Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms
Abstract
:1. Introduction
2. Methods
3. Fecal Microbiota Transplantation
4. Probiotics and Prebiotics
5. Clinical Considerations and the Future of Microbiome-Modifying Bacterial Therapies.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bilinski, J.; Grzesiowski, P.; Sorensen, N.; Madry, K.; Muszynski, J.; Robak, K.; Wroblewska, M.; Dzieciatkowski, T.; Dulny, G.; Dwilewicz-Trojaczek, J.; et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: Results of a prospective, single-center study. Clin. Infect. Dis. 2017, 65, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Medboua-Benbalagh, C.; Touati, A.; Kermas, R.; Gharout-Sait, A.; Brasme, L.; Mezhoud, H.; Touati, D.; Guillard, T.; de Champs, C. Fecal carriage of extended-spectrum beta-lactamase-producing enterobacteriaceae strains is associated with worse outcome in patients hospitalized in the pediatric oncology unit of Beni-Messous Hospital in Algiers, Algeria. Microb. Drug Resist. 2017, 23, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Thacker, N.; Pereira, N.; Banavali, S.D.; Narula, G.; Vora, T.; Chinnaswamy, G.; Prasad, M.; Kelkar, R.; Biswas, S.; Arora, B. Alarming prevalence of community-acquired multidrug-resistant organisms colonization in children with cancer and implications for therapy: A prospective study. Indian J. Cancer 2014, 51, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Arcilla, M.S.; van Hattem, J.M.; Haverkate, M.R.; Bootsma, M.C.J.; van Genderen, P.J.J.; Goorhuis, A.; Grobusch, M.P.; Lashof, A.M.O.; Molhoek, N.; Schultsz, C.; et al. Import and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): A prospective, multicentre cohort study. Lancet Infect. Dis. 2017, 17, 78–85. [Google Scholar] [CrossRef]
- McConville, T.H.; Sullivan, S.B.; Gomez-Simmonds, A.; Whittier, S.; Uhlemann, A.C. Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study. PLoS ONE 2017, 12, e0186195. [Google Scholar] [CrossRef]
- Lim, C.J.; Cheng, A.C.; Kennon, J.; Spelman, D.; Hale, D.; Melican, G.; Sidjabat, H.E.; Paterson, D.L.; Kong, D.C.; Peleg, A.Y. Prevalence of multidrug-resistant organisms and risk factors for carriage in long-term care facilities: A nested case-control study. J. Antimicrob. Chemother. 2014, 69, 1972–1980. [Google Scholar] [CrossRef]
- Wang, J.; Foxman, B.; Mody, L.; Snitkin, E.S. Network of microbial and antibiotic interactions drive colonization and infection with multidrug-resistant organisms. Proc. Natl. Acad. Sci. USA 2017, 114, 10467–10472. [Google Scholar] [CrossRef] [Green Version]
- Bakken, J.S.; Borody, T.; Brandt, L.J.; Brill, J.V.; Demarco, D.C.; Franzos, M.A.; Kelly, C.; Khoruts, A.; Louie, T.; Martinelli, L.P.; et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 2011, 9, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Borody, T.J.; Campbell, J. Fecal microbiota transplantation: Techniques, applications, and issues. Gastroenterol. Clin. North. Am. 2012, 41, 781–803. [Google Scholar] [CrossRef]
- Khoruts, A.; Sadowsky, M.J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Mullish, B.H.; Quraishi, M.N.; Segal, J.P.; McCune, V.L.; Baxter, M.; Marsden, G.L.; Moore, D.J.; Colville, A.; Bhala, N.; Iqbal, T.H.; et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: Joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2018, 67, 1920–1941. [Google Scholar] [CrossRef] [Green Version]
- Floch, M.H.; Walker, W.A.; Sanders, M.E.; Nieuwdorp, M.; Kim, A.S.; Brenner, D.A.; Qamar, A.A.; Miloh, T.A.; Guarino, A.; Guslandi, M.; et al. Recommendations for Probiotic Use--2015 Update: Proceedings and Consensus Opinion. J. Clin. Gastroenterol. 2015, 49 (Suppl. 1), S69–S73. [Google Scholar] [CrossRef]
- Borody, T.J.; Warren, E.F.; Leis, S.M.; Surace, R.; Ashman, O.; Siarakas, S. Bacteriotherapy using fecal flora: Toying with human motions. J. Clin. Gastroenterol. 2004, 38, 475–483. [Google Scholar] [CrossRef] [PubMed]
- van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; de Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.; Tijssen, J.G.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McSeveney, M. FDA Warns about Potential Risks Related to Investigational Use of FMT; U.S. Food and Drug Administration: Washington, DC, USA, 2019.
- Jacobs, A. How Contaminated Stool Stored in a Freezer Left a Fecal Transplant Patient Dead. The New York Times, 2019. [Google Scholar]
- Millan, B.; Park, H.; Hotte, N.; Mathieu, O.; Burguiere, P.; Tompkins, T.A.; Kao, D.; Madsen, K.L. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin. Infect. Dis. 2016, 62, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiullo, L.; Del Chierico, F.; D’Argenio, P.; Putignani, L. Gut microbiota modulation for multidrug-resistant organism decolonization: Present and future perspectives. Front. Microbiol. 2019, 10, 1704. [Google Scholar] [CrossRef]
- Gopalsamy, S.N.; Woodworth, M.H.; Wang, T.; Carpentieri, C.T.; Mehta, N.; Friedman-Moraco, R.J.; Mehta, A.K.; Larsen, C.P.; Kraft, C.S. The use of microbiome restoration therapeutics to eliminate intestinal colonization with multidrug-resistant organisms. Am. J. Med. Sci. 2018, 356, 433–440. [Google Scholar] [CrossRef]
- Saha, S.; Tariq, R.; Tosh, P.K.; Pardi, D.S.; Khanna, S. Faecal microbiota transplantation for eradicating carriage of multidrug-resistant organisms: A systematic review. Clin. Microbiol. Infect. 2019, 25, 958–963. [Google Scholar] [CrossRef]
- Woodworth, M.H.; Hayden, M.K.; Young, V.B.; Kwon, J.H. The role of fecal microbiota transplantation in reducing intestinal colonization with antibiotic-resistant organisms: The current landscape and future directions. Open Forum Infect. Dis. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Crum-Cianflone, N.F.; Sullivan, E.; Ballon-Landa, G. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J. Clin. Microbiol. 2015, 53, 1986–1989. [Google Scholar] [CrossRef] [Green Version]
- Huttner, B.D.; de Lastours, V.; Wassenberg, M.; Maharshak, N.; Mauris, A.; Galperine, T.; Zanichelli, V.; Kapel, N.; Bellanger, A.; Olearo, F.; et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: A randomized clinical trial. Clin. Microbiol. Infect. 2019, 25, 830–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saidani, N.; Lagier, J.C.; Cassir, N.; Million, M.; Baron, S.; Dubourg, G.; Eldin, C.; Kerbaj, J.; Valles, C.; Raoult, D.; et al. Faecal microbiota transplantation shortens the colonisation period and allows re-entry of patients carrying carbapenamase-producing bacteria into medical care facilities. Int. J. Antimicrob. Agents 2019, 53, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battipaglia, G.; Malard, F.; Rubio, M.T.; Ruggeri, A.; Mamez, A.C.; Brissot, E.; Giannotti, F.; Dulery, R.; Joly, A.C.; Baylatry, M.T.; et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica 2019, 104, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Davido, B.; Batista, R.; Fessi, H.; Salomon, J.; Dinh, A. Impact of faecal microbiota transplantation to eradicate vancomycin-resistant enterococci (VRE) colonization in humans. J. Infect. 2017, 75, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Davido, B.; Batista, R.; Michelon, H.; Lepainteur, M.; Bouchand, F.; Lepeule, R.; Salomon, J.; Vittecoq, D.; Duran, C.; Escaut, L.; et al. Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? J. Hosp. Infect. 2017, 95, 433–437. [Google Scholar] [CrossRef]
- Dinh, A.; Fessi, H.; Duran, C.; Batista, R.; Michelon, H.; Bouchand, F.; Lepeule, R.; Vittecoq, D.; Escaut, L.; Sobhani, I.; et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: A prospective comparative study. J. Hosp. Infect. 2018, 99, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; de Groot, P.F.; Geerlings, S.E.; Hodiamont, C.J.; Belzer, C.; Berge, I.; de Vos, W.M.; Bemelman, F.J.; Nieuwdorp, M. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: A proof of principle study. BMC Res. Notes 2018, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Davido, B.; Batista, R.; Fessi, H.; Michelon, H.; Escaut, L.; Lawrence, C.; Denis, M.; Perronne, C.; Salomon, J.; Dinh, A. Fecal microbiota transplantation to eradicate vancomycin-resistant enterococci colonization in case of an outbreak. Med. Mal. Infect. 2019, 49, 214–218. [Google Scholar] [CrossRef]
- Ljungquist, O.; Kampmann, C.; Resman, F.; Riesbeck, K.; Tham, J. Probiotics for intestinal decolonization of ESBL-producing Enterobacteriaceae: A randomized, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2019. [Google Scholar] [CrossRef]
- Cohen, P.A. Probiotic safety-no guarantees. JAMA Intern. Med. 2018, 178, 1577–1578. [Google Scholar] [CrossRef]
- Cabana, M.; Salminen, S.; Sanders, M. Probiotic safety-reasonable certainty of no harm. JAMA Intern. Med. 2019, 179, 276. [Google Scholar] [CrossRef] [PubMed]
- Happel, A.U.; Barnabas, S.L.; Froissart, R.; Passmore, J.S. Weighing in on the risks and benefits of probiotic use in HIV-infected and immunocompromised populations. Benef. Microbes 2018, 9, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Luong, M.L.; Sareyyupoglu, B.; Nguyen, M.H.; Silveira, F.P.; Shields, R.K.; Potoski, B.A.; Pasculle, W.A.; Clancy, C.J.; Toyoda, Y. Lactobacillus probiotic use in cardiothoracic transplant recipients: A link to invasive Lactobacillus infection? Transpl. Infect. Dis. 2010, 12, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Roy, U.; Jessani, L.G.; Rudramurthy, S.M.; Gopalakrishnan, R.; Dutta, S.; Chakravarty, C.; Jillwin, J.; Chakrabarti, A. Seven cases of Saccharomyces fungaemia related to use of probiotics. Mycoses 2017, 60, 375–380. [Google Scholar] [CrossRef]
- Vanichanan, J.; Chavez, V.; Wanger, A.; De Golovine, A.M.; Vigil, K.J. Carbapenem-resistant Lactobacillus intra-abdominal infection in a renal transplant recipient with a history of probiotic consumption. Infection 2016, 44, 793–796. [Google Scholar] [CrossRef]
- Marteau, P.; Seksik, P. Tolerance of probiotics and prebiotics. J. Clin. Gastroenterol. 2004, 38, S67–S69. [Google Scholar] [CrossRef]
- Maryland Federal Jury Unanimously Finds Probiotic Sellers Liable for False Advertising and Awards Product Inventor More than $18 Million in Damages. In Business Wire; 2018; Available online: https://www.businesswire.com/news/home/20181126005445/en/Maryland-Federal-Jury-Unanimously-Finds-Probiotic-Sellers (accessed on 26 November 2018).
- Lund, B.; Edlund, C.; Barkholt, L.; Nord, C.E.; Tvede, M.; Poulsen, R.L. Impact on human intestinal microflora of an Enterococcus faecium probiotic and vancomycin. Scand. J. Infect. Dis. 2000, 32, 627–632. [Google Scholar] [CrossRef]
- Warrack, S.; Panjikar, P.; Duster, M.; Safdar, N. Tolerability of a probiotic in subjects with a history of methicillin-resistant Staphylococcus aureus colonisation. Benef. Microbes 2014, 5, 389–395. [Google Scholar] [CrossRef]
- Warrack, S.Z.M.; Duster, M.; Panjikar, P.; Safdar, N. A pilot randomized trial to determine the tolerability of a probiotic in patients colonized with vancomycin-resistant enterococcus. J. Prob. Health 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Doron, S.; Hibberd, P.L.; Goldin, B.; Thorpe, C.; McDermott, L.; Snydman, D.R. Effect of Lactobacillus rhamnosus GG administration on vancomycin-resistant enterococcus colonization in adults with comorbidities. Antimicrob. Agents Chemother. 2015, 59, 4593–4599. [Google Scholar] [CrossRef] [Green Version]
- Tannock, G.W.; Tiong, I.S.; Priest, P.; Munro, K.; Taylor, C.; Richardson, A.; Schultz, M. Testing probiotic strain Escherichia coli Nissle 1917 (Mutaflor) for its ability to reduce carriage of multidrug-resistant E. coli by elderly residents in long-term care facilities. J. Med. Microbiol. 2011, 60, 366–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomao, M.C.; Heluany-Filho, M.A.; Menegueti, M.G.; Kraker, M.E.; Martinez, R.; Bellissimo-Rodrigues, F. A randomized clinical trial on the effectiveness of a symbiotic product to decolonize patients harboring multidrug-resistant Gram-negative bacilli. Rev. Soc. Bras. Med. Trop. 2016, 49, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.H.; Bommarito, K.M.; Reske, K.A.; Seiler, S.M.; Hink, T.; Babcock, H.M.; Kollef, M.H.; Fraser, V.J.; Burnham, C.A.; Dubberke, E.R.; et al. Randomized controlled trial to determine the impact of probiotic administration on colonization with multidrug-resistant organisms in critically ill patients. Infect. Control. Hosp. Epidemiol. 2015, 36, 1451–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurt, A.; Ecevit, A.; Ince, D.A.; Abbasoglu, A.; Azap, O.K.; Ecevit, Z.; Ogus, E.; Tarcan, A. 833 The effect of probiotics on colonization of resistant organisms in preterm infants. ArchDis Child. 2012, 97, A240. [Google Scholar] [CrossRef] [Green Version]
- Dall, L.B.; Lausch, K.R.; Gedebjerg, A.; Fuursted, K.; Storgaard, M.; Larsen, C.S. Do probiotics prevent colonization with multi-resistant Enterobacteriaceae during travel? A randomized controlled trial. Travel Med. Infect. Dis. 2019, 27, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Manley, K.J.; Fraenkel, M.B.; Mayall, B.C.; Power, D.A. Probiotic treatment of vancomycin-resistant enterococci: A randomised controlled trial. Med. J. Aust. 2007, 186, 454–457. [Google Scholar] [CrossRef]
- Eggers, S.; Barker, A.K.; Valentine, S.; Hess, T.; Duster, M.; Safdar, N. Effect of Lactobacillus rhamnosus HN001 on carriage of Staphylococcus aureus: Results of the impact of probiotics for reducing infections in veterans (IMPROVE) study. BMC Infect. Dis. 2018, 18, 129. [Google Scholar] [CrossRef] [Green Version]
- Szachta, P.; Ignys, I.; Cichy, W. An evaluation of the ability of the probiotic strain Lactobacillus rhamnosus GG to eliminate the gastrointestinal carrier state of vancomycin-resistant enterococci in colonized children. J. Clin. Gastroenterol. 2011, 45, 872–877. [Google Scholar] [CrossRef]
- Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, G.B.B.; Hartman, M.; Hecht, M.; Luong, H.; Pan, Z.; Sofen, S.; Lawrence, J.; Miller, K.; Meehan, B.; Mahowald, M.; et al. Novel glycans reduce carbapenem-resistant enterobacteriaceae (CRE) and vancomycin-resistant enterococcus (VRE) colonization in an ex vivo assay by supporting growth of commensal microbiota at the expense of multidrug-resistant (MDR) organisms. In Proceedings of the IDWeek, Washington, DC, USA, October 2019. [Google Scholar]
- Wilson, B.C.; Vatanen, T.; Cutfield, W.S.; O’Sullivan, J.M. The super-donor phenomenon in fecal microbiota transplantation. Front. Cell Infect. Microbiol. 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- El-Salhy, M.H.J.; Gilja, O.H.; Kristoffersen, A.; Hausken, T. Effects of faecal microbiota transplantation in patients with irritable bowel syndrome (IBS): A randomised, double-blind placebo-controlled study. In Proceedings of the UEG Week, Barcelona, Spain, October 2019. [Google Scholar]
- Wang, S.; Ahmadi, S.; Nagpal, R.; Jain, S.; Mishra, S.P.; Kavanagh, K.; Zhu, X.; Wang, Z.; McClain, D.A.; Kritchevsky, S.B.; et al. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: From C. elegans to mice. Geroscience 2019. [Google Scholar] [CrossRef] [PubMed]
- Piewngam, P.; Zheng, Y.; Nguyen, T.H.; Dickey, S.W.; Joo, H.S.; Villaruz, A.E.; Glose, K.A.; Fisher, E.L.; Hunt, R.L.; Li, B.; et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018, 562, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Pena, J.R.; Jenq, R.R. The only thing that stops a bad microbiome, is a good microbiome. Haematologica 2019, 104, 1511–1513. [Google Scholar] [CrossRef] [PubMed]
- Mertsalmi, T.H.; Pekkonen, E.; Scheperjans, F. Antibiotic exposure and risk of Parkinson’s disease in Finland: A nationwide case-control study. Mov Disord 2019. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, L.; Harb, C.P.; Gebara, M.A.; Stibich, M.A.; Chemaly, R.F. A systematic and critical review of bacteriophage therapy against multidrug-resistant ESKAPE organisms in humans. Clin. Infect. Dis. 2019, 69, 167–178. [Google Scholar] [CrossRef]
- Kakasis, A.; Panitsa, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int. J. Antimicrob Agents 2019, 53, 16–21. [Google Scholar] [CrossRef]
- Becker, S.C.; Roach, D.R.; Chauhan, V.S.; Shen, Y.; Foster-Frey, J.; Powell, A.M.; Bauchan, G.; Lease, R.A.; Mohammadi, H.; Harty, W.J.; et al. Triple-acting lytic enzyme treatment of drug-resistant and intracellular staphylococcus aureus. Sci. Rep. 2016, 6, 25063. [Google Scholar] [CrossRef]
- Villacis, J.E.; Lopez, M.; Passey, D.; Santillan, M.H.; Verdezoto, G.; Trujillo, F.; Paredes, G.; Alarcon, C.; Horvath, R.; Stibich, M. Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital. BMC Infect. Dis. 2019, 19, 575. [Google Scholar] [CrossRef] [Green Version]
- Miro-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol. 2019, 10, 41. [Google Scholar] [CrossRef]
Year | Sponsor | Product | Placebo/Controlled | Clinical Stage | Target | Number of Patients | NCT Number | Effect | Conclusions | Reference |
---|---|---|---|---|---|---|---|---|---|---|
2015 | Washington University School of Medicine | FMT (enema) | no | Phase 1 | MDRO infections | 20 | NCT02312986 | Ongoing | ||
2015 | Jinling Hospital, China | FMT (nasointestinal tube) | no | N/A | MRSA | 10 | NCT02390622 | Ongoing | ||
2016 | University of Miami | FMT (enema) | no | Phase 1 | MDRO | 20 | NCT02816437 | Ongoing | ||
2016 | Cepheid/ Emory University | Allogeneic FMT | yes | Phase 1 | MDRO | 20 | NCT02922816 | Ongoing | ||
2017 | Raymond Poincaré Teaching Hospital | FMT (nasoduodenal tube) | no | N/A | CRE/VRE | 8 | EudraCT 2014-003048-11 | ++ | 3/8 patients decolonized after 3 months | [27] |
2017 | Medical University of Warsaw | intraduodenal FMT | no | N/A | MDRO | 20 | NCT02461199 | +++ | 15/20 (75%) complete decolonization | [1] |
2017 | Raymond Poincaré Teaching Hospital | FMT (nasoduodenal tube) | no | N/A | VRE | 8 | NCT03029078 | ++++ | 87.5% eradication at 3 months | [26] |
2017 | Microbiome Health Research Institute | Autologous FMT | yes | Phase 1 | MDRO | 4 | NCT03061097 | Completed. No results available. | ||
2017 | Microbiome Health Research Institute | FMT (pill) | yes | Phase 2 | VRE | 9 | NCT03063437 | Completed. No results available. | ||
2017 | Seattle Children’s Hospital | FMT | no | Phase 1 | ESC-R Enterobacteriaceae | 20 | NCT02543866 | Ongoing | ||
2018 | Academic Medical Centre, Amsterdam | FMT | no | N/A | ESBL | 15 | ISRCTN48328635 | ++ | 20-40% clearance with one or two FMTs | [29] |
2018 | Versailles Saint-Quentin University | FMT (nasoduodenal tube) | no | N/A | CRE/VRE | 17 | +++ | 4/8 CRE clearance 7/8 VRE clearance at 3 months | [28] | |
2018 | Rebiotix | RBX2660 | no | Phase 1/2 | Recurrent MDRO UTIs | 60 | NCT03367910 | Ongoing | ||
2018 | Chinese University of Hong Kong | FMT | yes | Phase 2 | CRE/VRE | 40 | NCT03479710 | Ongoing | ||
2018 | Rambam Health Care Campus | FMT | no | N/A | CRE | 60 | NCT03167398 | Ongoing | ||
2019 | University Hospital, Ghent | Allogenic vs Autologous FMT | yes | Phase 2/3 | Any MDRO | 150 | NCT04188743 | Unknown | ||
2019 | University Health Network, Toronto | FMT | yes | Phase 2/3 | CRE | 40 | NCT03802461 | Ongoing | ||
2019 | Rambam Health Care Campus | FMT | no | N/A | CRE | 60 | NCT03391674 | Ongoing | ||
2019 | University of British Columbia | FMT | no | N/A | Any MDRO | 90 | NCT04181112 | Ongoing | ||
2019 | Vancouver Island Health Authority | FMT | no | N/A | Any MDRO | 50 | NCT03834051 | Ongoing | ||
2019 | Raymond Poincaré Teaching Hospital | FMT (nasoduodenal tube) | no | N/A | VRE | 8 | ++++ | 87% decolonization after 3 months | [30] | |
2019 | Saint Antoine Hospital, Paris | FMT (enema or nasogastric tube) | no | N/A | CRE/VRE | 10 | +++ | Generally safe and effective in these patients | [25] | |
2019 | University of British Columbia | FMT (enema) +/− antibiotic | no | N/A | MDROs | 90 | NCT04181112 | Ongoing | ||
2019 | Geneva University Hospitals | FMT (pill and nasopharengeal) | yes | Phase 2 | ESBL/CPE | 39 | NCT02472600 | + | Slight reduction in colonization | [23] |
2020 | Rambam Health Care Campus | FMT (pills) | yes | Phase 2/3 | CRE | 60 | NCT04146337 | Not yet recruiting | ||
2022 * | University of Wisconsin, Madison | FMT (pills) | yes | Phase 2 | CRE/VRE | 90 | NCT03643887 | Not started |
Company | Product Name or Prefix | Therapy Type | Proposed Mechanism | Trials Specifically for MDRO |
---|---|---|---|---|
Rebiotix | RBX2660 | FMT (enema) | Displacement of MDRO | Phase 1/2 |
Kaleido | KB109 | prebiotic | Feed healthy bacteria to out-compete MDRO | Clinical Food Study |
ExeGi | Visbiome (US), Vivomixx (EU) | probiotic | Displacement of MDRO | Yes [31] |
Vedanta | VE707 | rationally selected microbiota | Displacement of MDRO | Preclinical |
SciBac | SCB | engineered probiotic | Transfer of plasmids to enhance good bacteria | Preclinical |
Rise Therapeutics | R | delivery technology for protein therapies | Immune modulation | Preclinical |
Finch | CP & FIN | FMT, rationally selected microbiota | Displacement of MDRO | No |
OpenBiome | unbranded pills | FMT (pills) | Displacement of MDRO | No |
Seres | SER | FMT, rationally selected microbiota | Displacement of MDRO | No |
Evelo | EDP | monoclonal microbials | Immune modulation | No |
Enterome | EB | small molecule | Immune modulation | No |
PureTech Health | numerous | hydrogel | Physical clearing of gut | No |
Atterx | C-1205 | lyophilized E. coli | Prevents growth of MDRO | On website, no NCT |
Atterx | GN-4474 | bacterial conjugation + killer plasmid | Transfer of toxic plasmid to target bacteria | On website, no NCT |
Treatment Type | Year | Sponsor | Product | Placebo/Controlled | Clinical Stage | Target | Number of Patients | NCT Number | Effect | Conclusions | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Probiotic (live bacteria product) | 2000 | Karolinska Institutet | probiotic or vancomycin | no | N/A | Healthy volunteers | 40 | 0 | No effect on VRE colonization | [40] | |
2003 | Tufts Medical Center | LGG or Culturelle | yes | Phase 1 | VRE | 11 | NCT00756262 | 0 | No effect on VRE colonization | [43] | |
2003 | University Hospital, Clermont-Ferrand | Lcr35 | unclear | N/A | MDR Pseudomonas aeruginosa | 400 | NCT00621803 | Terminated | |||
2007 | Austin Health | yogurt with LGG | yes | N/A | VRE | 27 | ++++ | 100% cleared | [49] | ||
2007 | Oregon Health and Science University | yogurt drink | yes | N/A | VRE | 8 | NCT00591474 | Terminated | |||
2008 | University of Wisconsin, Madison | VSL#3 | yes | Phase 2 | VRE | 50 | NCT00933556 | 0 | No effect on VRE but tolerated probiotics well | [42] | |
2008 | Hadassah Medical Organization | VSL#3 | yes | Phase 1/2 | CRKP | 60 | NCT00722410 | Unknown | |||
2009 | University Hospital, Clermont-Ferrand | Lcr35 | yes | Phase 4 | VRE | 24 | NCT00437580 | Unknown | |||
2009 | Bio-K Plus International | L. acidophilus CL1285® | yes | Phase 2 | MRSA | 146 | NCT00941356 | Unknown | |||
2010 | University of Wisconsin, Madison | L. rhamnosus HN001 | yes | Phase 2 | MRSA | 49 | NCT01112995 | + | 30-50% reduction at 4 weeks | [41] | |
2011 | University of Otago | E. coli Nissle 1917 (Mutaflor) | yes | N/A | MDR E. coli | 69 | 0 | No effect | [44] | ||
2011 | Baskent University | L. reuteri | yes | N/A | Any MDRO | 76 | NCT02178267 | 0 | No difference in acquisition of MDROs | [47] | |
2011 | Poznan University of Medical Sciences | LGG | yes | N/A | VRE (children) | 61 | +/- | Temporary elimination of VRE | [51] | ||
2011 | University of Wisconsin, Madison | L. rhamnosus HN001 | yes | Phase 2 | MRSA | 113 | NCT01321606 | + | Reduced odds of MRSA colonization of the gut | [50] | |
2012 | Washington University School of Medicine/ CDC | Culturelle (LGG) | yes | Phase 4 | Any MDRO | 103 | NCT01551186 | 0 | No effect of acquisition or loss of any MDROs | [46] | |
2014 | Washington University School of Medicine/ CDC | Culturelle (LGG) | yes | Phase 4 | Any MDRO | 87 | NCT02046512 | 0 | No effect of acquisition or loss of any MDROs | [46] | |
2014 | Hospital Universitario La Paz | Lactitol and Lactobacillus | no | Phase 2 | CRKP | 20 | NCT02307383 | Suspended (Unable to recruit patients) | |||
2016 | Universidade de São Paulo | symbiotic product | yes | N/A | MDR Gram-negative | 101 | 0 | Not effective for decolonizing | [45] | ||
2017 | Lund University/ ExeGi | Vivomixx (EU) /Visbiome (US) | yes | N/A | ESBL | 80 | NCT03860415 | 0 | Vivomixx® was not superior to placebo | [31] | |
2018 | Procter and Gamble/ Ochsner Health System | B. infantis | yes | N/A | MDR urinary tract infections | 100 | NCT03644966 | Ongoing | |||
2018 | Hvidovre University Hospital | Lactobacillus | yes | N/A | VRE | 162 | NCT03560700 | Not yet recruiting | |||
2019 | Aarhus University Hospital | LGG | yes | N/A | MDR Enterobacteriaceae | 61 | 0 | No difference in colonization | [48] | ||
2019 | Hospital Italiano de Buenos Aires | probiotic | yes | N/A | CRE | 228 | NCT03967301 | Ongoing | |||
2019 | Taipei Medical University /Delta Electronics | probiotic cocktail | yes | N/A | VRE | 100 | NCT03822819 | Ongoing | |||
2020 | University of Bergen | Labinic (R) probiotic | yes | Phase 3 | ESBL | 2000 | NCT04172012 | Ongoing | |||
Prebiotic/food | 2019 | Columbia University | Inulin | yes | Phase 2 | Any MDRO | 90 | NCT03865706 | Ongoing | ||
2019 | Kaleido Biosciences | KB109 | yes | N/A | VRE, ESBL, or CRE | 64 | NCT03944369 | Ongoing |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feehan, A.; Garcia-Diaz, J. Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms. Microorganisms 2020, 8, 166. https://doi.org/10.3390/microorganisms8020166
Feehan A, Garcia-Diaz J. Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms. Microorganisms. 2020; 8(2):166. https://doi.org/10.3390/microorganisms8020166
Chicago/Turabian StyleFeehan, Amy, and Julia Garcia-Diaz. 2020. "Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms" Microorganisms 8, no. 2: 166. https://doi.org/10.3390/microorganisms8020166
APA StyleFeehan, A., & Garcia-Diaz, J. (2020). Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms. Microorganisms, 8(2), 166. https://doi.org/10.3390/microorganisms8020166