Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota
Abstract
:1. Caenorhabditis elegans Responses to Microbiota
2. Genetic Variation in Caenorhabditis elegans as the Basis to Understand Microbiota Interactions
3. Caenorhabditis elegans–Bacteria Interactions
4. Caenorhabditis elegans-Microsporidia Interactions
5. Caenorhabditis elegans–Virus Interactions
6. Conclusion and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marsh, E.K.; May, R.C. Caenorhabditis elegans, a model organism for investigating immunity. Appl. Environ. Microbiol. 2012, 78, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Frezal, L.; Felix, M.A.C. C. elegans outside the Petri dish. Elife 2015, 4, e05849. [Google Scholar] [CrossRef] [PubMed]
- Gammon, D.B. Caenorhabditis elegans as an Emerging Model for Virus–Host Interactions. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, J.; Obeng, N.; Yang, W.; Pees, B.; Petersen, C.; Waschina, S.; Kissoyan, K.A.; Aidley, J.; Hoeppner, M.P.; Bunk, B.; et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020, 14, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulenburg, H.; Felix, M.A. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017, 206, 55–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterken, M.G.; Snoek, L.B.; Kammenga, J.E.; Andersen, E.C. The laboratory domestication of Caenorhabditis elegans. Trends Genet. 2015, 31, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Johnke, J.; Dirksen, P.; Schulenburg, H. Community assembly of the native C. elegans microbiome is influenced by time, substrate and individual bacterial taxa. Environ. Microbiol. 2020, 22, 1265–1279. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, J.R. Advancing microbiome research. Microbiology 2018, 164, 1005–1006. [Google Scholar] [CrossRef]
- Cassidy, L.; Petersen, C.; Treitz, C.; Dierking, K.; Schulenburg, H.; Leippe, M.; Tholey, A. The Caenorhabditis elegans Proteome Response to Naturally Associated Microbiome Members of the Genus Ochrobactrum. Proteomics 2018, 18, e1700426. [Google Scholar] [CrossRef]
- Gaertner, B.E.; Phillips, P.C. Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet. Res. 2010, 92, 331–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, A.W.; Sterken, M.G.; Uit de Bos, J.; van Creij, J.; Kamble, R.; Snoek, B.L.; Kammenga, J.E.; Houtkooper, R.H. Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res. 2018, 28, 1296–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoek, B.L.; Volkers, R.J.M.; Nijveen, H.; Petersen, C.; Dirksen, P.; Sterken, M.G.; Nakad, R.; Riksen, J.A.G.; Rosenstiel, P.; Stastna, J.J.; et al. A multi–parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol. 2019, 17, 24. [Google Scholar] [CrossRef]
- Cook, D.E.; Zdraljevic, S.; Roberts, J.P.; Andersen, E.C. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017, 45, D650–D657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoek, B.L.; Sterken, M.G.; Hartanto, M.; van Zuilichem, A.J.; Kammenga, J.E.; de Ridder, D.; Nijveen, H. WormQTL2: An interactive platform for systems genetics in Caenorhabditis elegans. Database 2020, 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterken, M.G. Building towards A Multi–Dimensional Genetic Architecture in Caenorhabditis Elegans; Wageningen University: Wageningen, The Netherlands, 2016. [Google Scholar]
- Noble, L.M.; Chelo, I.; Guzella, T.; Afonso, B.; Riccardi, D.D.; Ammerman, P.; Dayarian, A.; Carvalho, S.; Crist, A.; Pino-Querido, A.; et al. Polygenicity and Epistasis Underlie Fitness–Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017, 207, 1663–1685. [Google Scholar]
- Schulenburg, H.; Muller, S. Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis. Parasitology 2004, 128 Pt 4, 433–443. [Google Scholar] [CrossRef]
- Reddy, K.C.; Andersen, E.C.; Kruglyak, L.; Kim, D.H. A polymorphism in npr–1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 2009, 323, 382–384. [Google Scholar] [CrossRef] [Green Version]
- Glater, E.E.; MRockman, V.; Bargmann, C.I. Multigenic natural variation underlies Caenorhabditis elegans olfactory preference for the bacterial pathogen Serratia marcescens. G3 2014, 4, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Balla, K.M.; Lazetic, V.; Troemel, E.R. Natural variation in the roles of C. elegans autophagy components during microsporidia infection. PLoS ONE 2019, 14, e0216011. [Google Scholar] [CrossRef] [Green Version]
- Reinke, A.W.; Balla, K.M.; Bennett, E.J.; Troemel, E.R. Identification of microsporidia host–exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun. 2017, 8, 14023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balla, K.M.; Andersen, E.C.; Kruglyak, L.; Troemel, E.R. A wild C. elegans strain has enhanced epithelial immunity to a natural microsporidian parasite. PLoS Pathog. 2015, 11, e1004583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felix, M.A.; Ashe, A.; Piffaretti, J.; Wu, G.; Nuez, I.; Belicard, T.; Jiang, Y.; Zhao, G.; Franz, C.J.; Goldstein, L.D.; et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011, 9, e1000586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Berg, M.; Dierking, K.; Felix, M.A.; Shapira, M.; Samuel, B.S.; Schulenburg, H. Caenorhabditis elegans as a Model for Microbiome Research. Front. Microbiol. 2017, 8, 485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Holdorf, A.D.; Walhout, A.J.C. C. elegans and its bacterial diet as a model for systems–level understanding of host–microbiota interactions. Curr. Opin. Biotechnol. 2017, 46, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Samuel, B.S.; Rowedder, H.; Braendle, C.; Felix, M.A.; Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 2016, 113, E3941–E3949. [Google Scholar] [CrossRef] [Green Version]
- Kissoyan, K.A.B.; Drechsler, M.; Stange, E.L.; Zimmermann, J.; Kaleta, C.; Bode, H.B.; Dierking, K. Natural C. elegans Microbiota Protects against Infection via Production of a Cyclic Lipopeptide of the Viscosin Group. Curr. Biol. 2019, 29, 1030–1037. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.S.; Kaletsky, R.; Murphy, C.T. Piwi/PRG–1 Argonaute and TGF–beta Mediate Transgenerational Learned Pathogenic Avoidance. Cell 2019, 177, 1827–1841. [Google Scholar] [CrossRef]
- Osman, G.A.; Fasseas, M.K.; Koneru, S.L.; Essmann, C.L.; Kyrou, K.; Srinivasan, M.A.; Zhang, G.; Sarkies, P.; Felix, M.A.; Barkoulas, M. Natural Infection of C. elegans by an Oomycete Reveals a New Pathogen–Specific Immune Response. Curr. Biol. 2018, 28, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Burton, N.O.; Riccio, C.; Dallaire, A.; Price, J.; Jenkins, B.; Koulman, A.; Miska, E.A.C. C. elegans heritably adapts to P. vranovensis infection via a mechanism that requires the cysteine synthases cysl–1 and cysl–2. bioRxiv 2019. [Google Scholar] [CrossRef]
- Masri, L.; Schulte, R.D.; Timmermeyer, N.; Thanisch, S.; Crummenerl, L.L.; Jansen, G.; Michiels, N.K.; Schulenburg, H. Sex differences in host defence interfere with parasite–mediated selection for outcrossing during host–parasite coevolution. Ecol. Lett. 2013, 16, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bono, M.; Bargmann, C.I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 1998, 94, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Nakad, R.; Snoek, L.B.; Yang, W.; Ellendt, S.; Schneider, F.; Mohr, T.G.; Rosingh, L.; Masche, A.C.; Rosenstiel, P.C.; Dierking, K.; et al. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr–1. BMC Genom. 2016, 17, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendesky, A.; Tsunozaki, M.; Rockman, M.V.; Kruglyak, L.; Bargmann, C.I. Catecholamine receptor polymorphisms affect decision–making in C. elegans. Nature 2011, 472, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.C.; Bloom, J.S.; Gerke, J.P.; Kruglyak, L. A variant in the neuropeptide receptor npr–1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet. 2014, 10, e1004156. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.C.; Paek, J.; Kim, D.H. Natural polymorphisms in C. elegans HECW–1 E3 ligase affect pathogen avoidance behaviour. Nature 2011, 480, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Stentiford, G.D.; Becnel, J.J.; Weiss, L.M.; Keeling, P.J.; Didier, E.S.; Williams, B.A.P.; Bjornson, S.; Kent, M.L.; Freeman, M.A.; Brown, M.J.F.; et al. Microsporidia–Emergent Pathogens in the Global Food Chain. Trends Parasitol. 2016, 32, 657. [Google Scholar] [CrossRef] [Green Version]
- Balla, K.M.; Luallen, R.J.; Bakowski, M.A.; Troemel, E.R. Cell–to–cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia. Nat. Microbiol. 2016, 1, 16144. [Google Scholar] [CrossRef] [Green Version]
- Sowa, J.N.; Jiang, H.; Somasundaram, L.; Tecle, E.; Xu, G.; Wang, D.; Troemel, E.R. The Caenorhabditis elegans RIG–I Homolog DRH–1 Mediates the Intracellular Pathogen Response upon Viral Infection. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Reddy, K.C.; Dror, T.; Underwood, R.S.; Osman, G.A.; Elder, C.R.; Desjardins, C.A.; Cuomo, C.A.; Barkoulas, M.; Troemel, E.R. Antagonistic paralogs control a switch between growth and pathogen resistance in C. elegans. PLoS Pathog. 2019, 15, e1007528. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Sachse, M.; Prevost, M.C.; Luallen, R.J.; Troemel, E.R.; Felix, M.A. A Large Collection of Novel Nematode–Infecting Microsporidia and Their Diverse Interactions with Caenorhabditis elegans and Other Related Nematodes. PLoS Pathog. 2016, 12, e1006093. [Google Scholar] [CrossRef] [PubMed]
- Luallen, R.J.; Reinke, A.W.; Tong, L.; Botts, M.R.; Felix, M.A.; Troemel, E.R. Discovery of a Natural Microsporidian Pathogen with a Broad Tissue Tropism in Caenorhabditis elegans. PLoS Pathog. 2016, 12, e1005724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, C.J.; Zhao, G.; Felix, M.A.; Wang, D. Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode–Infecting Virus. J. Virol. 2012, 86, 11940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashe, A.; Sarkies, P.; Le Pen, J.; Tanguy, M.; Miska, E.A. Antiviral RNA Interference against Orsay Virus Is neither Systemic nor Transgenerational in Caenorhabditis elegans. J. Virol. 2015, 89, 12035–12046. [Google Scholar] [CrossRef] [Green Version]
- Franz, C.J.; Renshaw, H.; Frezal, L.; Jiang, Y.; Felix, M.A.; Wang, D. Orsay, Santeuil and Le Blanc viruses primarily infect intestinal cells in Caenorhabditis nematodes. Virology 2014, 448, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Wang, D. The Microbial Zoo in the C. elegans Intestine: Bacteria, Fungi and Viruses. Viruses 2018, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Zhou, Y.; Fan, Y.; Tao, Y.J.; Zhong, W. Orsay delta Protein Is Required for Nonlytic Viral Egress. J. Virol. 2018, 92, e00745-18. [Google Scholar] [CrossRef] [Green Version]
- Felix, M.A.; Wang, D. Natural Viruses of Caenorhabditis Nematodes. Annu. Rev. Genet. 2019, 53, 313–326. [Google Scholar] [CrossRef]
- Guo, X.; Lu, R. Characterization of virus–encoded RNA interference suppressors in Caenorhabditis elegans. J. Virol. 2013, 87, 5414–5423. [Google Scholar] [CrossRef] [Green Version]
- Pukkila–Worley, R.; Ausubel, F.M. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr. Opin. Immunol. 2012, 24, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Bakowski, M.A.; Desjardins, C.A.; Smelkinson, M.G.; Dunbar, T.L.; Lopez-Moyado, I.F.; Rifkin, S.A.; Cuomo, C.A.; Troemel, E.R. Ubiquitin–mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog. 2014, 10, e1004200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashe, A.; Belicard, T.; Le Pen, J.; Sarkies, P.; Frezal, L.; Lehrbach, N.J.; Felix, M.A.; Miska, E.A. A deletion polymorphism in the Caenorhabditis elegans RIG–I homolog disables viral RNA dicing and antiviral immunity. Elife 2013, 2, e00994. [Google Scholar] [CrossRef] [PubMed]
- Sterken, M.G.; Snoek, L.B.; Bosman, K.J.; Daamen, J.; Riksen, J.A.; Bakker, J.; Pijlman, G.P.; Kammenga, J.E. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2. PLoS ONE 2014, 9, e89760. [Google Scholar] [CrossRef] [Green Version]
- Van Sluijs, L.; Pijlman, G.P.; Kammenga, J.E. Why do individuals differ in viral susceptibility? A story told by model organisms. Viruses 2017, 9, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.T.; Vidal-Diez de Ulzurrun, G.; Goncalves, A.P.; Lin, H.C.; Chang, C.W.; Huang, T.Y.; Chen, S.A.; Lai, C.K.; Tsai, I.J.; Schroeder, F.C.; et al. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode–trapping fungi. Proc. Natl. Acad. Sci. USA 2020, 117, 6762–6770. [Google Scholar] [CrossRef] [PubMed]
Microbiota | Species | Phenotypes | Strains of C. elegans | Reference |
---|---|---|---|---|
Bacteria | B. thuringiensis | Behavior response (evasion and reduced parasite ingestion) | Ten wild strains; RILs and ILs | [18] |
P. aeruginosa | Behavior response (oxygen-dependent behavioral avoidance) | RILs and ILs | [19] | |
S. marcescens | Odor attractiveness | CB4856 and N2 | [20] | |
Microsporidia | N. ironsii | Ability of clearing infection; initial colonization of Nematocida | CB4856 and N2 | [21,22] |
N. ironsii | Resistance in young L1 larvae | CB4856 and N2 | [21,22,23] | |
Virus | Orsay virus | Susceptibility | N2 and JU1580; ILs (GWAS) | [24] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Kammenga, J.E. Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms 2020, 8, 618. https://doi.org/10.3390/microorganisms8040618
Huang Y, Kammenga JE. Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms. 2020; 8(4):618. https://doi.org/10.3390/microorganisms8040618
Chicago/Turabian StyleHuang, Yuqing, and Jan E. Kammenga. 2020. "Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota" Microorganisms 8, no. 4: 618. https://doi.org/10.3390/microorganisms8040618
APA StyleHuang, Y., & Kammenga, J. E. (2020). Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms, 8(4), 618. https://doi.org/10.3390/microorganisms8040618