The Influence of pCO2-Driven Ocean Acidification on Open Ocean Bacterial Communities during A Short-Term Microcosm Experiment in the Eastern Tropical South Pacific (ETSP) off Northern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Seawater Collection
2.3. Physical-Chemical Analyses
2.4. Cell Abundance Estimates
2.5. Short-Term pCO2 Perturbation Experiments
2.5.1. Microcosms Experiments
2.5.2. Metagenomic Analyses
2.6. Statistical Analysis
3. Results
3.1. Physical–Chemical Conditions and Non-Pigmented Picoplanktonic Cells
3.2. Vertical Distribution and Community Structure of Bacterial Assemblages in Station T5
3.3. Response of Bacterial Communities to Short-Term Exposure to Elevated pCO2 Levels in Microcosms Experiment
3.4. Community Structure of Free-Living and Particle-Attached Bacteria in the pCO2 Perturbation Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cunha, A.; Almeida, A.; Coelho, F.J.R.C.; Gomes, N.C.M.; Oliveira, V.; Santos, A.L. Bacterial Extracellular Enzymatic Activity in Globally Changing Aquatic Ecosystems. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2010; pp. 124–135. [Google Scholar]
- Gattuso, J.-P.; Magnan, A.K.; Billé, R.; Cheung, W.W.L.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M.; et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722. [Google Scholar] [CrossRef] [PubMed]
- Magnan, A.K.; Colombier, M.; Billé, R.; Joos, F.; Hoegh-Guldberg, O.; Pörtner, H.-O.; Waisman, H.; Spencer, T.; Gattuso, J.-P. Implications of the Paris agreement for the ocean. Nat. Clim. Chang. 2016, 6, 732–735. [Google Scholar] [CrossRef] [Green Version]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.R.; Tilbrook, B.; et al. The Oceanic Sink for Anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean Acidification: The Other CO2Problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doney, S.C.; Ruckelshaus, M.; Duffy, J.E.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate Change Impacts on Marine Ecosystems. Annu. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Kroeker, K.J.; Kordas, R.L.; Crim, R.N.; Singh, G.G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 2010, 13, 1419–1434. [Google Scholar] [CrossRef]
- Vargas, C.A.; Lagos, N.A.; Lardies, M.A.; Duarte, C.; Manríquez, P.H.; Aguilera, V.M.; Broitman, B.; Widdicombe, S.; Dupont, S. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 2017, 1, 0084. [Google Scholar] [CrossRef] [Green Version]
- Taucher, J.; Haunost, M.; Boxhammer, T.; Bach, L.T.; Algueró-Muñiz, M.; Riebesell, U. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE 2017, 12, e0169737. [Google Scholar] [CrossRef] [Green Version]
- Badger, M.R.; Bek, E.J. Multiple Rubisco forms in proteobacteria: Their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot. 2008, 59, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, D.; Mulholland, M.; Fu, F. Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean. Oceanography 2009, 22, 128–145. [Google Scholar] [CrossRef] [Green Version]
- Beman, J.M.; Chow, C.-E.; King, A.L.; Feng, Y.; Fuhrman, J.A.; Andersson, A.; Bates, N.R.; Popp, B.N.; Hutchins, D.A. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl. Acad. Sci. USA 2011, 108, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Lohbeck, K.T.; Riebesell, U.; Reusch, T.B.H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 2012, 5, 346–351. [Google Scholar] [CrossRef]
- Das, S.; Mangwani, N. Ocean acidification and marine microorganisms: Responses and consequences. Oceanología 2015, 57, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. J. Plankton Res. 2002, 24, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, G.E.; Smith, J.E.; Johnson, K.S.; Send, U.; Levin, L.A.; Micheli, F.; Paytan, A.; Price, N.N.; Peterson, B.; Takeshita, Y.; et al. High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. PLoS ONE 2011, 6, e28983. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, J.E.; Green, M.; Hunt, C.; Campbell, J. Coastal Acidification by Rivers: A Threat to Shellfish? EOS 2008, 89, 513. [Google Scholar] [CrossRef] [Green Version]
- Feely, R.A.; Alin, S.R.; Newton, J.; Sabine, C.L.; Warner, M.J.; Devol, A.H.; Krembs, C.; Maloy, C. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 2010, 88, 442–449. [Google Scholar] [CrossRef]
- Ulloa, O.; Canfield, D.E.; Delong, E.F.; Letelier, R.M.; Stewart, F.J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. USA 2012, 109, 15996–16003. [Google Scholar] [CrossRef] [Green Version]
- Dickson, A.; Sabine, C.; Christian, J. Guide to Best Practices for Ocean CO2 Measurements 3; PICES Special Publication: Sidney, BC, Canada, 2007. [Google Scholar]
- Pierrot, D.; Wallace, D.; Lewis, E. MS Excel Program Developed for CO2 System Calculations; ORNL Environmental Sciences Division: Oak Ridge, TN, USA, 2011.
- Mehrbach, C.; Culberson, C.H.; Hawley, J.E.; Pytkowicx, R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 1973, 18, 897–907. [Google Scholar] [CrossRef]
- Dickson, A.; Millero, F. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1987, 34, 1733–1743. [Google Scholar] [CrossRef]
- Dickson, A.G. Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 1990, 22, 113–127. [Google Scholar] [CrossRef]
- Marie, D.; Simon, N.; Guillou, L.; Partensky, F.; Vaulot, D. DNA/RNA Analysis of Phytoplankton by Flow Cytometry. Curr. Protoc. Cytom. 2000, 11, 11.12.1–11.12.14. [Google Scholar] [CrossRef] [PubMed]
- Murillo, A.A.; Ramírez-Flandes, S.; Delong, E.F.; Ulloa, O. Enhanced metabolic versatility of planktonic sulfur-oxidizing Î3-proteobacteria in an oxygen-deficient coastal ecosystem. Front. Mar. Sci. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Wright, J.J.; Konwar, K.M.; Hallam, S.J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Genet. 2012, 10, 381–394. [Google Scholar] [CrossRef]
- Plominsky, A.M.; Trefault, N.; Podell, S.; Blanton, J.M.; De La Iglesia, R.; Allen, E.E.; Von Dassow, P.; Ulloa, O. Metabolic potential andin situtranscriptomic profiles of previously uncharacterized key microbial groups involved in coupled carbon, nitrogen and sulfur cycling in anoxic marine zones. Environ. Microbiol. 2018, 20, 2727–2742. [Google Scholar] [CrossRef] [Green Version]
- Stevens, H.; Ulloa, O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. 2008, 10, 1244–1259. [Google Scholar] [CrossRef]
- Sheik, C.S.; Jain, S.; Dick, G.J. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ. Microbiol. 2014, 16, 304–317. [Google Scholar] [CrossRef]
- Swan, B.K.; Martinez-Garcia, M.; Preston, C.M.; Sczyrba, A.; Woyke, T.; Lamy, D.; Reinthaler, T.; Poulton, N.J.; Masland, E.D.P.; Gomez, M.L.; et al. Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean. Science 2011, 333, 1296–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endres, S.; Galgani, L.; Riebesell, U.; Schulz, K.-G.; Engel, A. Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study. PLoS ONE 2014, 9, e99228. [Google Scholar] [CrossRef] [Green Version]
- Dash, H.R.; Mangwani, N.; Chakraborty, J.; Kumari, S.; Das, S. Marine bacteria: Potential candidates for enhanced bioremediation. Appl. Microbiol. Biotechnol. 2012, 97, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Grossart, H.-P.; Allgaier, M.; Passow, U.; Riebesell, U. Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol. Oceanogr. 2006, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Crespo, B.G.; Pommier, T.; Fernández-Gómez, B.; Pedrós-Alió, C. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. MicrobiologyOpen 2013, 2, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Rochelle-Newall, E.; Chu, V.; Pringault, O.; Amouroux, D.; Arfi, R.; Bettarel, Y.; Bouvier, T.; Got, P.; Nguyen, T.; Mari, X.; et al. Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Mar. Pollut. Bull. 2011, 62, 2317–2329. [Google Scholar] [CrossRef]
- Maas, E.; Law, C.; Hall, J.; Pickmere, S.; Currie, K.; Chang, F.; Voyles, K.; Caird, D. Effect of ocean acidification on bacterial abundance, activity and diversity in the Ross Sea, Antarctica. Aquat. Microb. Ecol. 2013, 70, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Delong, E.F.; Franks, D.G.; Alldredge, A.L. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 1993, 38, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Capone, D.G.; Hutchins, D.A. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 2013, 6, 711–717. [Google Scholar] [CrossRef]
- Dore, J.E.; Lukas, R.; Sadler, D.W.; Church, M.J.; Karl, D.M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. USA 2009, 106, 12235–12240. [Google Scholar] [CrossRef] [Green Version]
- Krause, E.; Wichels, A.; Giménez, L.; Lunau, M.; Schilhabel, M.B.; Gerdts, G. Small Changes in pH Have Direct Effects on Marine Bacterial Community Composition: A Microcosm Approach. PLoS ONE 2012, 7, e47035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meron, D.; Atias, E.; Kruh, L.I.; Elifantz, H.; Minz, D.; Fine, M.; Banin, E. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 2011, 5, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictionalclaims in published maps and institutional affiliations. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguayo, P.; Campos, V.L.; Henríquez, C.; Olivares, F.; De Ia Iglesia, R.; Ulloa, O.; Vargas, C.A. The Influence of pCO2-Driven Ocean Acidification on Open Ocean Bacterial Communities during A Short-Term Microcosm Experiment in the Eastern Tropical South Pacific (ETSP) off Northern Chile. Microorganisms 2020, 8, 1924. https://doi.org/10.3390/microorganisms8121924
Aguayo P, Campos VL, Henríquez C, Olivares F, De Ia Iglesia R, Ulloa O, Vargas CA. The Influence of pCO2-Driven Ocean Acidification on Open Ocean Bacterial Communities during A Short-Term Microcosm Experiment in the Eastern Tropical South Pacific (ETSP) off Northern Chile. Microorganisms. 2020; 8(12):1924. https://doi.org/10.3390/microorganisms8121924
Chicago/Turabian StyleAguayo, Paulina, Víctor L. Campos, Carlos Henríquez, Francisca Olivares, Rodrigo De Ia Iglesia, Osvaldo Ulloa, and Cristian A. Vargas. 2020. "The Influence of pCO2-Driven Ocean Acidification on Open Ocean Bacterial Communities during A Short-Term Microcosm Experiment in the Eastern Tropical South Pacific (ETSP) off Northern Chile" Microorganisms 8, no. 12: 1924. https://doi.org/10.3390/microorganisms8121924
APA StyleAguayo, P., Campos, V. L., Henríquez, C., Olivares, F., De Ia Iglesia, R., Ulloa, O., & Vargas, C. A. (2020). The Influence of pCO2-Driven Ocean Acidification on Open Ocean Bacterial Communities during A Short-Term Microcosm Experiment in the Eastern Tropical South Pacific (ETSP) off Northern Chile. Microorganisms, 8(12), 1924. https://doi.org/10.3390/microorganisms8121924