Living with Legionella and Other Waterborne Pathogens
Abstract
:1. Legionella and Other Opportunistic Premise Plumbing Pathogens (OPPPs)
2. Common Characteristics of Legionella and OPPPs
2.1. Colonists, Not Contaminants
2.2. Disinfectant-Resistance
2.3. Growth in Natural Water, Distribution Systems, and Premise Plumbing
2.4. Surface Adherence and Biofilm Formation
2.5. Amoebae-Resisting Microorganisms
2.6. Interactions amongst Legionella and OPPPs
3. Premise Plumbing—An Ideal Habitat for L. pneumophila and Other OPPPs
4. Pathways of Transmission of Legionella and OPPPs
5. Monitoring for Legionella and OPPPs
6. Remediation of Legionella and OPPPs in Premise Plumbing
Funding
Conflicts of Interest
References
- Snyder, L.A.; Loman, N.J.; Faraj, L.A.; Levi, K.; Weinstock, G.; Boswell, T.C.; Pallen, M.J.; Ala’Aldeen, D.A. Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. Eurosurveillance 2013, 18, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borella, P.; Montagna, M.T.; Stampi, S.; Stancanelli, G.; Romano-Spica, V.; Triassi, M.; Marchesi, I.; Bargellini, A.; Tatò, D.; Napoli, C.; et al. Legionella Contamination in Hot Water of Italian Hotels. Appl. Environ. Microbiol. 2005, 71, 5805–5813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, P.T.; Peterson, K.; Fishbain, J.; Craft, D.W.; Ewell, A.J.; Moran, K.; Hack, D.C.; Deye, G.A.; Riddell, S.; Christopher, G.; et al. Acinetobacter baumanii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. Morbid. Mortal. Week. Rep. 2004, 53, 1063–1066. [Google Scholar]
- CDC. 2017 Annual Tables of Infectious Disease Data; CDC Division of Health Informatics and Surveillance: Atlanta, GA, USA, 2016. Available online: https://www.cdc.gov/nndss/infectious-tables.html (accessed on 17 December 2020).
- Billinger, M.E.; Olivier, K.N.; Viboud, C.; De Oca, R.M.; Steiner, C.; Holland, S.M.; Prevots, D.R. Nontuberculous Mycobacteria–associated Lung Disease in Hospitalized Persons, United States, 1998–2005. Emerg. Infect. Dis. 2009, 15, 1562–1569. [Google Scholar] [CrossRef]
- Collier, S.A.; Stockman, L.J.; Hicks, L.A.; Garrison, L.E.; Zhou, F.J.; Beach, M.J. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 2012, 140, 2003–2013. [Google Scholar] [CrossRef] [Green Version]
- CDC. Multidrug-Resistant Pseudomonas aeruginosa. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf (accessed on 17 December 2020).
- Falkinham, J.O.; Norton, C.D.; Lechevallier, M.W. Factors Influencing Numbers of Mycobacterium avium, Mycobacterium intracellulare, and Other Mycobacteria in Drinking Water Distribution Systems. Appl. Environ. Microbiol. 2001, 67, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Favero, M.S.; Carson, L.A.; Bond, W.W.; Petersen, N.J.; Schmidt, M.J.; Robison, G.A. Pseudomonas aeruginosa: Growth in Distilled Water from Hospitals. Science 1971, 173, 836–838. [Google Scholar] [CrossRef]
- Grobe, S.; Wingender, J.; Flemming, H.-C. Capability of mucoid Pseudomonas aeruginosa to survive in chlorinated water. Int. J. Hyg. Environ. Health 2001, 204, 139–142. [Google Scholar] [CrossRef]
- Karumathil, D.P.; Yin, H.-B.; Johny, A.K.; Venkitanarayanan, K. Effect of Chlorine Exposure on the Survival and Antibiotic Gene Expression of Multidrug Resistant Acinetobacter baumannii in Water. Int. J. Environ. Res. Public Health 2014, 11, 1844–1854. [Google Scholar] [CrossRef]
- Taylor, R.M.; Norton, C.D.; LeChevallier, M.W.; Falkinham, J.O., III. Susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum to chlorine, chloramine, chlorine dioxide, and ozone. Appl. Environ. Microbiol. 2000, 66, 1702–1705. [Google Scholar] [CrossRef] [Green Version]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa—Mechanisms, epidemiology and evolution. Drug Resist. Updat. 2019, 44, 100640. [Google Scholar] [CrossRef] [PubMed]
- Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [Google Scholar] [CrossRef] [PubMed]
- Bédard, E.; Prévost, M.; Déziel, E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen 2016, 5, 937–956. [Google Scholar] [CrossRef]
- Diaz, K.E.; Remold, S.K.; Onyiri, O.; Bozeman, M.; Raymond, P.A.; Turner, P.E. Generalized Growth of Estuarine, Household and Clinical Isolates of Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 305. [Google Scholar] [CrossRef] [PubMed]
- Cervia, J.S.; Ortolano, G.A.; Canonica, F.P. Hospital Tap Water as a Source of Stenotrophomonas maltophilia Infection. Clin. Infect. Dis. 2008, 46, 1485–1487. [Google Scholar] [CrossRef]
- Bifulco, J.M.; Shirey, J.J.; Bissonnette, G.K. Detection of Acinetobacter spp. in rural drinking water supplies. Appl. Environ. Microbiol. 1989, 55, 2214–2219. [Google Scholar] [CrossRef] [Green Version]
- Norton, C.D.; LeChevallier, M.W.; Falkinham, J.O., III. Survival of Mycobacterium avium in a model distribution system. Water Res. 2004, 38, 1457–1466. [Google Scholar] [CrossRef]
- Lewis, A.H.; Falkinham, J.O. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int. J. Mycobacteriol. 2015, 4, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; Brown, S.A.; Whiteley, M. Membrane-Bound Nitrate Reductase Is Required for Anaerobic Growth in Cystic Fibrosis Sputum. J. Bacteriol. 2007, 189, 4449–4455. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.M.; Flemming, H.-C.; Wingender, J. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int. J. Hyg. Environ. Health 2010, 213, 190–197. [Google Scholar] [CrossRef]
- Drabick, J.; Gracely, E.; Heidecker, G.; Lipuma, J. Survival of Burkholderia cepacia on environmental surfaces. J. Hosp. Infect. 1996, 32, 267–276. [Google Scholar] [CrossRef]
- Di Bonaventura, G.; Stepanović, S.; Picciani, C.; Pompilio, A.; Piccolomini, R. Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol. 2007, 52, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Li, H.; Zhang, C.; Liang, B.; Li, J.; Wang, L.; Du, X.; Liu, X.; Qiu, S.; Song, H. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii. Front. Microbiol. 2016, 7, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steed, K.A.; Falkinham, J.O. Effect of Growth in Biofilms on Chlorine Susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 2006, 72, 4007–4011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, P.S. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 1996, 40, 2517–2522. [Google Scholar] [CrossRef] [Green Version]
- De Beer, D.; Srinivasan, R.; Stewart, P.S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 1994, 60, 4339–4344. [Google Scholar] [CrossRef] [Green Version]
- De Beer, D.; Stoodley, P.; Roe, F.; Lewandowski, Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 1994, 43, 1131–1138. [Google Scholar] [CrossRef]
- Xu, K.D.; Stewart, P.S.; Xia, F.; Huang, C.-T.; McFeters, G.A. Spatial Physiological Heterogeneity in Pseudomonas aeruginosa Biofilm Is Determined by Oxygen Availability. Appl. Environ. Microbiol. 1998, 64, 4035–4039. [Google Scholar] [CrossRef] [Green Version]
- Mullis, S.N.; Falkinham, J.O., III. Adherence and biofilm formation of Mycobacterium avium and Mycobacterium abscessus to household plumbing materials. J. Appl. Microbiol. 2013, 115, 908–914. [Google Scholar] [CrossRef]
- Falkinham, J.O. Disinfection and cleaning of heater–cooler units: Suspension- and biofilm-killing. J. Hosp. Infect. 2020, 105, 552–557. [Google Scholar] [CrossRef]
- Thomas, V.; Herrera-Rimann, K.; Blanc, D.S.; Greub, G. Biodiversity of Amoebae and Amoeba-Resisting Bacteria in a Hospital Water Network. Appl. Environ. Microbiol. 2006, 72, 2428–2438. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.; Loret, J.F.; Jousset, M.; Greub, G. Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ. Microbiol. 2008, 10, 2728–2745. [Google Scholar] [CrossRef] [PubMed]
- Strahl, E.D.; Gillaspy, G.E.; Falkinham, J.O. Fluorescent Acid-Fast Microscopy for Measuring Phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and Their Intracellular Growth. Appl. Environ. Microbiol. 2001, 67, 4432–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinert, M.; Emödy, L.; Amann, R.; Hacker, J. Resuscitation of viable but unculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 1997, 63, 2047–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schousboe, P.; Rasmussen, L. Survival of Tetrahymena thermophila at Low Initial Cell Densities. Effects of Lipids and Long-Chain Alcohols. J. Eukaryot. Microbiol. 1994, 41, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Struewing, I.; Vereen, E.; Kirby, A.E.; Levy, K.; Moe, C.L.; Ashbolt, N.J. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. J. Appl. Microbiol. 2016, 120, 509–521. [Google Scholar] [CrossRef]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank, D.N.; Harris, J.K.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 2009, 106, 16393–16399. [Google Scholar] [CrossRef] [Green Version]
- Falkinham, J.O.; Williams, M.D.; Kwait, R.; Lande, L. Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int. J. Mycobacteriol. 2016, 5, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Egea, M.-C.; Ji, P.; Pruden, A.; Falkinham, J.O. Inhibition of Adherence of Mycobacterium avium to Plumbing Surface Biofilms of Methylobacterium spp. Pathogens 2017, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Kelley, S.T.; Theisen, U.; Angenent, L.T.; Amand, A.S.; Pace, N.R. Molecular Analysis of Shower Curtain Biofilm Microbes. Appl. Environ. Microbiol. 2004, 70, 4187–4192. [Google Scholar] [CrossRef] [Green Version]
- Pierson, L.S.; Pierson, E.A. Metabolism and function of phenzaines in bacteria: Impacts on the behavior in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 2010, 86, 1659–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Khweek, A.; Amer, A.O. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front. Cell. Infect. Microbiol. 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Tichenor, W.S.; Thurlow, J.; McNulty, S.; Brown-Elliott, B.A.; Wallace, R.J.; Falkinham, J.O. Nontuberculous Mycobacteria in Household Plumbing as Possible Cause of Chronic Rhinosinusitis. Emerg. Infect. Dis. 2012, 18, 1612–1617. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, I.J.O.; Iseman, M.D.; De Haas, P.; Van Soolingen, D. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 2008, 6, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Cross, D.F.; Benchimol, A.; Dimond, E.G. The Faucet Aerator—A Source of Pseudomonas Infection. N. Engl. J. Med. 1966, 274, 1430–1431. [Google Scholar] [CrossRef]
- Reuter, S.; Sigge, A.; Wiedeck, H.; Trautmann, M. Analysis of transmission pathways of Pseudomonas aeruginosa between patients and tap water outlets. Crit. Care Med. 2002, 30, 2222–2228. [Google Scholar] [CrossRef]
- McDonald, L.C.; Walker, M.; Carson, L.; Arduino, M.; Aguero, S.M.; Gomez, P.; McNeil, P.; Jarvis, W.R. Outbreak of Acinetobacter spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners. Pediatr. Infect. Dis. J. 1998, 17, 716–722. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Fajardo-Aquino, Y.; Arheart, K.L.; Cleary, T.; DePascale, D.; Pizano, L.; Namias, N.; Rivera, J.I.; O’Hara, J.A.; Doi, Y. Aerosolization of Acinetobacter baumannii in a Trauma ICU. Crit. Care Med. 2013, 41, 1915–1918. [Google Scholar] [CrossRef]
- Tzou, C.L.; Dirac, M.A.; Becker, A.L.; Beck, N.K.; Weigel, K.M.; Meschke, J.S.; Cangelosi, G.A. Association between Mycobacterium avium Complex Pulmonary Disease and Mycobacteria in Home Water and Soil. Ann. Am. Thorac. Soc. 2020, 17, 57–62. [Google Scholar] [CrossRef]
- Hamilton, L.A.; Iii, J.O.F. Aerosolization of Mycobacterium avium and Mycobacterium abscessus from a household ultrasonic humidifier. J. Med. Microbiol. 2018, 67, 1491–1495. [Google Scholar] [CrossRef]
- Kahana, L.M.; Kay, J.M.; Yakrus, M.A.; Waserman, S. Mycobacterium avium Complex Infection in an Immunocompetent Young Adult Related to Hot Tub Exposure. Chest 1997, 111, 242–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.J.; Rutala, W.A.; Sickbert-Bennett, E.E. Outbreaks Associated with Contaminated Antiseptics and Disinfectants. Antimicrob. Agents Chemother. 2007, 51, 4217–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, M.M.; Riley, T.V. Infection with Pseudomonas maltophilia Hospital Outbreak Due to Contaminated Disinfectant. Med. J. Aust. 1976, 2, 710–712. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Kaiser, D.; Lueders, T.; Schnell, S.; Egert, M. Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Sci. Rep. 2017, 7, 5791. [Google Scholar] [CrossRef]
- Sax, H.; Bloemberg, G.; Hasse, B.; Sommerstein, R.; Kohler, P.; Achermann, Y.; Rössle, M.; Falk, V.; Kuster, S.P.; Böttger, E.C.; et al. Prolonged Outbreak of Mycobacterium chimaera Infection After Open-Chest Heart Surgery. Clin. Infect. Dis. 2015, 61, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.J.; Edberg, S.C.; Reasoner, D.J. Heterotrophic plate count bacteria—What is their significance in drinking water? Int. J. Food Microbiol. 2004, 92, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Bartram, J.; Cotruvo, J.; Exner, M.; Fricker, C.; Glasmacher, A. Heterotrophic plate count measurement in drinking water safety management. Int. J. Food Microbiol. 2004, 92, 241–247. [Google Scholar] [CrossRef]
- Falkinham, J.O., III. Pseudomonas aeruginosa as an indicator for opportunistic premise plumbing pathogens. JSM Microbiol. 2017, 5, 1042. [Google Scholar]
- Williams, M.D.; Falkinham, J.O. Effect of Cetylpyridinium Chloride (CPC) on Colony Formation of Common Nontuberculous Mycobacteria. Pathogens 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Edwards, M.; Rhoads, W.; Pruden, A.; Pearce, A.; Falkinham, J.O., III. Green water systems and opportunistic premise plumbing pathogens. Plumb. Eng. 2014, 42, 63–65. [Google Scholar]
- Falkinham, J.O., III. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacterial disease. Emerg. Infect. Dis. 2011, 17, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Lande, L.; Alexander, D.C.; Wallace, R.J.; Kwait, R.; Iakhiaeva, E.; Williams, M.; Cameron, A.D.S.; Olshefsky, S.; Devon, R.; Vasireddy, R.; et al. Mycobacterium avium in Community and Household Water, Suburban Philadelphia, Pennsylvania, USA, 2010–2012. Emerg. Infect. Dis. 2019, 25, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgers, M.R.; Blackstone, B.J.; Reyes, A.L.; Covert, T.C. Colonisation of point of use water filters by silver resistant non-tuberculous mycobacteria. J. Clin. Pathol. 1999, 52, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkinham, J.O., III. Living with Legionella and Other Waterborne Pathogens. Microorganisms 2020, 8, 2026. https://doi.org/10.3390/microorganisms8122026
Falkinham JO III. Living with Legionella and Other Waterborne Pathogens. Microorganisms. 2020; 8(12):2026. https://doi.org/10.3390/microorganisms8122026
Chicago/Turabian StyleFalkinham, Joseph O., III. 2020. "Living with Legionella and Other Waterborne Pathogens" Microorganisms 8, no. 12: 2026. https://doi.org/10.3390/microorganisms8122026
APA StyleFalkinham, J. O., III. (2020). Living with Legionella and Other Waterborne Pathogens. Microorganisms, 8(12), 2026. https://doi.org/10.3390/microorganisms8122026