Biotechnological Approach Based on Selected Saccharomyces cerevisiae Starters for Reducing the Use of Sulfur Dioxide in Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Saccharomyces cerevisiae Strains
2.2. Fermentation Assays
2.2.1. Laboratory-Scale Fermentations
2.2.2. Fermentations at Pilot-Scale
2.3. Chemical Analysis
2.4. Aromatic Compounds
2.5. Statistical Analysis
3. Results
3.1. Fermentation Trials at Laboratory Scale
3.1.1. Strain Dominance Ability during Lab-Scale Fermentation
- in three mixed fermentation (M1-SA, ND-M1, TA-SA), a slightly higher prevalence of one strain than the other was found (a ratio of about 40% and 60%);
- in two mixed fermentations (ND-SA and ND-TA), the two strains were present, with a percentage very similar between them;
- in one case (TA-M1), a very high prevalence of one strain was found, in particular the strain TA was found with a frequency of about 80%, whereas M1 strain was present at a very low percentage (about 20%).
3.1.2. Analysis of Experimental Wines at Laboratory Scale
3.2. Pilot Scale Vinifications
3.2.1. Mixed Starter Dominance during Pilot Scale Vinifications
3.2.2. Analysis of Wines Obtained at Pilot-Scale
Oenological Parameters
Content of Main Secondary Compounds
Content of Volatile Compounds by SPME
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ribereau-Gayon, P.; Dubourdieu, D.; Doneche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 1. [Google Scholar]
- Goode, J.; Harrop, S. Authentic Wine: Toward Natural and Sustainable Winemaking; The Regents of the University of California: Berkeley, CA, USA, 2011. [Google Scholar]
- OIV-MA-C1e01: R2011. Maximum acceptable limits of various substances. In Compendium of International Methods of Wine and Must Analysis, 2014th ed.; Organisation International de la Vigne et du Vin: Paris, France, 2011; Volume 2. [Google Scholar]
- Garaguso, I.; Nardini, M. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem. 2015, 179, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Thompson, P.J. Role of sulfite additives in wine induced asthma: Single dose and cumulative dose studies. Thorax 2001, 56, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vally, H.; Thompson, P. Allergic and asthmatic reactions to alcoholic drinks. Addict. Biol. 2003, 8, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Thompson, P.J.; Misso, N.L. Changes in bronchial hyper responsiveness following high- and low-sulphite wine challenges in wine-sensitive asthmatic patients. Clin. Exp. Allergy 2007, 37, 1062–1066. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L.A.; Madan, V. Clinical effects of sulphite additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef]
- Costanigro, M.; Appleby, C.; Menke, S.D. The wine headache: Consumer perceptions of sulfites and willingness to pay for non-sulfited wines. Food Qual. Prefer. 2014, 31, 81–89. [Google Scholar] [CrossRef]
- Lisanti, M.A.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative methods to SO2 for microbiological stabilization of wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef] [Green Version]
- Daudt, C.E.; Ough, C.S. Action of dimethyldicarbonate on various yeasts. Am. J. Enol. Viticul. 1980, 31, 21–23. [Google Scholar]
- Divol, B.; Strehaiano, P.; Lonvaud-Funel, A. Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiol. 2005, 22, 169–178. [Google Scholar] [CrossRef]
- Liburdi, K.; Benucci, I.; Esti, M. Lysozyme in wine: An overview of current and future applications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1062–1073. [Google Scholar] [CrossRef]
- Fugelsang, K.C. Wine Microbiology; Chapman & Hall: New York, NY, USA, 1997. [Google Scholar]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; Chapman & Hall: New York, NY, USA, 1995. [Google Scholar]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Arachchi, J.K.M.; Jeon, Y. Food applications of chitin and chitosans. Trends Food Sci. Technol. 1999, 10, 37–51. [Google Scholar] [CrossRef]
- Valera, M.J.; Sainz, F.; Mas, A.; Torija, M.J. Effect of chitosan and SO2 on viability of Acetobacter strains in wine. Int. J. Food Microbiol. 2017, 246, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Enrique, M.; Ibanez, A.; Marcos, J.F.; Yuste, M.; Martinez, M.; Valles, S.; Manzanares, P. ß -Glucanases as a tool for the control of wine spoilage yeasts. J. Food Sci. 2010, 75, 41–45. [Google Scholar] [CrossRef]
- Rojo-Bezares, B.; Saenz, Y.; Zarazaga, M.; Torres, C.; Ruiz-Larrea, F. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int. J. Food Microbiol. 2007, 116, 32–36. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdan, T.; Puertas, B.; Moreno-Rojas, J.M.; Zafrilla, P.; Gonzalo-Diago, A.; Guerrero, R.F.; Cantos-Villar, E. Replacement of sulfur dioxide by hydroxytyrosol in white wine: Influence on both quality parameters and sensory. LWT-Food Sci. Technol. 2016, 65, 214–221. [Google Scholar] [CrossRef]
- Geneix, C.; Lafon Lafourcade, S.; Ribereau Gayon, P. The effect of fatty acids on the viability of Saccharomyces cerevisiae. C. R. Hebd. Seances Acad. Sci. 1983, 3. [Google Scholar]
- Albergaria, H.; Arneborg, N. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: Role of physiological fitness and microbial interactions. Appl. Microbiol. Biotechnol. 2016, 100, 2035–2046. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. Eur. Food Res. Technol. 2012, 234, 1–12. [Google Scholar] [CrossRef]
- Rauhut, D. Usage and formation of sulphur compounds. In Biology of Microorganisms on Grapes, in Must and in Wine; Springer: Berlin/Heidelberg, Germany, 2009; pp. 181–207. [Google Scholar]
- Ciani, M.; Capece, A.; Comitini, F.; Canonico, L.; Siesto, G.; Romano, P. Yeast interactions in inoculated wine fermentation. Front. Microbiol. 2016, 7, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acuña-Fontecilla, A.; Silva-Moreno, E.; Ganga, M.A.; Godoy, L. Evaluation of antimicrobial activity from native wine yeast against food industry pathogenic microorganisms. CYTA-J. Food 2017, 15, 457–465. [Google Scholar] [CrossRef] [Green Version]
- de Ullivarri, M.F.; Mendoza, L.M.; Raya, R.R. Killer activity of Saccharomyces cerevisiae strains: Partial characterization and strategies to improve the biocontrol efficacy in winemaking. Antonie van Leeuwenhoek 2014, 106, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Kántor, A.; Hutková, J.; Petrová, J.; Hleba, L.; Kačániová, M. Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. J. Microbiol. Biotech. Food Sci. 2015, 5, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Oro, L.; Ciani, M.; Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 2014, 116, 1209–1217. [Google Scholar] [CrossRef]
- De Ingeniis, J.; Raffaelli, N.; Ciani, M.; Mannazzu, I. Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl. Environ. Microbiol. 2009, 75, 1129–1134. [Google Scholar] [CrossRef] [Green Version]
- Comitini, F.; Ciani, M. The zymocidial activity of Tetrapisispora phaffii in the control of Hanseniaspora uvarum during the early stages of winemaking. Lett. Appl. Microbiol. 2010, 50, 50–56. [Google Scholar] [CrossRef]
- Granchi, L.; Bosco, M.; Messini, A.; Vincenzini, M. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 1999, 87, 949–956. [Google Scholar] [CrossRef]
- Kurtzman, C.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Legras, J.L.; Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 2003, 221, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian “heroic vine-growing area”. Food Microbiol. 2012, 31, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Romaniello, R.; Siesto, G.; Pietrafesa, R.; Massari, C.; Poeta, C.; Romano, P. Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int. J. Food Microbiol. 2010, 144, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Pietrafesa, R.; Romano, P. Experimental approach for target selection of wild wine yeasts from spontaneous fermentation of “Inzolia” grapes. World J. Microbiol. Biotechnol. 2011, 27, 2775–2783. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, R.; Romano, P. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations. BIO Web Conf. 2014, 3, 02003. [Google Scholar] [CrossRef] [Green Version]
- Romano, P.; Pietrafesa, R.; Romaniello, R.; Zambuto, M.; Calabretti, A.; Capece, A. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation. Yeast 2015, 32, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Pallmann, C.L.; Brown, J.A.; Olineka, T.L.; Cocolin, L.; Mills, D.A.; Bisson, L.F. Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 2001, 52, 198–203. [Google Scholar]
- Iland, P.; Ewart, E.A.; Sitters, J. Techniques for Chemical Analysis and Stability Tests of Grape Juice and Wine; Patrick Iland Wine Promotions; Kitchener Press Pty, Ltd.: Adelaide, Australia, 1993. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Stratil, P.; Kubaň, V.; Fojtova, J. Comparison of the phenolic content and total antioxidant activity in wines as determined by spectrophotometric methods. Czech, J. Food Sci. 2008, 26, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Capece, A.; Siesto, G.; Romaniello, R.; Lagreca, V.M.; Pietrafesa, R.; Calabretti, A.; Romano, P. Assessment of competition in wine fermentation among wild Saccharomyces cerevisiae strains isolated from Sangiovese grapes in Tuscany region. LWT Food Sci. Technol. 2013, 54, 485–492. [Google Scholar] [CrossRef]
- López-Martínez, G.; Pietrafesa, R.; Romano, P.; Cordero-Otero, R.; Capece, A. Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress. Yeast 2013, 30, 319–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Vigentini, I.; Barrera Cardenas, S.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Foschino, R. Use of native yeast strains for in-bottle fermentation to face the uniformity in sparkling wine production. Front. Microbiol. 2017, 8, 1225. [Google Scholar] [CrossRef] [PubMed]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar]
- Antonelli, A.; Castellari, L.; Zambonelli, C.; Carnacini, A. Yeast influence on volatile composition of wines. J. Agric. Food Chem. 1999, 47, 1139–1144. [Google Scholar] [CrossRef]
- Aznar, M.; Lopez, R.; Chacho, J.F.; Ferreira, V. Identification of impact odorants of aged red wines from Rioja. GC-Olfactometry, Quantitative GC-MS, and odor evaluation of HPLC fractions. J. Agric. Food Chem. 2001, 49, 2924–2929. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R.; Aznar, M. Olfactometry and aroma extract dilution analysis of wine. In Molecular Methods of Plant Analysis. Analysis of Taste and Aroma; Jackosn, J.F., Linskens, H.F., Eds.; Springer: Berlin, Germany, 2002; Volume 21, pp. 89–122. [Google Scholar]
- Ferreira, V.; Ortin, N.; Escudero, A.; Lopez, R.; Chacho, J.F. Chemical characterization of the aroma of Grenache rosé wines, aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef]
- Lopez, R.; Ortìn, N.; Pèrez-Trujillo, J.P.; Chacho, J.F.; Ferreira, V. Impact odorants of different young white wines from the Canary Islands. J. Agric. Food Chem. 2003, 51, 3419–3425. [Google Scholar] [CrossRef]
- Niu, Y.; Kong, J.; Xiao, Z.; Chen, F.; Ma, N.; Zhu, J. Characterization of odor-active compounds of various Chinese “Wuliangye” liquors by gas chromatography–olfactometry, gas-chromatography–mass spectrometry and sensory evaluation. Int. J. Food Prop. 2017, 20, S735–S745. [Google Scholar] [CrossRef] [Green Version]
- Jewison, T.; Knox, C.; Neveu, V.; Djoumbou, Y.; Guo, I.C.; Lee, I.; Liu, P.; Mandal, L.; Krishnamurthy, R.; Sinelnikov, I.; et al. YMDB: The Yeast Metabolome Database. Nucleic Acids Res. 2012, 40, D815–D820. [Google Scholar] [CrossRef] [Green Version]
- Comuzzo, P.; Zironi, R. Biotechnological strategies for controlling wine oxidation. Food Eng. Rev. 2013, 5, 217–229. [Google Scholar] [CrossRef]
- Yap, N.A.; Lopes, M.B.; Langridge, P.; Henschke, P.A. Incidence of killer activity of non-Saccharomyces yeasts towards indigenous yeast species of grape must: Potential application in wine fermentation. J. Appl. Microbiol. 2000, 89, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Perrone, B.; Giacosa, S.; Rolle, L.; Cocolin, L.; Rantsiou, K. Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. Int. J. Food Microbiol. 2013, 165, 156–162. [Google Scholar] [CrossRef]
- Ganucci, D.; Guerrini, S.; Mangani, S.; Vincenzini, M.; Granchi, L. Quantifying the effects of ethanol and temperature on the fitness advantage of predominant Saccharomyces cerevisiae strains occurring in spontaneous wine fermentations. Front. Microbiol. 2018, 9, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roustan, J.L.; Sablayrolles, J.M. Impact of the addition of electron acceptors on the by-products of alcoholic fermentation. Enzyme Microb. Technol. 2002, 34, 142–152. [Google Scholar] [CrossRef]
- Roustan, J.L.; Sablayrolles, J.M. Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J. Biosci. Bioeng. 2002, 93, 367–375. [Google Scholar] [CrossRef]
- Cheraiti, N.; Guezenec, S.; Salmon, J.M. Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions. Appl. Environ. Microbiol. 2005, 71, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Cheraiti, N.; Sauvage, F.X.; Salmon, J.M. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 77, 1093–1109. [Google Scholar] [CrossRef]
- Cocolin, L.; Pepe, V.; Comitini, F.; Comi, G.; Ciani, M. Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Res. 2004, 3, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Negro, C.; Tommasi, L.; De Leo, P. Polyphenols, resveratrol, antioxidant activity and ochratoxin A contamination in red table wines, controlled denomination of origin (DOC) wines and wines obtained from organic farming. J. Wine Res. 2003, 14, 115–120. [Google Scholar] [CrossRef]
- Mulero, J.; Pardo, F.; Zafrilla, P. Effect of principal polyphenolic components in relation to antioxidant activity in conventional and organic red wines during storage. Eur. Food Res. Technol. 2009, 229, 807–812. [Google Scholar] [CrossRef]
- Mulero, J.; Zafrilla, P.; Cayuela, J.M.; Martinez-Cacha, A.; Pardo, F. Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques. J. Food Sci. 2011, 76, C436–C440. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, M.; Gerardi, C.; Lucejko, J.J.; Longo, V.; Pucci, L.; Domenici, V. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine. Food Chem. 2018, 245, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Divol, B.; du Toit, M.; Duckitt, E. Surviving in the presence of sulphur dioxide: Strategies developed by wine yeasts. Appl. Microbiol. Biotechnol. 2012, 95, 601–613. [Google Scholar] [CrossRef] [PubMed]
- González-Rompinelli, E.M.; Rodríguez-Bencomo, J.J.; García-Ruiz, A.; Sánchez-Patán, F.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control 2013, 33, 440–447. [Google Scholar] [CrossRef]
- Sonni, F.; Cejudo Bastante, M.J.; Chinnici, F.; Natali, N.; Riponi, C. Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: Influence on volatile composition of white wines. J. Sci. Food Agric. 2009, 89, 688–696. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci. Tech. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Marsellés-Fontanet, A.R.; Arias-Gil, M.; Martín-Belloso, O.; Ancín-Azpilicueta, C. Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields. Food Chem. 2007, 103, 771–777. [Google Scholar] [CrossRef]
- Morgan, S.C.; Scholl, C.M.; Benson, N.L.; Stone, M.L.; Durall, D.M. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries. Int. J. Food Microbiol. 2017, 244, 96–102. [Google Scholar] [CrossRef]
- Morgan, S.C.; Tantikachornkiat, M.; Scholl, C.M.; Benson, N.L.; Cliff, M.A.; Duralla, D.M. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int. J. Food Microbiol. 2019, 90, 1–14. [Google Scholar] [CrossRef]
- Morgan, S.C.; McCarthy, G.C.; Watters, B.S.; Tantikachornkiat, M.; Zigg, I.; Cliff, M.A.; Durall, D.M. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: Dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res. 2019, 19, foz049. [Google Scholar] [CrossRef] [PubMed]
Strain Code | Origin | FV * | H2S Production | Killer Character | References |
---|---|---|---|---|---|
RB3-7Sc2 (ND) | Nero d’Avola | 2.15 ± 0.02 | low | + | Capece et al. [38] |
TA4-10 (TA) | Inzolia | 2.05 ± 0.02 | low | neutral | Capece et al. [39] |
M1-47 (M1) | Aglianico | 2.00 ± 0.01 | low | + | Capece et al. [40] |
SA7-13 (SA) | Sangiovese | 2.50 ± 0.04 | low | neutral | Romano et al. [41] |
Starters | Free SO2 Middle End | TP | AA | Volatile Acidity | Acetaldehyde | Ethyl Acetate | Acetoin | n-Propanol | Isobutanol | Active-amyl Alcohol | Isoamyl Alcohol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1-SA | 12.64 ± 0.23 | 11.52 ± 0.91 | 165.05 ± 8.59 | 2.83 ± 0.40 | 205.58 ± 18.25 | 38.66 ± 10.34 a | 10.15 ± 0.23 | 2.79 ± 0.85 a | 46.09 ± 9.38 | 37.20 ± 3.95 | 108.99 ± 12.76 b | 198.14 ± 11.11 b |
ND-M1 | 9.92 ± 1.36 | 9.28 ± 0.45 a | 167.26 ± 16.69 | 5.45 ± 0.68 b | 214.82 ± 16.83 a | 46.14 ± 10.83 b | 9.96 ± 1.54 | 6.21 ± 1.2 | 38.75 ± 6.48 | 34.94 ± 8.89 | 118.03 ± 29.13 | 218.55 ± 11.60 |
ND-SA | 14.88 ± 3.85 | 8.16 ± 0.68 a | 134.14 ± 17.95 | 5.55 ± 0.53 | 215.26 ± 5.96 ab | 29.56 ± 0.84 | 10.17 ± 0.98 | 7.02 ± 0.20 ab | 43.13 ± 0.53 a | 23.90 ± 0.16 | 91.25 ± 8.856 ab | 155.38 ± 2.43 ab |
ND-TA | 10.72 ± 2.94 | 9.12 ± 1.58 a | 108.74 ± 0.78 | 4.83 ± 0.17 | 248.45 ± 8.09 ab | 32.28 ± 6,55 | 9.08 ± 0.80 b | 4.20 ± 1.19 | 43.72 ± 0.97 ab | 21.94 ± 1.21 ab | 101.51 ± 3.50 ab | 177.77 ± 4.30 ab |
TA-M1 | 9.44 ± 0.23 | 8.80 ± 0.23 | 137.45 ± 7.03 | 3.85 ± 0.05 a | 243.96 ± 12.53 ab | 37.53 ± 1.79 b | 10.04 ± 0.59 a | 9.86 ± 0.60 a | 34.61 ± 2.03 | 30.36 ± 0.96 | 99.27 ± 7.69 | 179.35 ± 5.10 a |
TA-SA | 11.04 ± 2.49 | 10.72 ± 1.58 | 153.46 ± 18.10 | 2.43 ± 0.07 ab | 272.56 ± 24.55 ab | 32.73 ± 2.74 a | 10.35 ± 0.25 | 7.39 ± 0.83 b | 49.63 ± 4.96 | 27.62 ± 2.77 a | 94.66 ± 6.75 ab | 169.24 ± 15.74 ab |
M1 | 9.28 ± 0.45 | 10.40 ± 2.04 | 147.38 ± 17.95 | 2.89 ± 0.70 | 179.48 ± 16.36 | 112.92 ± 9.75 | 10.07 ± 0,20 | 9.34 ± 0.26 | 63.01 ± 13,79 | 45.66 ±7.40 | 109.84 ± 7.28 | 174.84 ± 17.16 |
ND | 11.20 ± 2.26 | 15.20 ± 1.13 | 200.82 ± 13.53 | 4.71 ± 0.15 | 392.55 ± 4.36 | 44.04± 6.55 | 11.68 ± 0.51 | 3.54 ± 1.12 | 54.72 ± 1.16 | 29.39 ± 0.80 | 126.47 ± 1.81 | 246.99 ± 4.56 |
SA | 9.76 ± 0.23 | 10.88 ± 1.81 | 136.90 ± 12.49 | 4.09 ± 0.29 | 153.58 ± 7.75 | 26.78 ± 1.17 | 10.49 ± 0.81 | 1.84 ± 0.05 | 51.92 ± 4.41 | 28.48 ± 2.22 | 60.90 ± 10.57 | 116.41 ± 14.44 |
TA | 9.92 ± 2.72 | 8.00 ± 0.01 | 136.34 ± 17.95 | 4.76 ± 0.21 | 456.87 ± 3.66 | 48.34 ± 3.41 | 12.61 ± 0.52 | 5.59 ±0.80 | 65.49 ± 0.78 | 39.18± 1.06 | 127.77± 4.30 | 277.69 ± 2.27 |
Parameters | +SO2 | -SO2 |
---|---|---|
Ethanol * | 13.35 ± 1.33 | 13.53 ± 1.41 |
Fructose ** | 4.30 ± 0.17 | 5.00 ± 0.43 |
Glucose ** | 0.40 ± 0.02 | 0.37 ± 0.02 |
Total acidity ** | 7.80 ± 0.22 | 8.00 ± 0.69 |
Volatile acidity ** | 0.40 ± 0.11 | 0.39 ± 0.08 |
Malic acid ** | 2.10 ± 0.08 | 2.30 ± 0.09 |
Lactic acid ** | 0.00 ± 0.00 | 0.03 ± 0.01 |
Total SO2 ** | 35.02 ± 1.36 | 26.80 ± 1.49 |
Free SO2 ** | 30.15 ± 2.77 a | 11.36 ± 1.38 b |
TP | 581.25 ± 14.19 a | 721.15 ± 7.12 b |
AA | 4.71 ± 0.61 a | 5.15 ± 0.17 b |
Volatile Compound | +SO2 | -SO2 | ODE |
---|---|---|---|
Ethyl propanoate | 137.76 ± 1.72 * | 117.25 ± 2.69 | Etherial, fruity, winey, pineapple |
Ethyl isobutyrate | 202.99 ± 10.37 | 210.59 ± 14.29 | Fruity-like |
Ethyl butanoate | 1.15 ± 0.20 | 1.43 ± 0.19 | Herbaceous fruit, strawberry |
Propyl acetate | 48.33 ± 5.49 | 53.17 ± 7.00 | Etherial, fruity, sweet, banana |
Isobutyl acetate | 90.93 ± 8.41 | 94.22 ± 6.92 | Sweet fruit, banana |
Ethyl butyrate | 92.00 ± 6.89 | 100.26 ± 9.48 | Acid fruit |
Ethyl 2-methylbutanoate | 5.42 ± 0.27 * | 4.26 ± 0.09 | Sweet fruit, strawberry |
Ethyl 3-methylbutanoate | 1.83 ± 0.13 | 1.56 ± 0.23 | Blackberry, berry, anice |
Ethyl 2-methylpropanoate | 1.89 ± 0.03 * | 1.36 ± 0.05 | Fruity, strawberry, pineapple |
Butyl acetate | 1.16 ± 0.04 * | 1.48 ± 0.08 | Sweet, ripe banana |
Isoamyl acetate | 473.33 ± 14.15 | 481.44 ± 11.62 | Banana, pear |
Methyl hexanoate | 1.54 ± 0.16 | 1.75 ± 0.23 | Fresh, fruity, pineapple, sweet |
Ethyl hexanoate | 97.20 ± 8.65 | 106.35 ± 9.43 | Green apple |
Isoamyl butyrate | 2.97 ± 0.27 * | 2.33 ± 0.40 | Fruity, green apricot, pear, banana |
Hexyl acetate | 6.27 ± 1.43 | 8.69 ± 2.21 | Fruity, green, pear |
Ethyl heptanoate | 1.01 ± 0.09 | 1.07 ± 0.22 | Fruit |
Ethyl trans-2-hexenoate | 1.27 ± 0.13 | 1.32 ± 0.18 | Waxy |
Ethyl octanoate | 8.23 ± 1.75 | 9.43 ± 2.05 | Sweet, soap, pineapple |
Isoamyl hexanoate | 4.04 ± 0.32 | 3.63 ± 0.42 | Fruit, flower |
Isoamyl octanoate | 2.87 ± 0.40 | 2.74 ± 0.33 | Fruity, flowery |
Ethyl phenylacetate | 7.44 ± 0.96 | 6.57 ± 1.35 | Rose petal |
2-Phenylethyl acetate | 87.93 ± 11.79 | 80.45 ± 8.65 | Pleasant, flowery, rose |
1-Butanol | 275.635 ± 23.91 | 288.06 ± 12.90 | Fusel, spiritous |
1-Pentanol | 1.89 ± 0.25 | 2.23 ± 0.17 | Balsamic |
4-Methyl-1-pentanol | 1.31 ± 0.11 | 0.91 ± 0.04 | Nutty |
2-Heptanol | 0.77 ± 0.09 | 0.85 ± 0.06 | Green grass |
1-Hexanol | 106.54 ± 8.94 | 96.67 ± 7.91 | Green grass |
cis-3-Hexen-1-ol | 98.27 ± 10.10 | 109.32 ± 8.49 | Green grass |
Benzyl alcohol | 140.44 ± 15.69 | 132.62 ± 9.07 | Phenolic balsamic, bitter almond |
2-Phenylethanol | 425.75 ± 38.22 | 412.29 ± 12.25 | Rose |
Linalool | 11.23 ± 1.47 | 12.5 ± 1.61 | Rose |
α-Terpineol | 12.24 ± 3.37 | 13.35 ± 3.49 | Thrush, flowery |
β-Citronellol | 10.09 ± 2.86 | 8.56 ± 1.24 | Citronella |
Geraniol | 7.23 ± 0.64 | 6.54 ± 1.01 | Rose-like |
β-Damascenone | 13.43 ± 5.82 | 11.73 ± 1.31 | Apple, Cooked apple |
Benzaldehyde | 25.16 ± 5.10 | 22.92 ± 2.75 | Bitter almond-like, herbaceous |
Hexanal | 3.73 ± 0.59 | 4.17 ± 0.83 | Green, woody, vegetative, apple, citrus |
Furfural | 93.36 ± 9.03 | 102.64 ± 5.20 | Sweet, bread |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capece, A.; Pietrafesa, R.; Siesto, G.; Romano, P. Biotechnological Approach Based on Selected Saccharomyces cerevisiae Starters for Reducing the Use of Sulfur Dioxide in Wine. Microorganisms 2020, 8, 738. https://doi.org/10.3390/microorganisms8050738
Capece A, Pietrafesa R, Siesto G, Romano P. Biotechnological Approach Based on Selected Saccharomyces cerevisiae Starters for Reducing the Use of Sulfur Dioxide in Wine. Microorganisms. 2020; 8(5):738. https://doi.org/10.3390/microorganisms8050738
Chicago/Turabian StyleCapece, Angela, Rocchina Pietrafesa, Gabriella Siesto, and Patrizia Romano. 2020. "Biotechnological Approach Based on Selected Saccharomyces cerevisiae Starters for Reducing the Use of Sulfur Dioxide in Wine" Microorganisms 8, no. 5: 738. https://doi.org/10.3390/microorganisms8050738
APA StyleCapece, A., Pietrafesa, R., Siesto, G., & Romano, P. (2020). Biotechnological Approach Based on Selected Saccharomyces cerevisiae Starters for Reducing the Use of Sulfur Dioxide in Wine. Microorganisms, 8(5), 738. https://doi.org/10.3390/microorganisms8050738