 | 5.98 (7.59) | 87.5% (49/56) | 53,840 (24,779) | 50,778 (30,924) | 50,069 (30,947) | 92.6% (50/54) | ||||||
A | 4.53 (6.13) | 79.6% (39/49) | 53,736 (34,412) | 41,571 (36,020) | 38,441 (32,382) | 81.3% (39/48) | ||||||
B | 4.07 (5.60) | 71.4% (10/14) | 50,069 (54,676) | 42,546 (35,492) | 41,283 (50,078) | 71.4% (10/14) | ||||||
AB | 8.30 (3.88) | 100.0% (6/6) | 55,090 (11,531) | 59,310 (16,950) | 50,144 (16,903) | 100% (5/5) |
Anti-S1–IgG–Euroimmun, Positivity (Cutoff = 1) | Anti-S1–IgG–Euroimmun, Median OD as the Cutoff § | Anti-N (Total, Multi-ELISA), Median MFI as the Cutoff § | Anti-S1 (Total, Multi-ELISA), Median MFI as the Cutoff § | Anti-RBD (Total, Multi-ELISA), Median MFI as the Cutoff § | Multi-ELISA Positivity | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p |
Gender | ||||||||||||
Female | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | ||||||
Male | 0.98 (0.47–2.02) | 0.951 | 1.45 (0.82–2.58) | 0.200 | 0.73 (0.39–1.38) | 0.332 | 1.31 (0.69–2.47) | 0.408 | 1.45 (0.78–2.69) | 0.240 | 1.21 (0.49–3.02) | 0.681 |
Age (years) | ||||||||||||
<50 | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | ||||||
≥50 | 2.85 (1.24–6.55) | 0.014 | 2.88 (1.60–5.18) | <0.001 | 5.83 (3.06–11.11) | <0.001 | 4.30 (2.27–8.13) | <0.001 | 3.56 (1.91–6.65) | <0.001 | 4.28 (1.38–13.24) | 0.012 |
Symptoms | ||||||||||||
Asymptomatic | 0.07 (0.01–0.29) | <0.001 | 0.10 (0.01–0.82) | 0.033 | 0.18 (0.02–1.69) | 0.133 | 0.53 (0.09–3.09) | 0.479 | 0.49 (0.08–2.82) | 0.423 | 0.06 (0.01–0.35) | 0.002 |
Symptomatic, no hospitalization | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | ||||||
Hospitalization | 1.79 (0.71–4.49) | 0.214 | 4.11 (2.13–7.90) | <0.001 | 2.64 (1.32–5.30) | 0.006 | 4.78 (2.31–9.86) | <0.001 | 3.79 (1.88–7.64) | <0.001 | 1.22 (0.40–3.71) | 0.722 |
Time since symptom onset (days) | ||||||||||||
<60 | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | ||||||
≥60 | 0.62 (0.29–1.31) | 0.207 | 0.36 (0.20–0.66) | 0.001 | 0.77 (0.41–1.44) | 0.415 | 0.56 (0.30–1.06) | 0.077 | 0.53 (0.29–0.99) | 0.048 | 0.38 (0.14–1.01) | 0.052 |
Anti-S1–IgG–Euroimmun, Positivity (cutoff = 1) | Anti-S1–IgG–Euroimmun, Median OD as the Cutoff § | Anti-N (Total, Multi-ELISA), Median MFI as the Cutoff § | Anti-S1 (Total, Multi-ELISA), Median MFI as the Cutoff § | Anti-RBD (Total, Multi-ELISA), Median MFI as the Cutoff § | Multi-ELISA Positivity | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Symptoms | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p |
Fever | 4.25 (1.90–9.51) | <0.001 | 3.14 (1.76–5.60) | <0.001 | 1.58 (0.84–2.97) | 0.152 | 2.72 (1.45–5.10) | 0.002 | 2.49 (1.34–4.62) | 0.004 | 3.93 (1.43–10.80) | 0.008 |
Fatigue | 1.44 (0.70–2.97) | 0.323 | 1.23 (0.70–2.16) | 0.482 | 0.74 (0.40–1.39) | 0.353 | 1.27 (0.68–2.35) | 0.453 | 1.15 (0.63–2.12) | 0.646 | 1.19 (0.49–2.88) | 0.694 |
Headache | 2.34 (1.09–5.03) | 0.029 | 1.00 (0.57–1.75) | 0.992 | 0.69 (0.37–1.30) | 0.255 | 0.99 (0.53–1.85) | 0.983 | 1.17 (0.63–2.17) | 0.624 | 2.03 (0.81–5.09) | 0.131 |
Cough | 1.64 (0.79–3.43) | 0.184 | 1.80 (1.03–3.14) | 0.038 | 1.42 (0.76–2.64) | 0.272 | 1.91 (1.03–3.54) | 0.040 | 1.71 (0.93–3.14) | 0.084 | 1.42 (0.58–3.48) | 0.438 |
Dyspnea | 1.07 (0.49–2.35) | 0.863 | 2.53 (1.36–4.72) | 0.004 | 1.92 (0.96–3.82) | 0.065 | 3.24 (1.59–6.58) | 0.001 | 2.47 (1.25–4.89) | 0.009 | 1.35 (0.50–3.68) | 0.555 |
Diarrhea | 2.07 (0.88–4.87) | 0.097 | 1.97 (1.08–3.61) | 0.028 | 1.01 (0.52–1.99) | 0.968 | 1.81 (0.92–3.55) | 0.085 | 1.82 (0.94–3.55) | 0.077 | 1.13 (0.43–2.96) | 0.806 |
Anosmia | 11.14 (3.92–31.67) | <0.001 | 0.72 (0.41–1.27) | 0.259 | 1.52 (0.80–2.91) | 0.203 | 0.92 (0.49–1.71) | 0.784 | 0.83 (0.45–1.53) | 0.549 | 10.57 (2.88–38.80) | <0.001 |
Taste loss | 5.50 (2.23–13.56) | <0.001 | 0.96 (0.54–1.68) | 0.877 | 1.38 (0.72–2.61) | 0.330 | 1.40 (0.75–2.63) | 0.291 | 1.27 (0.68–2.36) | 0.449 | 3.81 (1.35–10.75) | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terpos, E.; Politou, M.; Sergentanis, T.N.; Mentis, A.; Rosati, M.; Stellas, D.; Bear, J.; Hu, X.; Felber, B.K.; Pappa, V.; et al. Anti–SARS-CoV-2 Antibody Responses in Convalescent Plasma Donors Are Increased in Hospitalized Patients; Subanalyses of a Phase 2 Clinical Study. Microorganisms 2020, 8, 1885. https://doi.org/10.3390/microorganisms8121885
Terpos E, Politou M, Sergentanis TN, Mentis A, Rosati M, Stellas D, Bear J, Hu X, Felber BK, Pappa V, et al. Anti–SARS-CoV-2 Antibody Responses in Convalescent Plasma Donors Are Increased in Hospitalized Patients; Subanalyses of a Phase 2 Clinical Study. Microorganisms. 2020; 8(12):1885. https://doi.org/10.3390/microorganisms8121885
Chicago/Turabian StyleTerpos, Evangelos, Marianna Politou, Theodoros N. Sergentanis, Andreas Mentis, Margherita Rosati, Dimitris Stellas, Jenifer Bear, Xintao Hu, Barbara K. Felber, Vassiliki Pappa, and et al. 2020. "Anti–SARS-CoV-2 Antibody Responses in Convalescent Plasma Donors Are Increased in Hospitalized Patients; Subanalyses of a Phase 2 Clinical Study" Microorganisms 8, no. 12: 1885. https://doi.org/10.3390/microorganisms8121885
APA StyleTerpos, E., Politou, M., Sergentanis, T. N., Mentis, A., Rosati, M., Stellas, D., Bear, J., Hu, X., Felber, B. K., Pappa, V., Pagoni, M., Grouzi, E., Labropoulou, S., Charitaki, I., Ntanasis-Stathopoulos, I., Moschandreou, D., Bouhla, A., Saridakis, S., Korompoki, E., ... Pavlakis, G. N. (2020). Anti–SARS-CoV-2 Antibody Responses in Convalescent Plasma Donors Are Increased in Hospitalized Patients; Subanalyses of a Phase 2 Clinical Study. Microorganisms, 8(12), 1885. https://doi.org/10.3390/microorganisms8121885