Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Mutant Generation
2.3. Sensitivity and Tolerance to Human Serum
2.4. Sensitivity and Tolerance to Antimicrobial Peptides
2.5. Biofilm Aggregate Collection
2.6. Macrophage Nitric Oxide Response to Salmonella
2.7. Neutrophil Reactive Oxygen Species Response to Salmonella
2.8. Sensitivity and Tolerance to Oxidative Species
3. Results
3.1. Biofilm Tolerance to Innate Immunity
3.1.1. Each of the Four Major Salmonella Biofilm EPSs Contribute to Tolerance to Innate Immunity
3.1.2. Laboratory S. Typhi is Representative of Clinical Isolates from Both Acute and Chronic Patients
3.2. The Innate Immune Response to Salmonella Biofilms
3.2.1. Vi Antigen Has a Direct Effect on Macrophage Nitric Oxide Production
3.2.2. Vi Antigen Inhibition of Neutrophil ROS is Dependent on the Growth State
3.2.3. Slime Polysaccharides Have a Role in ROS Stimulation
3.2.4. Biofilms Are Tolerant to H2O2 but Provide no Protection to ClO−
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Escobedo, G.; Marshall, J.M.; Gunn, J.S. Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat. Rev. Microbiol. 2010, 9, nrmicro2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, R.W.; Reeve, K.E.; Gunn, J.S. Flagellated but Not Hyperfimbriated Salmonella enterica Serovar Typhimurium Attaches to and Forms Biofilms on Cholesterol-Coated Surfaces. J. Bacteriol. 2010, 192, 2981–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, R.W.; Rosales-Reyes, R.; Ramirez-Aguilar Mde, L.; Chapa-Azuela, O.; Alpuche-Aranda, C.; Gunn, J.S. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 4353. [Google Scholar] [CrossRef] [Green Version]
- Gunn, J.S.; Marshall, J.M.; Baker, S.; Dongol, S.; Charles, R.C.; Ryan, E.T. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 2014, 22, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, J.S.; Bakaletz, L.O.; Wozniak, D.J. What’s on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention. J. Biol. Chem. 2016, 291, 12538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.; Ravenhall, M.; Pickard, D.; Dougan, G.; Byrne, A.; Frankel, G. Comparison of Salmonella enterica serovars Typhi and Typhimurium reveals typhoidal serovar-specific responses to bile. Infect. Immun. 2018, 86, e00490-17. [Google Scholar] [CrossRef] [Green Version]
- Hay, A.; Zhu, J. In Sickness and in Health: The relationships between bacteria and bile in the human gut. In Advances in applied microbiology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 96, pp. 43–64. [Google Scholar]
- González, J.F.; Tucker, L.; Fitch, J.; Wetzel, A.; White, P.; Gunn, J.S. Human bile-mediated regulation of Salmonella curli fimbriae. J. Bacteriol. 2019, 201, e00055-19. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.C.J.; Taylor, T.D.; Hebrard, M.; Anbalagan, K.; Dashti, M.G.; Phua, K.K. Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm. BMC Genom. 2017, 18, 836. [Google Scholar] [CrossRef] [PubMed]
- Deksissa, T.; Gebremedhin, E.Z. A cross-sectional study of enteric fever among febrile patients at Ambo hospital: Prevalence, risk factors, comparison of Widal test and stool culture and antimicrobials susceptibility pattern of isolates. BMC Infect. Dis. 2019, 19, 288. [Google Scholar] [CrossRef]
- Mawazo, A.; Bwire, G.M.; Matee, M.I. Performance of Widal test and stool culture in the diagnosis of typhoid fever among suspected patients in Dar es Salaam, Tanzania. BMC Res. Notes 2019, 12, 316. [Google Scholar] [CrossRef] [Green Version]
- Arora, P.; Thorlund, K.; Brenner, D.R.; Andrews, J.R. Comparative accuracy of typhoid diagnostic tools: A Bayesian latent-class network analysis. Plos Negl. Trop. Dis. 2019, 13, e0007303. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.S.; Woo, J.H.; Kim, S. Management of Typhoid Fever–Clinical and Historical Perspectives in Korea. Infect. Chemother. 2019, 51, 330–335. [Google Scholar] [CrossRef] [PubMed]
- González, J.F.; Alberts, H.; Lee, J.; Doolittle, L.; Gunn, J.S. Biofilm Formation Protects Salmonella from the Antibiotic Ciprofloxacin In Vitro and In Vivo in the Mouse Model of chronic Carriage. Sci. Rep. 2018, 8, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanaway, J.D.; Reiner, R.C.; Blacker, B.F.; Goldberg, E.M.; Khalil, I.A.; Troeger, C.E.; Andrews, J.R.; Bhutta, Z.A.; Crump, J.A.; Im, J. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Crump, J.A.; Luby, S.P.; Mintz, E.D. The global burden of typhoid fever. Bull. World Health Organ. 2004, 82, 346. [Google Scholar]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. Plos Med. 2015, 12, e1001921. [Google Scholar]
- Bäumler, A.; Fang, F.C. Host specificity of bacterial pathogens. Cold Spring Harb Perspect. Med. 2013, 3, a010041. [Google Scholar] [CrossRef] [Green Version]
- Wain, J.; House, D.; Parkhill, J.; Parry, C.; Dougan, G. Unlocking the genome of the human typhoid bacillus. Lancet Infect. Dis. 2002, 2, 163–170. [Google Scholar] [CrossRef]
- Langridge, G.C.; Fookes, M.; Connor, T.R.; Feltwell, T.; Feasey, N.; Parsons, B.N.; Seth-Smith, H.M.; Barquist, L.; Stedman, A.; Humphrey, T. Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc. Natl. Acad. Sci. 2015, 112, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, J.R.; Goggins, J.A.; McLachlan, J.B. Salmonella infection: Interplay between the bacteria and host immune system. Immunol. Lett. 2017, 190, 42. [Google Scholar] [CrossRef]
- Hurley, D.; McCusker, M.P.; Fanning, S.; Martins, M. Salmonella–host interactions–modulation of the host innate immune system. Front. Immunol. 2014, 5, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffatellu, M.; Santos, R.L.; Chessa, D.; Wilson, R.P.; Winter, S.E.; Rossetti, C.A.; Lawhon, S.D.; Chu, H.; Lau, T.; Bevins, C.L.; et al. The capsule encoding the viaB locus reduces interleukin-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi. Infect. Immun. 2007, 75, 4342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haneda, T.; Winter, S.E.; Butler, B.P.; Wilson, R.P.; Tükel, Ç.; Winter, M.G.; Godinez, I.; Tsolis, R.M.; Bäumler, A.J. The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect. Immun. 2009, 77, 2932–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, S.E.; Raffatellu, M.; Wilson, R.P.; Rüssmann, H.; Bäumler, A.J. The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell. Microbiol. 2008, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.W.; Keestra, A.M.; Winter, S.E.; Xavier, M.N.; Tsolis, R.M.; Tolstikov, V.; Bäumler, A.J. Very long O-antigen chains enhance fitness during Salmonella-induced colitis by increasing bile resistance. Plos Pathog. 2012, 8, e1002918. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.P.; Winter, S.E.; Spees, A.M.; Winter, M.G.; Nishimori, J.H.; Sanchez, J.F.; Nuccio, S.P.; Crawford, R.W.; Tukel, C.; Baumler, A.J. The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect. Immun. 2011, 79, 830. [Google Scholar] [CrossRef] [Green Version]
- Tükel, Ç.; Raffatellu, M.; Humphries, A.D.; Wilson, R.P.; Andrews-Polymenis, H.L.; Gull, T.; Figueiredo, J.F.; Wong, M.H.; Michelsen, K.S.; Akçelik, M. CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol. Microbiol. 2005, 58, 289–304. [Google Scholar] [CrossRef]
- Raffatellu, M.; Chessa, D.; Wilson, R.P.; Dusold, R.; Rubino, S.; Baumler, A.J. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun. 2005, 73, 3367. [Google Scholar] [CrossRef] [Green Version]
- Parween, F.; Yadav, J.; Qadri, A. The virulence polysaccharide of Salmonella Typhi suppresses activation of Rho family GTPases to limit inflammatory responses from epithelial cells. Front. Cell. Infect. Microbiol. 2019, 9, 141. [Google Scholar] [CrossRef]
- Leid, J.G. Bacterial biofilms resist key host defenses. Microbe 2009, 4, 66. [Google Scholar]
- Valentini, M.; Filloux, A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. J. Biol. Chem. 2016, 291, 12547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Acker, H.; Coenye, T. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance. J. Biol. Chem. 2016, 291, 12565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keestra-Gounder, A.M.; Tsolis, R.M.; Bäumler, A.J. Now you see me, now you don’t: The interaction of Salmonella with innate immune receptors. Nat. Rev. Microbiol. 2015, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Pestrak, M.J.; Chaney, S.B.; Eggleston, H.C.; Dellos-Nolan, S.; Dixit, S.; Mathew-Steiner, S.S.; Roy, S.; Parsek, M.R.; Sen, C.K.; Wozniak, D.J. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. Plos Pathog. 2018, 14, e1006842. [Google Scholar] [CrossRef]
- Leid, J.G.; Willson, C.J.; Shirtliff, M.E.; Hassett, D.J.; Parsek, M.R.; Jeffers, A.K. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J. Immunol. 2005, 175, 7512–7518. [Google Scholar] [CrossRef] [Green Version]
- Adcox, H.E.; Vasicek, E.M.; Dwivedi, V.; Hoang, K.V.; Turner, J.; Gunn, J.S. Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization. Infect. Immun. 2016, 84, 3243. [Google Scholar] [CrossRef] [Green Version]
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect.Med. 2013, 3, a010306. [Google Scholar] [CrossRef] [Green Version]
- Coynault, C.; Robbe-Saule, V.; Norel, F. Virulence and vaccine potential of Salmonella typhimurium mutants deficient in the expression of the RpoS (σs) regulon. Mol. Microbiol. 1996, 22, 149–160. [Google Scholar] [CrossRef]
- Santander, J.; Wanda, S.-Y.; Nickerson, C.A.; Curtiss, R. Role of RpoS in fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella enterica serotype Typhi. Infect. Immun. 2007, 75, 1382–1392. [Google Scholar] [CrossRef] [Green Version]
- Virlogeux, I.; Waxin, H.; Ecobichon, C.; Popoff, M.Y. Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology 1995, 141, 3039–3047. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherepanov, P.P.; Wackernagel, W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158, 9–14. [Google Scholar] [CrossRef]
- Tucker, K.A.; Lilly, M.B.; Heck, L., Jr.; Rado, T.A. Characterization of a new human diploid myeloid leukemia cell line (PLB-985) with granulocytic and monocytic differentiating capacity. Blood 1987, 70, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drexler, H.G.; Dirks, W.G.; Matsuo, Y.; MacLeod, R.A.F. False leukemia–lymphoma cell lines: an update on over 500 cell lines. Leukemia 2003, 17, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedruzzi, E.; Fay, M.; Elbim, C.; Gougerot-Pocidalo, M.A. Differentiation of PLB-985 myeloid cells into mature neutrophils, shown by degranulation of terminally differentiated compartments in response to N-formyl peptide and priming of superoxide anion production by granulocyte–macrophage colony-stimulating factor. Br. J. Haematol. 2002, 117, 719. [Google Scholar] [PubMed]
- Pivot-Pajot, C.; Chouinard, F.C.; El Azreq, M.A.; Harbour, D.; Bourgoin, S.G. Characterisation of degranulation and phagocytic capacity of a human neutrophilic cellular model, PLB-985 cells. Immunobiology 2010, 215, 38. [Google Scholar] [CrossRef]
- Hiyoshi, H.; Wangdi, T.; Lock, G.; Saechao, C.; Raffatellu, M.; Cobb, B.A.; Bäumler, A.J. Mechanisms to evade the phagocyte respiratory burst arose by convergent evolution in typhoidal Salmonella serovars. Cell Rep. 2018, 22, 1787–1797. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Blas, A.; Utriainen, L.; Clay, S.L.; Kästele, V.; Cerovic, V.; Cunningham, A.F.; Henderson, I.R.; Wall, D.M.; Milling, S.W. Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously. J. Immunol. 2019, 202, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Hume, P.J.; Singh, V.; Davidson, A.C.; Koronakis, V. Swiss army pathogen: The Salmonella entry toolkit. Front. Cell. Infect. Microbiol. 2017, 7, 348. [Google Scholar] [CrossRef]
- Jansen, A.M.; Hall, L.J.; Clare, S.; Goulding, D.; Holt, K.E.; Grant, A.J.; Mastroeni, P.; Dougan, G.; Kingsley, R.A. A Salmonella Typhimurium-Typhi genomic chimera: A model to study Vi polysaccharide capsule function in vivo. Plos Pathog. 2011, 7, e1002131. [Google Scholar] [CrossRef]
- Sharma, A.; Qadri, A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl. Acad. Sci. 2004, 101, 17492–17497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangdi, T.; Lee, C.-Y.; Spees, A.M.; Yu, C.; Kingsbury, D.D.; Winter, S.E.; Hastey, C.J.; Wilson, R.P.; Heinrich, V.; Bäumler, A.J. The Vi capsular polysaccharide enables Salmonella enterica serovar Typhi to evade microbe-guided neutrophil chemotaxis. Plos Pathog. 2014, 10, e1004306. [Google Scholar] [CrossRef] [PubMed]
- BIEDZKA-SAREK, M.; El Skurnik, M. How to outwit the enemy: dendritic cells face Salmonella. Apmis 2006, 114, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Zaki, M.H.; Yoshitake, J.; Akuta, T.; Ezaki, T.; Akaike, T. Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection. Microb. Pathog. 2006, 40, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yang, W.; Jin, Y.; Huang, H.; Shi, C.; Jiang, Y.; Wang, J.; Kang, Y.; Wang, C.; Yang, G. Lactobacillus reuteri protects mice against Salmonella typhimurium challenge by activating macrophages to produce nitric oxide. Microb. Pathog. 2019, 137, 103754. [Google Scholar] [CrossRef] [PubMed]
- González, J.F.; Kurtz, J.; Bauer, D.L.; Hitt, R.; Fitch, J.; Wetzel, A.; La Perle, K.; White, P.; McLachlan, J.; Gunn, J.S. Establishment of Chronic Typhoid Infection in a Mouse Carriage Model Involves a Type 2 Immune Shift and T and B Cell Recruitment to the Gallbladder. MBio 2019, 10, e02262-19. [Google Scholar] [CrossRef] [Green Version]
- Muraille, E.; Leo, O.; Moser, M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 2014, 5, 603. [Google Scholar] [CrossRef] [Green Version]
- Eisele, N.A.; Ruby, T.; Jacobson, A.; Manzanillo, P.S.; Cox, J.S.; Lam, L.; Mukundan, L.; Chawla, A.; Monack, D.M. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 2013, 14, 171–182. [Google Scholar] [CrossRef] [Green Version]
- McCoy, M.W.; Moreland, S.M.; Detweiler, C.S. Hemophagocytic macrophages in murine typhoid fever have an anti-inflammatory phenotype. Infect. Immun. 2012, 80, 3642–3649. [Google Scholar] [CrossRef] [Green Version]
- Monack, D.M.; Bouley, D.M.; Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 2004, 199, 231–241. [Google Scholar] [CrossRef]
- Frawley, E.R.; Karlinsey, J.E.; Singhal, A.; Libby, S.J.; Doulias, P.-T.; Ischiropoulos, H.; Fang, F.C. Nitric oxide disrupts zinc homeostasis in Salmonella enterica serovar Typhimurium. MBio 2018, 9, e01040-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Fujii, S.; Matsunaga, T.; Nishimura, A.; Ono, K.; Ida, T.; Ahmed, K.A.; Okamoto, T.; Tsutsuki, H.; Sawa, T. Reactive persulfides from Salmonella Typhimurium downregulate autophagy-mediated innate immunity in macrophages by inhibiting electrophilic signaling. Cell Chem. Biol. 2018, 25, 1403–1413.e4. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.F.; Roeske, E.K.; Ward, L.N.; Pengo, T.; Dileepan, T.; Kotov, D.I.; Jenkins, M.K. Salmonella Persist in Activated Macrophages in T Cell-Sparse Granulomas but Are Contained by Surrounding CXCR3 Ligand-Positioned Th1 Cells. Immunity 2018, 49, 1090–1102.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.S.; Akaike, T.; Okamoto, S.; Kubota, T.; Yoshitake, J.; Sawa, T.; Miyamoto, Y.; Tamura, F.; Maeda, H. Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect. Immun. 2002, 70, 3130–3142. [Google Scholar] [CrossRef] [Green Version]
- Akaike, T. Role of free radicals in viral pathogenesis and mutation. Rev. Med Virol. 2001, 11, 87–101. [Google Scholar] [CrossRef]
- Nolan, S.; Dixon, R.; Norman, K.; Hellewell, P.; Ridger, V. Nitric oxide regulates neutrophil migration through microparticle formation. Am. J. Pathol. 2008, 172, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Qadri, S.M.; Liu, L. Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J. Inflamm. 2012, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Walawalkar, Y.D.; Vaidya, Y.; Nayak, V. Response of Salmonella Typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations. Pathog. Dis. 2016, 74. [Google Scholar]
- Tsolis, R.M.; Bäumler, A.J.; Heffron, F. Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect. Immun. 1995, 63, 1739–1744. [Google Scholar] [CrossRef] [Green Version]
- Farr, S.B.; Kogoma, T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Mol. Biol. Rev. 1991, 55, 561–585. [Google Scholar] [CrossRef]
- Ravindran, R.; Foley, J.; Stoklasek, T.; Glimcher, L.H.; McSorley, S.J. Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. J. Immunol. 2005, 175, 4603–4610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauciel, C.; Espinasse-Maes, F. Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect. Immun. 1992, 60, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Genotype | EPS Deficiency | Reference Source |
---|---|---|---|
JSG210 | WT S. Typhimurium | - | ATCC14028 |
JSG3736 | ΔcsgA | Curli fimbriae | [37] |
JSG3742 | ΔwcaM | Colanic acid | [37] |
JSG3672 | ΔyihO | O antigen capsule | [37] |
JSG3838 | ΔbcsE | Cellulose | [37] |
JSG3790 | ΔcsgAΔwcaM | Curli fimbriae, Colanic acid | [37] |
JSG3829 | ΔcsgAΔwcaMΔyihO | Curli fimbriae, Colanic acid, O antigen capsule | [37] |
JSG3841 | ΔcsgAΔwcaMΔyihOΔbcsE | Curli fimbriae, Colanic acid, O antigen capsule, Cellulose | [37] |
JSG3738 | S. Typhimurium + pTH170 (viaB) | Vi antigen+ (ViAg+) | [24] |
JSG698 | WT S. Typhi | - | Ty2 |
JSG4383 | WT S. Typhi rpoS+ | - | [40] |
JSG1213 | S. Typhi ΔtviB | Vi antigen | [41] |
JSG4123 | S. Typhi Ch-1 ΔtviB | Vi antigen | This study |
Strain | Designation | Geographic Source | Isolation Site |
---|---|---|---|
JSG3074 | Ch-1 | Mexico City | Gallstone |
JSG3076 | Ch-2 | Mexico City | Gallbladder tissue |
JSG3979 | Ch-3 | Vietnam | Gallbladder |
JSG3980 | Ch-4 | Vietnam | Gallbladder |
JSG3981 | Ch-5 | Vietnam | Gallbladder |
JSG3982 | Ch-6 | Vietnam | Gallbladder |
JSG3983 | Ch-7 | Vietnam | Gallbladder |
JSG3984 | Ch-8 | Vietnam | Gallbladder |
JSG3985 | Ac-1 | Vietnam | Unspecified |
JSG3986 | Ac-2 | Vietnam | Unspecified |
JSG3987 | Ac-3 | Vietnam | Unspecified |
JSG3988 | Ac-4 | Vietnam | Unspecified |
JSG3989 | Ac-5 | Vietnam | Unspecified |
JSG3990 | Ac-6 | Vietnam | Unspecified |
JSG3395 | Ac-7 | Ohio Department of Health | Blood |
JSG3400 | Ac-8 | Ohio Department of Health | Bile |
Primer | Sequence | Purpose |
---|---|---|
JG2934 | 5’—ATAAAATTTTAGTAAAGGATTAATAAGAGT GTTCGGTATAGTGTAGGCTGGAGCTGCTTC—3’ | Forward tviB |
JG2935 | 5’—GTCCGTAGTTCTTCGTAAGCCGTCATGATT ACAATCTCACCATATGAATATCCTCCTTAG—3’ | Reverse tviB |
JG2936 | 5’—TCAGCGACTTCTGTTCTATTCAAGTAAGAAAGGGGTACGG—3’ | Forward verification tviB |
JG2937 | 5’—GCTCCTCACTGACGGACGTGCGAACGTCGTCTAGATTATG—3’ | Reverse verification tviB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, M.M.; Gunn, J.S. Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress. Microorganisms 2020, 8, 253. https://doi.org/10.3390/microorganisms8020253
Hahn MM, Gunn JS. Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress. Microorganisms. 2020; 8(2):253. https://doi.org/10.3390/microorganisms8020253
Chicago/Turabian StyleHahn, Mark M., and John S. Gunn. 2020. "Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress" Microorganisms 8, no. 2: 253. https://doi.org/10.3390/microorganisms8020253
APA StyleHahn, M. M., & Gunn, J. S. (2020). Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress. Microorganisms, 8(2), 253. https://doi.org/10.3390/microorganisms8020253