Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Listeria Isolation and Identification
2.3. Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF) Mass Spectrometry
2.4. Genomic DNA Extraction and Next Generation Sequencing
2.4.1. Multilocus Sequence Typing (MLST)
2.4.2. Single Nucleotide Polymorphism (SNP) Analysis
2.4.3. In Silico Screening for Virulence Factors
2.4.4. Data Storage
3. Results
3.1. Prevalence of Listeria spp. along the Poultry Production Chain
3.2. Genomic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swaminathan, B.; Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infect. 2007, 9, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Schuchat, A.; Swaminathan, B.; Broome, C.V. Epidemiology of human listeriosis. Clin. Microbiol. Rev. 1991, 4, 169–183. [Google Scholar] [CrossRef]
- Buchrieser, C.; Rusniok, C.; Consortium, L.; Kunst, F.; Cossart, P.; Glaser, P. Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: Clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 2003, 35, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.; Jinneman, K.; Stelma, G.; Smith, B.; Lye, D.; Messer, J.; Ulaszek, J.; Evsen, L.; Gendel, S.; Bennett, R. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl. Environ. Microbiol. 2004, 70, 4256–4266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.Z.; Paixao, R.; Gobbi, D.D.; Raimundo, D.C.; Ferreira, T.P.; Hofer, E.; Matte, M.H.; Moreno, A.M. Characterization of atypical Listeria innocua isolated from swine slaughterhouses and meat markets. Res. Microbiol. 2012, 163, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.; Disson, O.; Lavina, M.; Thouvenot, P.; Huang, L.; Leclercq, A.; Fredriksson-Ahomaa, M.; Eshwar, A.K.; Stephan, R.; Lecuit, M. Atypical hemolytic Listeria innocua are virulent, albeit less than Listeria monocytogenes. Infect. Immun. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, M.; Bemer, M.; Delamare, C. Fatal case of Listeria innocua bacteremia. J. Clin. Microbiol. 2003, 41, 5308–5309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favaro, M.; Sarmati, L.; Sancesario, G.; Fontana, C. First case of Listeria innocua meningitis in a patient on steroids and eternecept. JMM Case Rep. 2014, 1, e003103. [Google Scholar] [CrossRef] [Green Version]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef]
- Sauders, B.D.; Overdevest, J.; Fortes, E.; Windham, K.; Schukken, Y.; Lembo, A.; Wiedmann, M. Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol. 2012, 78, 4420–4433. [Google Scholar] [CrossRef] [Green Version]
- Mbata, T.I. Poultry meat pathogens and its control. Internet J. Food Saf. 2005, 7, 20–28. [Google Scholar]
- Lakicevic, B.; Nastasijevic, I.; Raseta, M. Sources of Listeria monocytogenes contamination in retail establishments. Procedia Food Sci. 2015, 5, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, B.; Cerf, O. Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.H.; Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016, 100, 5273–5287. [Google Scholar] [CrossRef] [Green Version]
- Genigeorgis, C.A.; Dutulescu, D.; Garayzabal, J.F. Prevalence of Listeria spp. in poultry meat at the supermarket and slaughterhouse level. J. Food Prot. 1989, 52, 618–624. [Google Scholar] [CrossRef]
- Terzich, M.; Pope, M.J.; Cherry, T.E.; Hollinger, J. Survey of pathogens in poultry litter in the United States. J. Appl. Poult. Res. 2000, 9, 287–291. [Google Scholar] [CrossRef]
- American Public Health Association. Standard methods for the examination of water and wastewater, 21st ed.; Am. Public Health Assoc. (APHA): Washington, DC, USA, 2005. [Google Scholar]
- American Public Health Association. Compendium of Methods for the Microbial Examination of Foods; Vanderzant, C., Splittstoesser, D.F., Eds.; APHA: Washington, DC, USA, 1992. [Google Scholar]
- McEvoy, J.; Nde, C.; Sherwood, J.; Logue, C. An evaluation of sampling methods for the detection of Escherichia coli and Salmonella on turkey carcasses. J. Food Prot. 2005, 68, 34–39. [Google Scholar] [CrossRef]
- Hitchins, A.D.; Jinneman, K.; Chen, Y. BAM: Detection and Enumeration of Listeria monocytogenes. Bacteriol. Anal. Man. 2016. [Google Scholar]
- Freiwald, A.; Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009, 4, 732. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Abricate—Mass Screening of Contigs for Antimicrobial and Virulence Genes. Available online: https://github.com/tseemann/abricate (accessed on 9 August 2019).
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Dahshan, H.; Merwad, A.; Mohamed, T.S. Listeria species in broiler poultry farms: Potential public health hazards. J. Microbiol. Biotechnol. 2016, 26, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.; Madsen, M. Listeria spp. in broiler flocks: Recovery rates and species distribution investigated by conventional culture and the EiaFoss method. Int. J. Food Microbiol. 2000, 58, 113–116. [Google Scholar] [CrossRef]
- Schwaiger, K.; Schmied, E.M.; Bauer, J. Comparative analysis on antibiotic resistance characteristics of Listeria spp. and Enterococcus spp. isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Public Health 2010, 57, 171–180. [Google Scholar] [CrossRef]
- Jones, D.; Anderson, K.; Guard, J. Prevalence of coliforms, Salmonella, Listeria, and Campylobacter associated with eggs and the environment of conventional cage and free-range egg production. Poult. Sci. 2012, 91, 1195–1202. [Google Scholar] [CrossRef]
- Milillo, S.; Stout, J.; Hanning, I.; Clement, A.; Fortes, E.; Den Bakker, H.; Wiedmann, M.; Ricke, S. Listeria monocytogenes and hemolytic Listeria innocua in poultry. Poult. Sci. 2012, 91, 2158–2163. [Google Scholar] [CrossRef]
- Dhama, K.; Verma, A.K.; Rajagunalan, S.; Kumar, A.; Tiwari, R.; Chakraborty, S.; Kumar, R. Listeria monocytogenes infection in poultry and its public health importance with special reference to food borne zoonoses. Pak. J. Biol. Sci. 2013, 16, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Iida, T.; Kanzaki, M.; Maruyama, T.; Inoue, S.; Kaneuchi, C. Prevalence of Listeria monocytogenes in intestinal contents of healthy animals in Japan. J. Vet. Med. Sci. 1991, 53, 873–875. [Google Scholar] [CrossRef] [Green Version]
- Capita, R.; Alonso-Calleja, C.; Moreno, B.; Garcıa-Fernández, M.A.C. Occurrence of Listeria species in retail poultry meat and comparison of a cultural/immunoassay for their detection. Int. J. Food Microbiol. 2001, 65, 75–82. [Google Scholar] [CrossRef]
- Yücel, N.; Cıtak, S.; Önder, M. Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol. 2005, 22, 241–245. [Google Scholar] [CrossRef]
- Pesavento, G.; Ducci, B.; Nieri, D.; Comodo, N.; Nostro, A.L. Prevalence and antibiotic susceptibility of Listeria spp. isolated from raw meat and retail foods. Food Control. 2010, 21, 708–713. [Google Scholar] [CrossRef]
- Osaili, T.M.; Alaboudi, A.R.; Nesiar, E.A. Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control. 2011, 22, 586–590. [Google Scholar] [CrossRef]
- Amajoud, N.; Leclercq, A.; Soriano, J.M.; Bracq-Dieye, H.; El Maadoudi, M.; Senhaji, N.S.; Kounnoun, A.; Moura, A.; Lecuit, M.; Abrini, J. Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan, Morocco. Food Control. 2018, 84, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Hamidiyan, N.; Salehi-Abargouei, A.; Rezaei, Z.; Dehghani-Tafti, R.; Akrami-Mohajeri, F. The prevalence of Listeria spp. food contamination in Iran: A systematic review and meta-analysis. Food Res. Int. 2018, 107, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.H.; Borowsky, M.L.; Lauer, P.; Young, S.K.; Nusbaum, C.; Galagan, J.E.; Birren, B.W.; Ivy, R.A.; Sun, Q.; Graves, L.M. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genom. 2008, 9, 539. [Google Scholar] [CrossRef] [Green Version]
- Pightling, A.W.; Pettengill, J.B.; Luo, Y.; Baugher, J.D.; Rand, H.; Strain, E. Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations. Front. Microbiol. 2018, 9, 1482. [Google Scholar] [CrossRef] [Green Version]
- Møretrø, T.; Langsrud, S. Listeria monocytogenes: Biofilm formation and persistence in food-processing environments. Biofilms 2004, 1, 107–121. [Google Scholar] [CrossRef]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef]
- Azevedo, I.; Regalo, M.; Mena, C.; Almeida, G.; Carneiro, L.; Teixeira, P.; Hogg, T.; Gibbs, P.A. Incidence of Listeria spp. in domestic refrigerators in Portugal. Food Control. 2005, 16, 121–124. [Google Scholar] [CrossRef]
- Ahmed, A.M.; El-Atti, N.M.A. Existence of Listeria species in broiler carcasses with an attempt to control Listeria monocytogenes using trisodium phosphate. Afr. J. Food Sci. 2010, 4, 046–051. [Google Scholar]
- El-Malek, A.M.A.; Ali, S.F.H.; Hassanein, R.; Mohamed, M.A.; Elsayh, K.I. Occurrence of Listeria species in meat, chicken products and human stools in Assiut city, Egypt with PCR use for rapid identification of Listeria monocytogenes. Vet. World 2010, 3, 353. [Google Scholar] [CrossRef]
- Ismaiel, A.A.-R.; Ali, A.E.-S.; Enan, G. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci. Biotechnol. 2014, 23, 179–185. [Google Scholar] [CrossRef]
- Osman, K.M.; Samir, A.; Abo-Shama, U.H.; Mohamed, E.H.; Orabi, A.; Zolnikov, T. Determination of virulence and antibiotic resistance pattern of biofilm producing Listeria species isolated from retail raw milk. BMC Microbiol. 2016, 16, 263. [Google Scholar] [CrossRef] [Green Version]
Source of Sample | Number of Samples Tested | Number of Positive Samples | % of Positive Samples |
---|---|---|---|
Chicken farm | 25 1 | 7 | 28 |
soiled litter | 5 | 1 | 20 |
drinking water | 5 | 0 | 0 |
poultry feed | 5 | 1 | 20 |
farm wall | 5 | 5 | 100 |
workers’ hands | 5 2 | 0 | 0 |
Slaughterhouse | 85 2 | 9 | 11 |
chicken cloaca | 65 | 5 | 8 |
slaughterhouse wall | 10 | 2 | 20 |
knife | 5 | 0 | 0 |
table | 5 | 2 | 40 |
Food product | 100 2 | 20 | 20 |
carcass | 80 | 9 | 11 |
chicken fillet | 10 | 5 | 50 |
chicken liver | 10 | 6 | 60 |
total | 210 | 36 | 17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwida, M.; Lüth, S.; El-Ashker, M.; Zakaria, A.; El-Gohary, F.; Elsayed, M.; Kleta, S.; Al Dahouk, S. Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua. Microorganisms 2020, 8, 414. https://doi.org/10.3390/microorganisms8030414
Gwida M, Lüth S, El-Ashker M, Zakaria A, El-Gohary F, Elsayed M, Kleta S, Al Dahouk S. Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua. Microorganisms. 2020; 8(3):414. https://doi.org/10.3390/microorganisms8030414
Chicago/Turabian StyleGwida, Mayada, Stefanie Lüth, Maged El-Ashker, Amira Zakaria, Fatma El-Gohary, Mona Elsayed, Sylvia Kleta, and Sascha Al Dahouk. 2020. "Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua" Microorganisms 8, no. 3: 414. https://doi.org/10.3390/microorganisms8030414
APA StyleGwida, M., Lüth, S., El-Ashker, M., Zakaria, A., El-Gohary, F., Elsayed, M., Kleta, S., & Al Dahouk, S. (2020). Contamination Pathways can Be Traced along the Poultry Processing Chain by Whole Genome Sequencing of Listeria innocua. Microorganisms, 8(3), 414. https://doi.org/10.3390/microorganisms8030414