Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Sampling
2.2. Sediment Pore Water Analysis
2.3. Sediment Slurry Incubations
2.4. Analytical Methods
2.5. DNA Extraction
2.6. Bacterial 16S rRNA Gene Amplicon Pyrosequencing
2.7. Analysis and Interpretation of the Pyrosequencing Data
2.8. Illumina HiSeq Analysis of Archaeal Community
2.9. Statistical Analysis
3. Results and Discussion
3.1. Propionate Conversion in Sulfate Zone Sediment Slurries
3.2. Propionate Conversion in Sulfate–Methane Transition Zone Sediment Slurries
3.3. Propionate Conversion in Methane Zone Sediment Slurries
3.4. Bacterial Community Composition Revealed by Pyrosequencing Analysis
3.5. Bacterial Diversity of the Aarhus Bay Original Sediments
3.6. Enrichment of the Propionate Degrading Bacterial Community in Three Geochemical Zones
3.7. The Archaeal Populations Revealed by Illumina Sequencing
3.8. Enrichment of the Archaeal Community in Three Geochemical Zones
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sequence Data Deposition
References
- O’Sullivan, L.A.; Sass, A.M.; Webster, G.; Fry, J.C.; Parkes, R.J.; Weightman, A.J. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient. FEMS Microbiol. Ecol. 2013, 85, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Muyzer, G.; Stams, A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Rabus, R.; Hansen, T.A.; Widdel, F. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes—Prokaryotic Physiology and Biochemistry; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin, Germany, 2013; pp. 309–404. [Google Scholar]
- Leloup, J.; Loy, A.; Knab, N.J.; Borowski, C.; Wagner, M.; Jørgensen, B.B. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ. Microbiol. 2007, 9, 131–142. [Google Scholar] [CrossRef]
- Leloup, J.; Fossing, H.; Kohls, K.; Holmkwist, L.; Borowski, C.; Jørgensen, B.B. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): Abundance and diversity related to geochemical zonation. Environ. Microbiol. 2009, 11, 1278–1291. [Google Scholar] [CrossRef]
- Schink, B.; Stams, A.J.M. Syntrophism among prokaryotes. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Heidelberg Verlag: Berlin, Germany, 2013; pp. 309–335. [Google Scholar]
- Cappenberg, T.E. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie Leeuwenhoek 1974, 40, 285–295. [Google Scholar] [CrossRef]
- Reeburgh, W.S.; Heggie, D.T. Microbial methane consumption reactions and their effect on methane distributions on freshwater and marine environments. Limnol. Oceanogr. 1977, 22, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Maltby, J.; Sommer, S.; Dale, A.W.; Treude, T. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin. Biogeosciences 2016, 13, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Mitterer, R.M. Methanogenesis and sulfate reduction in marine sediments: A new model. Earth Planet Sci. Lett. 2010, 295, 358–366. [Google Scholar] [CrossRef]
- Kuivila, K.M.; Murray, J.W.; Devol, A.H. Methane production in the sulfate-depleted sediments of two marine basins. Geochim. Cosmochim. Acta 1990, 54, 403–411. [Google Scholar] [CrossRef]
- Plugge, C.M.; Zhang, W.; Scholten, J.C.M.; Stams, A.J.M. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2011, 2, 81. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.M.; Liu, Y.; Boone, D.R. Butyrate- and propionate-degrading syntrophs from permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina butyrica gen. nov., sp. nov. FEMS Microbiol. Lett. 2006, 262, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, K.G.; Lapham, L.; Teske, A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline gulf of Mexico sediments. Appl. Environ. Microbiol. 2006, 72, 7218–7230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McInerney, M.J.; Struchtemeyer, C.G.; Sieber, J.; Mouttaki, H.; Stams, A.J.M.; Schink, B.; Rohlin, L.; Gunsalus, R.P. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. N. Y. Acad. Sci. 2008, 1125, 58–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krylova, N.I.; Conrad, R. Thermodynamics of propionate degradation in methanogenic paddy soil. FEMS Microbiol. Ecol. 1998, 26, 281–288. [Google Scholar] [CrossRef]
- Xiao, K.-Q.; Beulig, F.; Kjeldsen, K.U.; Jørgensen, B.B.; Risgaard-Petersen, N. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front. Microbiol. 2017, 8, 1198. [Google Scholar] [CrossRef]
- Cline, J.J.D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 1969, 14, 454–458. [Google Scholar] [CrossRef]
- Dale, A.W.; Aguilera, D.R.; Regnier, P.; Fossing, H.; Knab, J.; Jørgensen, B.B. Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J. Mar. Res. 2008, 66, 127–155. [Google Scholar] [CrossRef] [Green Version]
- Van Gelder, A.H.; Aydin, R.; Alves, M.M.; Stams, A.J.M. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol. 2013, 5, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Timmers, P.H.A.; Widjaja-Greefkes, H.C.A.; Ramiro-Garcia, J.; Plugge, C.M.; Stams, A.J.M. Growth and activity of ANME clades with different sulfate and sulfide concentrations in the presence of methane. Front. Microbiol. 2015, 6, 988. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Bragg, L.; Stone, G.; Imelfort, M.; Hugenholtz, P.; Tyson, G.W. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat. Methods 2012, 9, 425–426. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Keller, K.; Brodie, E.L.; Larsen, N.; Piceno, Y.M.; Phan, R.; Anderson, G.L. NAST: A multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 2006, 34, 394–399. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [Green Version]
- Azman, S.; Khadem, A.F.; Plugge, C.M.; Bec, S.; Stams, A.J.M.; Zeeman, G. Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: Inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl. Microbiol. Biotechnol. 2017, 101, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Ramiro-Garcia, J.; Hermes, G.D.A.; Giatsis, C.; Sipkema, D.; Zoetendal, E.G.; Schaap, P.G.; Smidt, H. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. [version 2; peer review: 2 approved, 1 approved with reservations, 1 not approved]. F1000Research 2018, 5, 1791. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Viggi, C.; Rossetti, S.; Fazi, S.; Paiano, P.; Majone, M.; Aulenta, F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 2014, 48, 7536–7543. [Google Scholar] [CrossRef]
- Stams, A.J.M.; van Dijk, J.B.; Dijkema, C.; Plugge, C.M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 1992, 59, 1114–1119. [Google Scholar] [CrossRef] [Green Version]
- Laanbroek, H.J.; Pfennig, N. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 1981, 128, 330–335. [Google Scholar] [CrossRef]
- Pender, S.; Toomey, M.; Carton, M.; Eardly, D.; Patching, J.W.; Colleran, E.; O’Flaherty, V. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Res. 2004, 38, 619–630. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Marshall, I.P.G. Slow Microbial Life in the Seabed. Ann. Rev. Mar. Sci. 2016, 8, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Parkes, R.J.; Cragg, B.A.; Banning, N.; Brock, F.; Webster, G.; Hornibrook, E.; Pancost, R.D.; Kelly, S.; Knab, N.; Jørgensen, B.B.; et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 2007, 9, 1146–1161. [Google Scholar] [CrossRef]
- Wilms, R.; Sass, H.; Köpke, B.; Cypionka, H.; Engelen, B. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol. 2007, 59, 611–621. [Google Scholar] [CrossRef]
- Parkes, R.J.; Webster, G.; Cragg, B.A.; Weightman, A.J.; Newberry, C.J.; Ferdelman, T.G.; Kallmeyer, J.; Jørgensen, B.B.; Aiello, I.W.; Fry, J.C. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 2005, 436, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Mußmann, M.; Ishii, K.; Rabus, R.; Amann, R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mudflat of the Wadden Sea. Environ. Microbiol. 2005, 7, 405–418. [Google Scholar] [CrossRef]
- Webster, G.; Watt, L.C.; Rinna, J.; Fry, J.C.; Evershed, R.P.; Parkes, R.J.; Weightman, A.J. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulphate-reducing marine sediment enrichments. Environ. Microbiol. 2006, 8, 1575–1589. [Google Scholar] [CrossRef]
- Biddle, J.F.; House, C.H.; Brenchley, J.E. Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 2005, 3, 287–295. [Google Scholar] [CrossRef]
- Sieber, J.R.; McInerney, M.J.; Müller, N.; Schink, B.; Gunsalus, R.P.; Plugge, C.M. Methanogens: Syntrophic Metabolism. In Handbook of Hydrocarbon and Lipid Microbiology Biogenesis of Hydrocarbons; Stams, A.J.M., Sousa, D.Z., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Jochum, L.M.; Chen, X.; Lever, M.A.; Loy, A.; Jørgensen, B.B.; Schramm, A.; Kjeldsen, K.U. Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay. Appl. Environ. Microbiol. 2017, 83, e01547-17. [Google Scholar] [CrossRef] [Green Version]
- Sahm, K.; MacGregor, B.J.; Jørgensen, B.B.; Stahl, D.A. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ. Microbiol. 1999, 1, 65–74. [Google Scholar] [CrossRef]
- Thomsen, T. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol. 2001, 67, 1646–1656. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, A.C.; Edwards, E.A. Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ. Microbiol. 2003, 5, 92–102. [Google Scholar] [CrossRef]
- Juteau, P.; Côté, V.; Duckett, M.F.; Beaudet, R.; Lepine, F.; Villemur, R.; Bisaillon, J.G. Cryptanaerobacter phenolicus gen. nov., sp. nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Int. J. Syst. Evol. Microbiol. 2005, 55, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Ju, F.; Wang, Y.; Zhang, T. Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics. Biotechnol. Biofuels 2018, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.-L.; Ollivier, B.; Whitman, W.B. The Order Methanomicrobiales. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Eds.; Springer: New York, NY, USA, 2006; pp. 208–230. [Google Scholar]
- Kendall, M.M.; Boone, D.R. The Order Methanosarcinales. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Eds.; Springer: New York, NY, USA, 2006; pp. 244–256. [Google Scholar]
- Lösekann, T.; Knittel, K.; Nadalig, T.; Fuchs, B.; Niemann, H.; Boetius, A.; Amann, R. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 2007, 73, 3348–3362. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.; Lösekann, T.; De Beer, D.; Elvert, M.; Nadalig, T.; Knittel, K.; Amann, R.; Sauter, E.J.; Schluter, M.; Klages, M.; et al. A Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 2006, 443, 854–858. [Google Scholar] [CrossRef]
- Parkes, R.J.; Cragg, B.A.; Roussel, E.; Webster, G.; Weightman, A.; Sass, H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: Geosphere interactions. Mar. Geol. 2014, 352, 409–425. [Google Scholar] [CrossRef]
- Lloyd, K.G.; Schreiber, L.; Petersen, D.G.; Kjeldsen, K.U.; Lever, M.A.; Steen, A.D.; Stepanaukas, R.; Richter, M.; Kleindienst, S.; Lenk, S.; et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 2013, 496, 215–218. [Google Scholar] [CrossRef]
- Fry, J.C.; Parkes, R.J.; Cragg, B.A.; Weightman, A.J.; Webster, G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol. Ecol. 2008, 66, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Pester, M.; Schleper, C.; Wagner, M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 2011, 14, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Webster, G.; Rinna, J.; Roussel, E.G.; Fry, J.C.; Weightman, A.J.; Parkes, R.J. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol. Ecol. 2010, 72, 179–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozuolmez, D.; Stams, A.J.M.; Plugge, C.M. Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions. Microorganisms 2020, 8, 394. https://doi.org/10.3390/microorganisms8030394
Ozuolmez D, Stams AJM, Plugge CM. Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions. Microorganisms. 2020; 8(3):394. https://doi.org/10.3390/microorganisms8030394
Chicago/Turabian StyleOzuolmez, Derya, Alfons J. M. Stams, and Caroline M. Plugge. 2020. "Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions" Microorganisms 8, no. 3: 394. https://doi.org/10.3390/microorganisms8030394
APA StyleOzuolmez, D., Stams, A. J. M., & Plugge, C. M. (2020). Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions. Microorganisms, 8(3), 394. https://doi.org/10.3390/microorganisms8030394