Microbial Safety of Milk Production and Fermented Dairy Products in Africa
Abstract
:1. Introduction
2. Food Safety Hazards in the Dairy Chain
3. Risk Factors for Microbiological Hazards in Dairy Production and Processing in Africa
4. Pathogens Occurring in Raw Milk and Dairy Products in Africa
5. Factors that Potentially Contribute to the Safety of Milk and Dairy Products in Africa
5.1. Natural Antimicrobial Systems in Milk
5.2. Traditional Milk Processing Methods
5.2.1. Heat Treatment
5.2.2. Natural Fermentation
5.2.3. Use of Antimicrobial Additives
6. Future Perspectives for Improving Food Safety
6.1. Role of Governments and Regulatory Bodies
6.2. Role of Dairy Chain Actors
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dirar, H.A. The Indigenous Fermented Foods of the Sudan: A Study in African Food and Nutrition; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Fratkin, E. Seeking alternative livelihoods in pastoral areas. In Pastoralism and Development in Africa: Dynamic Change at the Margins New York; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Wurzinger, M.; Okeyo, A.M.; Semambo, D.; Souml, J. The sedentarisation process of the Bahima in Uganda: An emic view. Afric. J. Agric. Res. 2009, 4, 1154–1158. [Google Scholar]
- Schönfeldt, H.C.; Hall, N.G. Dietary protein quality and malnutrition in Africa. Br. J. Nutr. 2012, 108, S69–S76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuehler, S.E.; Hess, S.Y.; Brown, K.H. Accelerating improvements in nutritional and health status of young children in the Sahel region of Sub-Saharan Africa: Review of international guidelines on infant and young child feeding and nutrition. Matern. Child. Nutr. 2011, 7, 6–34. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [Green Version]
- Muehlhoff, E.; Bennett, A.; McMahon, D. Milk and Dairy Products in Human Nutrition; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodbourne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Kenny, M. Safety and quality. In Milk and Dairy Products in Human Nutrition; FAO: Rome, Italy, 2013; pp. 243–273. [Google Scholar]
- De Leeuw, P.; Omore, A.; Staal, S.; Thorpe, W. Dairy production systems in the tropics. In Smallholder Dairying in the Tropics. ILRI. ACC. no. IL-990209; International Livestock Research Institute: Nairobi, Kenya, 1999; pp. 19–44. [Google Scholar]
- Omore, A.O.; Staal, S.J.; Kurwijila, L.R.; Osafo, E.; Aning, G.; Mdoe, N.; Nurah, G. Indigenous markets for dairy products in Africa: Trade-offs between food safety and economics. In Proceedings of the Symposium on Dairy Development in the Tropics, Utrecht University, Utrecht, The Netherlands, 2 November 2001; pp. 19–24. [Google Scholar]
- FAO/WHO. General principles of food hygiene, CAC/RCP 1-1969, Rev. 4 (2003); FAO: Rome, Italy, 2003. [Google Scholar]
- FAO/WHO; Codex Committee on Food Additives and Contaminants. Proposed Draft Code of Practice for the Prevention and the Reduction of Dioxin and Dioxin-Like PCB Contamination in Foods and Feeds; FAO: Rome, Italy, 2006. [Google Scholar]
- Verraes, C.; Vlaemynck, G.; Van Weyenberg, S.; De Zutter, L.; Daube, G.; Sindic, M.; Uyttendaele, M.; Herman, L. A review of the microbiological hazards of dairy products made from raw milk. Int. Dairy J. 2015, 50, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Angulo, F.J.; LeJeune, J.T.; Rajala-Schultz, P.J. Unpasteurized milk: A continued public health threat. Clin. Infect. Dis. 2009, 48, 93–100. [Google Scholar]
- Batavani, R.; Asri, S.; Naebzadeh, H. The effect of subclinical mastitis on milk composition in dairy cows. Iran. J. Vet. Res. 2007, 8, 205–211. [Google Scholar]
- Sharma, A.; Chhabra, R.; Sindhu, N. Prevalence of sub clinical mastitis in cows: Its etiology and antibiogram. Indian J. Anim. Res. 2012, 46, 348–353. [Google Scholar]
- Sharma, N.; Maiti, S.; Sharma, K.K. Prevalence, etiology and antibiogram of microorganisms associated with Sub-clinical mastitis in buffaloes in Durg, Chhattisgarh State (India). Int. J. Dairy Sci. 2007, 2, 145–151. [Google Scholar]
- Tiwari, J.; Babra, C.; Tiwari, H.; Williams, V.; De Wet, S.; Gibson, J.; Paxman, A.; Morgan, E.; Costantino, P.; Sunagar, R. Trends in therapeutic and prevention strategies for management of bovine mastitis: An overview. J. Vaccines Vaccin. 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Katsande, S.; Matope, G.; Ndengu, M.; Pfukenyi, D.M. Prevalence of mastitis in dairy cows from smallholder farms in Zimbabwe. Onderstepoort J. Vet. Res. 2013, 80, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivaria, F.; Noordhuizen, J.; Kapaga, A. Risk indicators associated with subclinical mastitis in smallholder dairy cows in Tanzania. Trop. Anim. Health Prod. 2004, 36, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Lakew, M.; Tolosa, T.; Tigre, W. Prevalence and major bacterial causes of bovine mastitis in Asella, South Eastern Ethiopia. Trop. Anim. Health Prod. 2009, 41, 1525. [Google Scholar] [CrossRef]
- Mpatswenumugabo, J.P.; Bebora, L.C.; Gitao, G.C.; Mobegi, V.; Iraguha, B.; Kamana, O.; Shumbusho, B. Prevalence of subclinical mastitis and distribution of pathogens in dairy farms of Rubavu and Nyabihu districts, Rwanda. J. Vet. Med. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Girma, S.; Mammo, A.; Bogele, K.; Sori, T.; Tadesse, F.; Jibat, T. Study on prevalence of bovine mastitis and its major causative agents in West Harerghe zone, Doba district, Ethiopia. J. Vet. Med. Anim. Health 2012, 4, 116–123. [Google Scholar]
- Magnusson, M.; Christiansson, A.; Svensson, B.; Kolstrup, C. Effect of different premilking manual teat-cleaning methods on bacterial spores in milk. J. Dairy Sci. 2006, 89, 3866–3875. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Westerlaan, B.; Houwers, D.; Van Eerdenburg, F. A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials. J. Dairy Sci. 2011, 94, 4878–4888. [Google Scholar] [CrossRef] [Green Version]
- Vissers, M.; Driehuis, F.; Te Giffel, M.; De Jong, P.; Lankveld, J. Minimizing the level of butyric acid bacteria spores in farm tank milk. J. Dairy Sci. 2007, 90, 3278–3285. [Google Scholar] [CrossRef]
- Sudhan, N.; Sharma, N. Mastitis—An Important Production Disease of Dairy Animals; Sarva Manav Vikash Samiti: Gurgoan, India, 2010; pp. 72–88. [Google Scholar]
- Abrahmsén, M.; Persson, Y.; Kanyima, B.M.; Båge, R. Prevalence of subclinical mastitis in dairy farms in urban and peri-urban areas of Kampala, Uganda. Trop. Anim. Health Prod. 2014, 46, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Dego, O.K.; Tareke, F. Bovine mastitis in selected areas of southern Ethiopia. Trop. Anim. Health Prod. 2003, 35, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Mungube, E.; Tenhagen, B.-A.; Kassa, T.; Regassa, F.; Kyule, M.; Greiner, M.; Baumann, M. Risk factors for dairy cow mastitis in the central highlands of Ethiopia. Trop. Anim. Health Prod. 2004, 36, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Karimuribo, E.; Gallet, P.; Ng’umbi, N.; Matiko, M.; Massawe, L.; Mpanduji, D.; Batamuzi, E. Status and factors affecting milk quality along the milk value chain: A case of Kilosa district, Tanzania. Livest. Res. Rural Dev. 2015, 27, 51. [Google Scholar]
- Mattiello, S.; Caroprese, M.; Matteo, C.G.; Fortina, R.; Martini, A.; Martini, M.; Parisi, G.; Russo, C.; Zecchini, M. Typical dairy products in Africa from local animal resources. Ital. J. Anim. Sci. 2018, 17, 740–754. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Akabanda, F.; Johansen, P.; Jespersen, L.; Nielsen, D.S. Nunu, A West African Fermented Yogurt-Like Milk Product. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Elsevier Academic Publisher: London, UK, 2017. [Google Scholar]
- Holzapfel, W. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 2002, 75, 197–212. [Google Scholar] [CrossRef]
- Josephsen, J.; Jespersen, L. Starter cultures and fermented products. In Handbook of Food and Beverage Fermentation Technology; CRC Press: Marcel Dekker, NY, USA, 2004; pp. 39–66. [Google Scholar]
- Ducrotoy, M.; Bertu, W.; Matope, G.; Cadmus, S.; Conde-Álvarez, R.; Gusi, A.; Welburn, S.; Ocholi, R.; Blasco, J.; Moriyón, I. Brucellosis in Sub-Saharan Africa: Current challenges for management, diagnosis and control. Acta Trop. 2017, 165, 179–193. [Google Scholar]
- Michel, A.L.; Geoghegan, C.; Hlokwe, T.; Raseleka, K.; Getz, W.M.; Marcotty, T. Longevity of Mycobacterium bovis in raw and traditional souring milk as a function of storage temperature and dose. PLoS ONE 2015, 10, e0129926. [Google Scholar] [CrossRef]
- Pexara, A.; Solomakos, N.; Govaris, A. Q fever and prevalence of Coxiella burnetii in milk. Trends Food Sci. Technol. 2018, 71, 65–72. [Google Scholar] [CrossRef]
- Vanderburg, S.; Rubach, M.P.; Halliday, J.E.; Cleaveland, S.; Reddy, E.A.; Crump, J.A. Epidemiology of Coxiella burnetii infection in Africa: A OneHealth systematic review. PLoS Negl. Trop. Dis. 2014, 8, e2787. [Google Scholar] [CrossRef]
- Yilma, M.; Mamo, G.; Mammo, B. Review on brucellosis sero-prevalence and ecology in livestock and human population of Ethiopia. Achiev. Life Sci. 2016, 10, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Sichewo, P.R.; Etter, E.M.C.; Michel, A.L. Prevalence of Mycobacterium bovis infection in traditionally managed cattle at the wildlife-livestock interface in South Africa in the absence of control measures. Vet. Res. Commun. 2019, 43, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Rito, T.; Ghebremichael, S.; Muhate, N.; Maxhuza, G.; Macuamule, C.; Moiane, I.; Macucule, B.; Marranangumbe, A.S.; Baptista, J. Genetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique. PLoS Negl. Trop. Dis. 2018, 12, e0006147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogundeji, E.; Onyemelukwe, N.; Nwuko, A.; Onuoha, M.; Ogundeji, A.; Osaretin, J.; Eze, K.; Olofu, J.; Jik, A.; Kemza, S. Molecular detection of Mycobacterium bovis in cattle milk in Enugu State, Nigeria. J. Nat. Sci. Res. 2015, 5, 42–47. [Google Scholar]
- Kahla, I.B.; Boschiroli, M.; Souissi, F.; Cherif, N.; Benzarti, M.; Boukadida, J.; Hammami, S. Isolation and molecular characterisation of Mycobacterium bovis from raw milk in Tunisia. Afr. Health Sci. 2011, 11, 2–5. [Google Scholar]
- Pandey, G.S.; Hang’ombe, B.M.; Mushabati, F.; Kataba, A. Prevalence of tuberculosis among southern Zambian cattle and isolation of Mycobacterium bovis in raw milk obtained from tuberculin positive cows. Vet. World 2013, 6, 986. [Google Scholar] [CrossRef] [Green Version]
- Ayele, W.; Neill, S.; Zinsstag, J.; Weiss, M.; Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 2004, 8, 924–937. [Google Scholar]
- Müller, B.; Dürr, S.; Alonso, S.; Hattendorf, J.; Laisse, C.J.; Parsons, S.D.; Van Helden, P.D.; Zinsstag, J. Zoonotic Mycobacterium bovis–induced tuberculosis in humans. Emerg. Infect. Dis. 2013, 19, 899. [Google Scholar] [CrossRef] [Green Version]
- Olea-Popelka, F.; Muwonge, A.; Perera, A.; Dean, A.S.; Mumford, E.; Erlacher-Vindel, E.; Forcella, S.; Silk, B.J.; Ditiu, L.; El Idrissi, A. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—A call for action. Lancet Infect. Dis 2017, 17, e21–e25. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, E.; Raoult, D. Q fever. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Eldin, C.; Melenotte, C.; Million, M.; Cammilleri, S.; Sotto, A.; Elsendoorn, A.; Thuny, F.; Lepidi, H.; Roblot, F.; Weitten, T. 18F-FDG PET/CT as a central tool in the shift from chronic Q fever to Coxiella burnetii persistent focalized infection: A consecutive case series. Medicine 2016, 95, e4287. [Google Scholar] [CrossRef]
- Klaasen, M.; Roest, H.-J.; van der Hoek, W.; Goossens, B.; Secka, A.; Stegeman, A. Coxiella burnetii seroprevalence in small ruminants in The Gambia. PLoS ONE 2014, 9, e85424. [Google Scholar] [CrossRef] [PubMed]
- Breurec, S.; Poueme, R.; Fall, C.; Tall, A.; Diawara, A.; Bada-Alambedji, R.; Broutin, C.; Leclercq, A.; Garin, B. Microbiological quality of milk from small processing units in Senegal. Foodborne Pathog. Dis. 2010, 7, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Loftis, A.D.; Priestley, R.A.; Massung, R.F. Detection of Coxiella burnetii in commercially available raw milk from the United States. Foodborne Pathog. Dis. 2010, 7, 1453–1456. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, M.; Nicholson, W.L.; Roche, A.J.; Kersh, G.J.; Fitzpatrick, K.A.; Oliver, L.D.; Massung, R.F.; Morrissey, A.B.; Bartlett, J.A.; Onyango, J.J. Q fever, spotted fever group, and typhus group rickettsioses among hospitalized febrile patients in northern Tanzania. Clin. Infect. Dis. 2011, 53, e8–e15. [Google Scholar] [CrossRef] [Green Version]
- Crump, J.A.; Morrissey, A.B.; Nicholson, W.L.; Massung, R.F.; Stoddard, R.A.; Galloway, R.L.; Ooi, E.E.; Maro, V.P.; Saganda, W.; Kinabo, G.D. Etiology of severe non-malaria febrile illness in Northern Tanzania: A prospective cohort study. PLoS Negl. Trop. Dis. 2013, 7, e2324. [Google Scholar] [CrossRef] [Green Version]
- Koulla-Shiro, S.; Kuaban, C.; Bélec, L. Microbial etiology of acute community-acquired pneumonia in adult hospitalized patients in Yaounde-Cameroon. Clin. Microbiol. Infect. 1997, 3, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Al Dahouk, S.; Köhler, S.; Occhialini, A.; De Bagüés, M.P.J.; Hammerl, J.A.; Eisenberg, T.; Vergnaud, G.; Cloeckaert, A.; Zygmunt, M.S.; Whatmore, A.M. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci. Rep. 2017, 7, 44420. [Google Scholar] [CrossRef]
- Corbel, M.J. Brucellosis in Humans and Animals; World Health Organization: Geneva, Switzerland, 2006; pp. 13–35. [Google Scholar]
- Whatmore, A.M.; Davison, N.; Cloeckaert, A.; Al Dahouk, S.; Zygmunt, M.S.; Brew, S.D.; Perrett, L.L.; Koylass, M.S.; Vergnaud, G.; Quance, C. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int. J. Syst. Evol. Microbiol. 2014, 64, 4120. [Google Scholar] [CrossRef] [Green Version]
- Doganay, M.; Aygen, B. Human brucellosis: An overview. Int. J. Infect. Dis. 2003, 7, 173–182. [Google Scholar] [CrossRef] [Green Version]
- FAO. Brucella melitensis in Eurasia and the Middle East; FAO Animal Production and Health Proceedings. No. 10; FAO: Rome, Italy, 2010. [Google Scholar]
- WHO. The Control. of Neglected Zoonotic Diseases: A Route to Poverty Alleviation; Report of a Joint WHO/DFID-AHP Meeting, 20 and 21 September 2005, WHO Headquarters; WHO: Geneva, Italy, 2005; pp. 1–54. [Google Scholar]
- Musallam, I.; Ndour, A.P.; Yempabou, D.; Ngong, C.-A.C.; Dzousse, M.F.; Mouiche-Mouliom, M.-M.; Feussom, J.M.K.; Ntirandekura, J.B.; Ntakirutimana, D.; Fane, A. Brucellosis in dairy herds: A public health concern in the milk supply chains of West and Central Africa. Acta Trop. 2019, 105042. [Google Scholar] [CrossRef]
- Bonfoh, B.; Fane, A.; Steinmann, P.; Hetzel, M.; Traore, A.; Traore, M.; Simbe, C.; Alfaroukh, I.; Nicolet, J.; Akakpo, J. Qualité microbiologique du lait et des produits laitiers vendus au Mali et leurs implications en santé publique. Etudes et recherches sahéliennes 2003, 8, 19–27. [Google Scholar]
- Caine, L.A.; Nwodo, U.U.; Okoh, A.I.; Green, E. Molecular characterization of Brucella species in cattle, sheep and goats obtained from selected municipalities in the Eastern Cape, South Africa. Asian Pac. J. Trop. Dis. 2017, 7, 293–298. [Google Scholar] [CrossRef]
- Hoffman, T.; Rock, K.; Mugizi, D.R.; Muradrasoli, S.; Lindahl-Rajala, E.; Erume, J.; Magnusson, U.; Lundkvist, Å.; Boqvist, S. Molecular detection and characterization of Brucella species in raw informally marketed milk from Uganda. Infect. Ecol. Epidemiol. 2016, 6, 32442. [Google Scholar] [CrossRef] [PubMed]
- Farougou, S.; Sessou, P.; Yehouenou, B.; Dossa, F. Microbiological quality of raw milk processed from cows raised under extensive system in the Republic of Benin. Res. J. Microbiol. 2012, 7, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.M.; Shimamoto, T. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157: H7 and Shigella spp. from meat and dairy products in Egypt. Int. J. Food Microbiol. 2014, 168, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ombarak, R.A.; Hinenoya, A.; Awasthi, S.P.; Iguchi, A.; Shima, A.; Elbagory, A.-R.M.; Yamasaki, S. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int. J. Food Microbiol. 2016, 221, 69–76. [Google Scholar] [CrossRef]
- Bedasa, S.; Shiferaw, D.; Abraha, A.; Moges, T. Occurrence and antimicrobial susceptibility profile of Escherichia coli O157: H7 from food of animal origin in Bishoftu town, Central Ethiopia. Int. J. Food Contam. 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Kunadu, A.P.-H.; Holmes, M.; Miller, E.L.; Grant, A.J. Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Int. J. Food Microbiol. 2018, 277, 41–49. [Google Scholar] [CrossRef]
- Enabulele, S.; Nwankiti, O. Shiga Toxin (Stx) Gene detection and verotoxigenic potentials of non-0157 Escherichia coli isolated from fermented fresh cow milk (Nono) sold in selected cities in Nigeria. Nig. J. Basic Appl. Sci. 2016, 24, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Ivbade, A.; Ojo, O.E.; Dipeolu, M.A. Shiga toxin-producing Escherichia coli O157: H7 in milk and milk products in Ogun State, Nigeria. Vet. Ital. 2014, 50, 185–191. [Google Scholar]
- Msolo, L.; Igbinosa, E.O.; Okoh, A.I. Prevalence and antibiogram profiles of Escherichia coli O157: H7 isolates recovered from three selected dairy farms in the Eastern Cape Province, South Africa. Asian Pac. J. Trop. Dis. 2016, 6, 990–995. [Google Scholar] [CrossRef]
- Msalya, G. Contamination levels and identification of bacteria in milk sampled from three regions of Tanzania: Evidence from literature and laboratory analyses. Vet. Med. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoder, D.; Maichin, A.; Lema, B.; Laffa, J. Microbiological quality of milk in Tanzania: From Maasai stable to African consumer table. J. Food Prot. 2013, 76, 1908–1915. [Google Scholar] [CrossRef] [PubMed]
- Knight-Jones, T.J.; Hang’ombe, M.B.; Songe, M.M.; Sinkala, Y.; Grace, D. Microbial contamination and hygiene of fresh cow’s milk produced by smallholders in Western Zambia. Int. J. Environ. Res. Public Health 2016, 13, 737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agata, N.; Ohta, M.; Yokoyama, K. Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int. J. Food Microbiol. 2002, 73, 23–27. [Google Scholar] [CrossRef]
- Sergeev, N.; Distler, M.; Vargas, M.; Chizhikov, V.; Herold, K.E.; Rasooly, A. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 2006, 65, 488–502. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Tano-Debrah, K.; Jespersen, L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 2017, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Yobouet, B.A.; Kouamé-Sina, S.M.; Dadié, A.; Makita, K.; Grace, D.; Djè, K.M.; Bonfoh, B. Contamination of raw milk with Bacillus cereus from farm to retail in Abidjan, Côte d’Ivoire and possible health implications. Dairy Sci Technol. 2014, 94, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, R.L.; Gorris, L.G.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Jespersen, L. Prevalence and characteristics of Listeria monocytogenes isolates in raw milk, heated milk and nunu, a spontaneously fermented milk beverage, in Ghana. Beverages 2018, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Tahoun, A.B.; Elez, R.M.A.; Abdelfatah, E.N.; Elsohaby, I.; El-Gedawy, A.A.; Elmoslemany, A.M. Listeria monocytogenes in raw milk, milking equipment and dairy workers: Molecular characterization and antimicrobial resistance patterns. J. Glob. Antimicrob. Resist. 2017, 10, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Usman, U.; Kwaga, J.; Kabir, J.; Olonitola, O. Isolation and antimicrobial susceptibility of Listeria monocytogenes from raw milk and milk products in Northern Kaduna State, Nigeria. J. Appl. Environ. Microbiol. 2016, 4, 46–54. [Google Scholar]
- Amajoud, N.; Leclercq, A.; Soriano, J.M.; Bracq-Dieye, H.; El Maadoudi, M.; Senhaji, N.S.; Kounnoun, A.; Moura, A.; Lecuit, M.; Abrini, J. Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan, Morocco. Food Control. 2018, 84, 436–441. [Google Scholar] [CrossRef] [Green Version]
- El-Zamkan, M.A.; Hameed, K.G.A. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products. Vet. World 2016, 9, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, A.M.; Crispie, F.; Daari, K.; O’Sullivan, O.; Martin, J.C.; Arthur, C.T.; Claesson, M.J.; Scott, K.P.; Cotter, P.D. Strain-level metagenomic analysis of the fermented dairy beverage nunu highlights potential food safety risks. Appl. Environ. Microbiol. 2017, 83, e01144–e17. [Google Scholar] [CrossRef] [Green Version]
- Beyene, T.; Hayishe, H.; Gizaw, F.; Beyi, A.F.; Abunna, F.; Mammo, B.; Ayana, D.; Waktole, H.; Abdi, R.D. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res. Notes 2017, 10, 171. [Google Scholar] [CrossRef] [Green Version]
- Wanjala, G.; Mathooko, F.; Kutima, P.; Mathara, J. Microbiological quality and safety of raw and pasteurized milk marketed in and around Nairobi region. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11518–11532. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Food protection with chemicals, and by biocontrol. Modern Food Microbiol. 2005, 301–350. [Google Scholar]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Kutila, T.; Pyörälä, S.; Kaartinen, L.; Isomäki, R.; Vahtola, K.; Myllykoski, L.; Saloniemi, H. Lactoferrin and citrate concentrations at drying-off and during early mammary involution of dairy cows. J. Vet. Med. 2003, 50, 350–353. [Google Scholar] [CrossRef]
- Van der Strate, B.; Beljaars, L.; Molema, G.; Harmsen, M.; Meijer, D. Antiviral activities of lactoferrin. Antivir. Res. 2001, 52, 225–239. [Google Scholar] [CrossRef]
- Barth, C.; Behnke, U. Ernährungsphysiologische Bedeutung von Molke und Molkenbestandteilen. Food/Nahrung 1997, 41, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A.; Wang, B.; Oh, J.-H. Antimicrobial activity of lactoferrin against foodborne pathogenic bacteria incorporated into edible chitosan film. J. Food Prot. 2008, 71, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Bruni, N.; Capucchio, M.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 2016, 21, 752. [Google Scholar] [CrossRef] [PubMed]
- El-Loly, M.M.; Mahfouz, M.B. Lactoferrin in relation to biological functions and applications: A review. Int. J. Dairy Sci. 2011, 6, 79–111. [Google Scholar] [CrossRef]
- Levay, P.F.; Viljoen, M. Lactoferrin: A general review. Haematologica 1995, 80, 252–267. [Google Scholar]
- Lönnerdal, B.; Iyer, S. Lactoferrin: Molecular structure and biological function. Annu. Rev. Nutr. 1995, 15, 93–110. [Google Scholar] [CrossRef]
- Bullen, J.; Rogers, H.J.; Leigh, L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br. Med. J. 1972, 1, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Naidu, A.S.; Arnold, R.R. Influence of lactoferrin on host-microbe interactions. In Lactoferrin; Springer: Berlin, Germany, 1997; pp. 259–275. [Google Scholar]
- Zagulski, T.; Jarzabek, Z.; Zagulska, A.; Zimecki, M. The main systemic, highly effective, and quickly acting antimicrobial mechanisms generated by lactoferrin in mammals in vivo. Activity in Health and Disease. In Advances in Lactoferrin Research; Spik, G., Legrand, D., Mazurier, J., Pierce, A., Perraudin, J.P., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 247–250. [Google Scholar]
- Sherman, M.P.; Bennett, S.H.; Hwang, F.F.; Yu, C. Neonatal small bowel epithelia: Enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG. Biometals 2004, 17, 285–289. [Google Scholar] [CrossRef]
- Braun, V.; Braun, M. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol. 2002, 5, 194–201. [Google Scholar] [CrossRef]
- Van Hooijdonk, A.C.; Kussendrager, K.; Steijns, J. In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br. J. Nutr. 2000, 84, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, C.; Rota, C.; Castillo, E.; Perez, M.D.; Calvo, M.; Sanchez, L. Effect of heat treatment on the antibacterial activity of bovine lactoferrin against three foodborne pathogens. Int. J. Dairy Technol. 2010, 63, 209–215. [Google Scholar] [CrossRef]
- Korhonen, H.; Marnila, P.; Gill, H. Milk immunoglobulins and complement factors. Br. J. Nutr. 2000, 84, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, L.; Peiro, J.; Castillo, H.; Perez, M.; Ena, J.; Calvo, M. Kinetic parameters for denaturation of bovine milk lactoferrin. J. Food Sci. 1992, 57, 873–879. [Google Scholar] [CrossRef]
- Koksal, Z.; Gulcin, I.; Ozdemir, H. An Important Milk Enzyme: Lactoperoxidase. Milk Proteins 2016, 141. [Google Scholar]
- Sarikaya, S.B.O.; Sisecioglu, M.; Cankaya, M.; Gulcin, İ.; Ozdemir, H. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme. J. Enzyme Inhib. Med. Chem. 2015, 30, 479–483. [Google Scholar] [CrossRef]
- Sarr, D.; Tóth, E.; Gingerich, A.; Rada, B. Antimicrobial actions of dual oxidases and lactoperoxidase. J. Microbiol. 2018, 56, 373–386. [Google Scholar] [CrossRef]
- Cheng, R.; Mantovani, A.; Frazzoli, C. Analysis of food safety and security challenges in emerging African food producing areas through a One Health lens: The dairy chains in Mali. J. Food Prot. 2016, 80, 57–67. [Google Scholar] [CrossRef]
- FAO/WHO. Benefits and Potential Risks of the Lactoperoxidase System of Raw Milk Preservation; Report of an FAO/WHO Technical Meeting FAO Headquarters, Rome, Italy, from 28 November–2 December, 2005; FAO/WHO: Rome, Italy, 2006; pp. 5–17. [Google Scholar]
- Cosentino, C.; Labella, C.; Elshafie, H.; Camele, I.; Musto, M.; Paolino, R.; D’adamo, C.; Freschi, P. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk. J. Dairy Sci. 2016, 99, 5173–5179. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.; Kelly, A. Indigenous enzymes in milk: Overview and historical aspects—Part 1. Int. Dairy J. 2006, 16, 500–516. [Google Scholar] [CrossRef]
- Silanikove, N.; Merin, U.; Leitner, G. Physiological role of indigenous milk enzymes: An overview of an evolving picture. Int. Dairy J. 2006, 16, 533–545. [Google Scholar] [CrossRef]
- Losnedahl, K.J.; Wang, H.; Aslam, M.; Zou, S.; Hurley, W.L. Antimicrobial factors in milk. Illini DairyNet Papers 1998, 38, 1–4. [Google Scholar]
- Sudagidan, M.; Yemenicioğlu, A. Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of Staphylococcus aureus strains isolated from raw milk and cheese samples. J. Food Prot. 2012, 75, 1627–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agyei, D.; Owusu-Kwarteng, J.; Akabanda, F.; Akomea-Frempong, S. Indigenous African fermented dairy products: Processing technology, microbiology and health benefits. Crit. Rev. Food Sci. Nutr. 2019, 1–16. [Google Scholar] [CrossRef]
- Akabanda, F.; Owusu-Kwarteng, J.; Tano-Debrah, K.; Glover, R.L.; Nielsen, D.S.; Jespersen, L. Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiol. 2013, 34, 277–283. [Google Scholar] [CrossRef]
- Benkerroum, N. Traditional fermented foods of North African countries: Technology and food safety challenges with regard to microbiological risks. Compr. Rev. Food Sci. 2013, 12, 54–89. [Google Scholar] [CrossRef]
- WHO/FAO. Risk Assessment of Listeria Monocytogenes in Ready-To-Eat Foods: Technical Report, Microbiological Risk Assessment; FAO Report, Series No. 5; FAO: Rome, Italy, 2004; pp. 1–307. [Google Scholar]
- Claeys, W.L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P. Raw or heated cow milk consumption: Review of risks and benefits. Food Control. 2013, 31, 251–262. [Google Scholar] [CrossRef]
- Farrokh, C.; Jordan, K.; Auvray, F.; Glass, K.; Oppegaard, H.; Raynaud, S.; Thevenot, D.; Condron, R.; De Reu, K.; Govaris, A. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 2013, 162, 190–212. [Google Scholar] [CrossRef]
- Obodai, M.; Dodd, C. Characterization of dominant microbiota of a Ghanaian fermented milk product, nyarmie, by culture-and nonculture-based methods. J. Appl. Microbiol. 2006, 100, 1355–1363. [Google Scholar] [CrossRef]
- Nieminen, M.T.; Novak-Frazer, L.; Collins, R.; Dawsey, S.P.; Dawsey, S.M.; Abnet, C.C.; White, R.E.; Freedman, N.D.; Mwachiro, M.; Bowyer, P. Alcohol and acetaldehyde in African fermented milk mursik—A possible etiologic factor for high incidence of esophageal cancer in western Kenya. Cancer Epidemiol. Biomark. Prev. 2013, 22, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Nyambane, B.; Thari, W.M.; Wangoh, J.; Njage, P.M. Lactic acid bacteria and yeasts involved in the fermentation of amabere amaruranu, a Kenyan fermented milk. Food Sci. Nutr. 2014, 2, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Schutte, L.M. Isolation and Identification of the Microbial Consortium Present in Fermented Milks from Sub-Saharan Africa. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013; pp. 96–118. [Google Scholar]
- Jiwoua, C.; Milliere, J. Lactic flora and enterococci of fermented [zebu] milk (pindidam) produced in Adamaoua (Cameroun). Lait (France) 1990, 70, 475–486. [Google Scholar] [CrossRef]
- Mbawala, A.; Mahbou, P.; Mouafo, H.; Tatsadjieu, L. Antibacterial activity of some lactic acid bacteria isolated from a local fermented milk product (pendidam) in Ngaoundere, Cameroon. J. Anim. Plant. Sci. 2013, 23, 157–166. [Google Scholar]
- Belli, P.; Cantafora, A.F.; Stella, S.; Barbieri, S.; Crimella, C. Microbiological survey of milk and dairy products from a small scale dairy processing unit in Maroua (Cameroon). Food Control. 2013, 32, 366–370. [Google Scholar] [CrossRef]
- Feresu, S.B.; Muzondo, M. Identification of some lactic acid bacteria from two Zimbabwean fermented milk products. World J. Microbiol. Biotechnol. 1990, 6, 178–186. [Google Scholar] [CrossRef]
- Jans, C.; Meile, L.; Kaindi, D.W.M.; Kogi-Makau, W.; Lamuka, P.; Renault, P.; Kreikemeyer, B.; Lacroix, C.; Hattendorf, J.; Zinsstag, J. African fermented dairy products–overview of predominant technologically important microorganisms focusing on African Streptococcus infantarius variants and potential future applications for enhanced food safety and security. Int. J. Food Microbiol. 2017, 250, 27–36. [Google Scholar] [CrossRef]
- Mathara, J.M.; Schillinger, U.; Kutima, P.M.; Mbugua, S.K.; Holzapfel, W.H. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: The Maasai traditional fermented milk in Kenya. Int. J. Food Microbiol. 2004, 94, 269–278. [Google Scholar] [CrossRef]
- Savadogo, A.; Ouattara, C.; Savadogo, P.; Ouattara, A.; Barro, N.; Traore, A. Microorganisms involved in Fulani traditional fermented milk in Burkina Faso. Pak. J. Nutr. 2004, 3, 134–139. [Google Scholar]
- Daeschel, M.A. Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages. In Bacteriocins of Lactic Acid Bacteria; Hoover, D.G., Steenson, L.R., Eds.; Elsevier: New York, NY, USA, 1993; pp. 63–91. [Google Scholar]
- Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe 2012, 18, 530–538. [Google Scholar] [CrossRef]
- Wakil, S.; Osamwonyi, U. Isolation and screening of antimicrobial producing lactic acid bacteria from fermenting millet gruel. Int. Res. J. Microbiol. 2012, 3, 072–079. [Google Scholar]
- Byczkowski, J.Z.; Gessner, T. Biological role of superoxide ion-radical. Int. J. Biochem. 1988, 20, 569–580. [Google Scholar] [CrossRef]
- Kong, S.; Davison, A.J. The role of interactions between O2, H2O2,·OH, e− and O2− in free radical damage to biological systems. Arch. Biochem. Biophys. 1980, 204, 18–29. [Google Scholar] [CrossRef]
- Ricke, S. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultr. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Akabanda, F.; Owusu-Kwarteng, J.; Tano-Debrah, K.; Parkouda, C.; Jespersen, L. The use of lactic acid bacteria starter culture in the production of Nunu, a spontaneously fermented milk product in Ghana. Int. J. Food Sci. 2014, 2014. [Google Scholar]
- Akabanda, F.; Owusu-Kwarteng, J.; Glover, R.; Tano-Debrah, K. Microbiological characteristics of Ghanaian traditional fermented milk product, Nunu. Nat. Sci. 2010, 8, 178–187. [Google Scholar]
- Cotter, P.D.; Hill, C.; Ross, R.P. Food microbiology: Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777. [Google Scholar] [CrossRef]
- Stevens, K.; Sheldon, B.; Klapes, N.A.; Klaenhammer, T. Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl. Environ. Microbiol. 1991, 57, 3613–3615. [Google Scholar] [CrossRef] [Green Version]
- de Arauz, L.J.; Jozala, A.F.; Mazzola, P.G.; Penna, T.C.V. Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar] [CrossRef]
- Ávila, M.; Gómez-Torres, N.; Hernández, M.; Garde, S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int. J. Food Microbiol. 2014, 172, 70–75. [Google Scholar] [CrossRef]
- Rodríguez, E.; González, B.; Gaya, P.; Nuñez, M.; Medina, M. Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int. Dairy J. 2000, 10, 7–15. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Patrovský, M.; Kouřimská, L.; Havlíková, Š.; Marková, J.; Pechar, R.; Rada, V. Utilization of bacteriocin-producing bacteria in dairy products. Mljekarstvo: Časopis za unaprjeđenje proizvodnje i prerade mlijeka 2016, 66, 215–224. [Google Scholar] [CrossRef] [Green Version]
- García, P.; Martínez, B.; Rodríguez, L.; Rodríguez, A. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int. J. Food Microbiol. 2010, 141, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Hidalgo, M.; Montalbán-López, M.; Cebrián, R.; Valdivia, E.; Martínez-Bueno, M.; Maqueda, M. AS-48 bacteriocin: Close to perfection. Cell. Mol. Life Sci. 2011, 68, 2845–2857. [Google Scholar]
- Suda, S.; D Cotter, P.; Hill, C.; Paul Ross, R. Lacticin 3147-biosynthesis, molecular analysis, immunity, bioengineering and applications. Curr. Protein Pept. Sci. 2012, 13, 193–204. [Google Scholar] [CrossRef]
- Aunsbjerg, S.D.; Honoré, A.H.; Marcussen, J.; Ebrahimi, P.; Vogensen, F.K.; Benfeldt, C.; Skov, T.; Knøchel, S. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 2015, 194, 46–53. [Google Scholar] [CrossRef]
- Delavenne, E.; Ismail, R.; Pawtowski, A.; Mounier, J.; Barbier, G.; Le Blay, G. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control. 2013, 30, 206–213. [Google Scholar] [CrossRef]
- Lačanin, I.; Mounier, J.; Pawtowski, A.; Dušková, M.; Kameník, J.; Karpíšková, R. Assessment of the antifungal activity of Lactobacillus and Pediococcus spp. for use as bioprotective cultures in dairy products. World J. Microbiol. Biotechnol. 2017, 33, 188. [Google Scholar] [CrossRef]
- Cheong, E.Y.; Sandhu, A.; Jayabalan, J.; Le, T.T.K.; Nhiep, N.T.; Ho, H.T.M.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control. 2014, 46, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Hassanin, N.I. Stability of aflatoxin M1 during manufacture and storage of yoghurt, yoghurt-cheese and acidified milk. J. Sci. Food Agric. 1994, 65, 31–34. [Google Scholar] [CrossRef]
- Motawee, M. Reduction of aflatoxin M1 content during manufacture and storage of Egyptian Domaiti Cheese. Int J. Vet. Med. Res. Rep. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, A.; Bullerman, L.B. Biological Control of Molds and Mycotoxins in Foods; ACS Publications: Washington, DC, USA, 2009; pp. 1–16. [Google Scholar]
- Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Blagojev, N.; Škrinjar, M.; Vesković-Moračanin, S.; Šošo, V. Control of mould growth and mycotoxin production by lactic acid bacteria metabolites. Rom. Biotechnol. Lett. 2012, 17, 7219–7226. [Google Scholar]
- Mathara, J.M. Studies on Lactic Acid Producing Microflora in Mursik and Kule Naoto, Traditional Fermented Milks from Nandi and Masai Communities in Kenya. In Master’s Thesis; University of Nairobi: Nairobi, Kenya, 1999. [Google Scholar]
- Onyango, C.; Gakuya, L.; Mathooko, F.M.; Maina, J.; Nyaberi, M.; Makobe, M.; Mwaura, F. Preservative effect of various indigenous plants on fermented milk from Maasai community of Kajiado County. J. Appl. Biosci. 2014, 73, 5935–5941. [Google Scholar]
- Mathara, J.; Miyamoto, T.; Koaze, H. Production of Traditional Fermented milk in Kenya (A Review); Shizuoka Prefectural University Publication: Shizuoka, Japan, 1995; pp. 257–264. [Google Scholar]
- Nduko, J.M.; Matofari, J.W.; Nandi, Z.O.; Sichangi, M.B. Spontaneously fermented Kenyan milk products: A review of the current state and future perspectives. Afr. J. Food Sci. 2017, 11, 1–11. [Google Scholar]
- Cabarello, B.; Trugo, L.; Finglas, P. Encyclopedia of Food Science and Nutrition, 2nd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Laranjo, M.; Elias, M.; Fraqueza, M.J. The use of starter cultures in traditional meat products. J. Food Qual. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Wouters, D.; Grosu-Tudor, S.; Zamfir, M.; De Vuyst, L. Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. J. Sci. Food Agric. 2013, 93, 3352–3361. [Google Scholar] [CrossRef]
- Cogan, T.; Beresford, T.; Steele, J.; Broadbent, J.; Shah, N.; Ustunol, Z. Invited review: Advances in starter cultures and cultured foods. J. Dairy Sci. 2007, 90, 4005–4021. [Google Scholar] [CrossRef] [Green Version]
- Parente, E.; Cogan, Y.M.; Powell, I.B. Starter Cultures: General Aspects. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Elsevier Academic Press: Oxford, UK, 2017; Volume 1, pp. 201–226. [Google Scholar]
- Ross, T.; McMeekin, T. Predictive microbiology. Int. J. Food Microbiol 1994, 23, 241–264. [Google Scholar] [CrossRef]
- Valdramidis, V. Predictive microbiology. In Modeling in Food Microbiology; Valdramidis, J.-M.M.V., Ed.; Elsevier: Oxford, UK, 2016. [Google Scholar]
- Devasundaram, J.; Cariappa, A. Problems of erratic power supply in Africa and India. Leprosy Rev. 1987, 58, 431–432. [Google Scholar]
- Ibrahim, A.; Aryeetey, G.C.; Asampong, E.; Dwomoh, D.; Nonvignon, J. Erratic electricity supply (Dumsor) and anxiety disorders among university students in Ghana: A cross sectional study. Int. J. Ment. Health Syst. 2016, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verploegen, E.; Rinker, P.; Ognakossan, K.E. Evaporative Cooling Best Practices: Producing and Using Evaporative Cooling Chambers and Clay Pot Coolers; MIT D-Lab: Cambridge, UK, 2018; pp. 1–31. [Google Scholar]
Biological Hazards | Chemical Hazards | Physical Hazards |
---|---|---|
|
|
|
Step in Dairy Chain | Important Risk Factors | Implications for Milk Safety |
---|---|---|
Primary production |
|
|
Milk collection |
|
|
Raw milk storage |
|
|
Packaging |
|
|
Transportation and distribution |
|
|
Traditional milk processing |
|
|
Consumer practices |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owusu-Kwarteng, J.; Akabanda, F.; Agyei, D.; Jespersen, L. Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms 2020, 8, 752. https://doi.org/10.3390/microorganisms8050752
Owusu-Kwarteng J, Akabanda F, Agyei D, Jespersen L. Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms. 2020; 8(5):752. https://doi.org/10.3390/microorganisms8050752
Chicago/Turabian StyleOwusu-Kwarteng, James, Fortune Akabanda, Dominic Agyei, and Lene Jespersen. 2020. "Microbial Safety of Milk Production and Fermented Dairy Products in Africa" Microorganisms 8, no. 5: 752. https://doi.org/10.3390/microorganisms8050752
APA StyleOwusu-Kwarteng, J., Akabanda, F., Agyei, D., & Jespersen, L. (2020). Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms, 8(5), 752. https://doi.org/10.3390/microorganisms8050752