Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Extraction of Crude β-glucosidase
2.3. Preparation of Wine
2.4. Growth and Sugar Consumption Kinetics of Saccharomyces Cerevisiae
2.5. Analysis of Physicochemical Characteristics and Volatile Compounds in Wines
2.6. Sensory Evaluations of Wine
2.7. Data Analyses
3. Results and Discussions
3.1. Yeast Growth and Sugar Consumption Kinetics during Wine Fermentation
3.2. The Physicochemical Characteristics and the Volatile Compounds of Wines
3.2.1. Varietal Aroma Compounds
3.2.2. Fermentative Aroma Compounds
3.3. Sensory Evaluation of Wine Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma-a review of flavor-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; González-Viñas, M.A. Aroma characterization of red wines from cv. Bobal grape variety grown in La Mancha region. Food Res. Int. 2011, 44, 61–70. [Google Scholar] [CrossRef]
- Nykänen, L.; Nykänen, I. Production of esters by different yeast strains in sugar fermentations. J. Instit. Brew. 2013, 83, 30–31. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma precursors in grapes and wine: Flavor release during wine production and consumption. J. Agric. Food Chem. 2017, 66, 2281–2286. [Google Scholar] [CrossRef]
- Tufariello, M.; Capozzi, V.; Spano, G.; Cantele, G.; Venerito, P.; Mita, G.; Grieco, F. Effect of co-inoculation of Candida zemplinina, Saccharomyces cerevisiae and Lactobacillus plantarum for the industrial production of Negroamaro wine in Apulia (Southern Italy). Microorganisms 2020, 8, 726. [Google Scholar] [CrossRef]
- Escribano-Viana, R.; González-Arenzana, L.; Javier, P.; Patrocinio, G.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non-Saccharomyces/Saccharomyces yeasts. Food Res. Int. 2018, 112, 17–24. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Luan, Y.; Duan, C.Q.; Yan, G.L. Use of Torulaspora delbrueckii co-fermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile. Front. Microbiol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Shi, W.K.; Wang, J.; Chen, F.S.; Zhang, X.Y. Effect of Issatchenkia terricola and Pichia kudriavzevii on wine flavor and quality through simultaneous and sequential co-fermentation with Saccharomyces cerevisiae. LWT Food Sci. Technol. 2019, 116, 108477. [Google Scholar] [CrossRef]
- Mehlomakulu, N.N.; Setati, M.E.; Divol, B. Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int. J. Food Microbiol. 2014, 188, 83–91. [Google Scholar] [CrossRef]
- Villalba, M.L.; Sáez, J.S.; Monaco, S.D.; Lopes, C.A.; Sangorrín, M.P. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int. J. Food Microbiol. 2016, 217, 94–100. [Google Scholar] [CrossRef]
- Curiel, J.A.; Pilar, M.; Ramon, G.; Jordi, T. Different non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures. Front. Microbiol. 2017, 8, 2121. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Orte, P.; Cersosimo, M.; Loscos, N.; Cacho, J.; Garcia-Moruno, E.; Ferreira, V. Aroma development from non-floral grape precursors by wine Lactic acid bacteria. Food Res. Int. 2009, 42, 773–781. [Google Scholar] [CrossRef]
- Belda, I.; Navascués, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.T.; Wen, Y.; Tao, Y.S.; Lan, Y.Y. Modulating the formation of Meili wine aroma by prefermentative freezing process. J. Agric. Food Chem. 2013, 61, 1542–1553. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Peinado, R.A.; Mauricio, J.C.; Moreno, J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chem. 2006, 94, 232–239. [Google Scholar] [CrossRef]
- Lopez, R.; Ortin, N.; Pe´rez-Trujillo, J.P.; Cacho, J.; Ferreira, V. Impact odorants of different young white wines from the Canary Islands. J. Agric. Food Chem. 2003, 541, 3419–3425. [Google Scholar] [CrossRef]
- Tao, Y.S.; Li, H. Active volatiles of Cabernet Sauvignon wine from Changli County. Health 2009, 1, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Palassarou, M.; Melliou, E.; Liouni, M.; Michaelakis, A.; Balayiannis, G.; Magiatis, P. Volatile profile of greek dried white figs (Ficus carica L.) and investigation of the role of β-damascenone in aroma formation in fig liquors. J. Sci. Food Agric. 2017, 97, 5254–5270. [Google Scholar] [CrossRef]
- Etievant, P.X. Artifacts and contaminants in the analysis of food flavor. Crit. Rev. Food Sci. 1991, 36, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines. Food Chem. 2009, 117, 473–484. [Google Scholar] [CrossRef]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography−olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Tao, Y.S.; Wu, Y.; An, R.Y.; Yue, Z.Y. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Food Chem. 2017, 226, 41–50. [Google Scholar] [CrossRef]
- Sun, W.X.; Hu, K.; Zhang, J.X.; Zhu, X.L.; Tao, Y.S. Aroma modulation of Cabernet Gernischt dry red wine by optimal enzyme treatment strategy in winemaking. Food Chem. 2017, 245, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Pons, A.; Allamy, L.; Lavigne, V.; Dubourdieu, D.; Darriet, P. Study of the contribution of massoia lactone to the aroma of Merlot and Cabernet Sauvignon musts and wines. Food Chem. 2017, 232, 229–236. [Google Scholar] [CrossRef]
- Hu, K.; Zhu, X.L.; Mu, H.; Ma, Y.; Ullah, N.; Tao, Y.S. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: Its application potential in wine aroma enhancement. Lett. Appl. Microbiol. 2016, 62, 169–176. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [CrossRef]
- Hu, K.; Qin, Y.; Tao, Y.S.; Zhu, X.L.; Ullah, N. Potential of glycosidase from non-Saccharomyces isolates for enhancement of wine aroma. J. Food Sci. 2016, 81, 935–943. [Google Scholar] [CrossRef]
- San-Juan, F.; Ferreira, V.; Cacho, J.; Escudero, A. Quality and aromatic sensory descriptors (mainly fresh and dry fruit character) of Spanish red wines can be predicted from their aroma-active chemical composition. J. Agric. Food Chem. 2011, 59, 7916–7924. [Google Scholar] [CrossRef]
- Andorrà, I.; Berradre, M.; Rozès, N.; Mas, A.; Guillamón, J.M.; Esteve-Zarzoso, B. Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. Eur. Food Res. Technol. 2010, 231, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Yan, X.; Wang, Q.; Zhang, Y.; Tao, Y. Performance of selected P. fermentans and its excellular enzyme in co-inoculation with S. cerevisiae for wine aroma enhancement. LWT Food Sci. Technol. 2017, 86, 361–370. [Google Scholar] [CrossRef]
Compounds | Concentration (mg/L) | Odor Threshold (mg/L) | Sensory Description | |||
---|---|---|---|---|---|---|
SLY-4 EW | F2-24 EW | HX-13 EW | Control | |||
1-Hexanol | 0.099 ± 0.010 c | 0.079 ± 0.016 d | 0.134 ± 0.005 b | 0.195 ± 0.008 a | 8 [15] | Herbaceous, grass [15] |
2-Cyclohexenol | 0.042 ± 0.005 a | 0.034 ± 0.002 b | 0.026 ± 0.002 c | 0.023 ± 0.001 c | - | - |
(E)-3-Hexen-1-ol | 0.023 ± 0.005 c | 0.045 ± 0.001 b | 0.064 ± 0.005 a | 0.047 ± 0.009 b | 0.4 [16] | Herbaceous, green [15] |
C6 compounds | 0.164 ± 0.02 c | 0.158 ± 0.019 c | 0.224 ± 0.012 b | 0.265 ± 0.018 a | ||
Linalool | 0.040 ± 0.011 a | 0.035 ± 0.007 a | Nd | Nd | 0.025 [16] | Muscat, flowery, fruity [15] |
Citronellol | 0.143 ± 0.018 a | 0.058 ± 0.005 c | 0.081 ± 0.002 b | 0.072 ± 0.006 b,c | 0.01 [17] | Green lemon [15] |
Geraniol | 0.146 ± 0.007 a | Nd | 0.152 ± 0.022 a | Nd | 0.03 [18] | Roses, geranium [18] |
Terpenes | 0.329 ± 0.036 a | 0.093 ± 0.012 c | 0.233 ± 0.024 b | 0.072 ± 0.006 c | ||
β-Damascenone | 0.037 ± 0.000 a | 0.026 ± 0.001 b | Nd | Nd | 5*10−5 [15] | Floral, sweet, apple [15] |
C13-Norisoprenoids | 0.037 ± 0.000 a | 0.026 ± 0.001 b | Nd | Nd | ||
Benzaldehyde | Nd | Nd | 0.019 ± 0.003 b | 0.024 ± 0.002 a | 2 [15] | Bitter almond, nut [15] |
Benzyl alcohol | 0.038 ± 0.004 a | Nd | 0.041 ± 0.002 a | Nd | 200 [17] | Almond, fatty [17] |
Phenylacetaldehyde | 0.143 ± 0.005 a | 0.171 ± 0.026 a | 0.155 ± 0.045 a | 0.184 ± 0.034 a | 0.001 [16] | Rose, floral, chocolate [16] |
Acetophenone | 0.005 ± 0.000 b | Nd | 0.007 ± 0.001 a | Nd | - | - |
Phenylethyl alcohol | 26.7 ± 1.84 a | 14.9 ± 1.9 b | 10.3 ± 1.90 c | 16.6 ± 1.00 b | 14 [19] | Violet, rose, jasmine [19] |
2,4-Dimethylbenzaldehyde | 0.145 ± 0.021 a | 0.152 ± 0.013 a | 0.170 ± 0.018 a | Nd | - | - |
Phenethyl acetate | 1.30 ± 0.192 b,c | 1.08 ± 0.156 c | 1.35 ± 0.102 b | 2.22 ± 0.000 a | 0.25 [16] | Flowery, pollen, perfume [16] |
2-Phenylethyl propionate | 0.027 ± 0.001 a | 0.010 ± 0.001 b | 0.017 ± 0.006 b | 0.023 ± 0.007 a,b | - | - |
2-Phenethyl hexanoate | 0.091 ± 0.006 a | 0.030 ± 0.011 b | Nd | Nd | - | - |
Phenyl octanoate | 0.012 ± 0.003 b | 0.026 ± 0.002 a | 0.020 ± 0.003 c | Nd | - | - |
Benzene derivative | 28.45 ± 2.07 a | 16.41 ± 2.10 b | 12.1 ± 2.08 c | 19.1 ± 1.05 b | ||
Varietal aroma | 29.0 ± 2.13 a | 16.7 ± 2.14 b | 12.6 ± 2.12 c | 19.4 ± 1.07 b | ||
Isoamyl alcohol | 35.2 ± 0.063 a | 23.5 ± 1.49 d | 28.0 ± 2.27 c | 31.0 ± 1.41 b | 30 [15] | Whiskey, malt, burnt [15] |
2,3-Butanediol | 0.379 ± 0.034 a | Nd | 0.336 ± 0.035 a,b | 0.438 ± 0.017 a | 120 [19] | Butter, creamy [19] |
1-Octanol | 0.160 ± 0.011 a | 0.137 ± 0.034 a | 0.130 ± 0.009 a | Nd | 0.9 [19] | Flesh orange, rose, sweet herb [19] |
1-Decanol | 1.37 ± 0.199 a | 0.026 ± 0.002 b | 0.039 ± 0.001 b | Nd | 0.4 [16] | Orange flowery, special fatty [16] |
2-Methylcyclopentanol | 0.231 ± 0.008 a | 0.266 ± 0.108 a | Nd | Nd | - | - |
3-Methyl-1-pentanol | 0.259 ± 0.090 b | 0.569 ± 0.002 a | 0.346 ± 0.041 b | Nd | 0.5 [19] | Soil, mushroom [20] |
Higher alcohols | 37.6 ± 0.405 a | 24.5 ± 1.63 c | 28.9 ± 2.36 b | 31.4 ± 1.43 b | ||
Butanoic acid | 0.034 ± 0.016 a | 0.026 ± 0.003 a | 0.073 ± 0.089 a | Nd | 0.173 [21] | Rancid, cheese, sweat [21] |
Isobutyric acid | 0.006 ± 0.002 b | Nd | Nd | 0.104 ± 0.006 a | 2.3 [20] | Rancid, butter, cheese [19] |
Isovaleric acid | 0.322 ± 0.029 b | 0.426 ± 0.029 a | Nd | Nd | 0.033 [16] | Sweet, acid, rancid [16] |
2-Methylbutyric acid | 0.081 ± 0.000 a | 0.079 ± 0.004 a | 0.080 ± 0.021 a | Nd | 0.033 [19] | Cheese [19] |
Caproic acid | 0.315 ± 0.016 b | 0.498 ± 0.043 a | 0.268 ± 0.088 b | 0.166 ± 0.020 c | 0.42 [22] | Cheese, rancid [22] |
Octanoic acid | 1.06 ± 0.065 b | Nd | 1.55 ± 0.105 a | Nd | 0.5 [19] | Rancid, harsh, cheese, fatty acid [19] |
Decanoic acid | 0.154 ± 0.045 b | 0.294 ± 0.129 a,b | 0.279 ± 0.029 a,b | 0.427 ± 0.134 a | 1 [19] | Fatty, unpleasant [19] |
Fatty acids | 1.97 ± 0.173 a | 1.32 ± 0.208 b | 2.25 ± 0.332 a | 0.697 ± 0.16 c | ||
Ethyl propionate | 0.367 ± 0.006 b | Nd | 0.420 ± 0.010 a | Nd | 1.8 [15] | Banana, apple [15] |
Ethyl butanoate | 0.528 ± 0.020 a | 0.244 ± 0.055 c | 0.411 ± 0.037 b | Nd | 0.02 [15] | Sour fruit, strawberry [15] |
Ethyl hexanoate | 5.77 ± 0.294 a | 6.66 ± 1.662 a | 5.87 ± 1.1502 a | Nd | 0.005 [15] | Fruity, green apple, floral, violet [15] |
Ethyl heptanoate | 0.066 ± 0.015 a | 0.057 ± 0.003 a | Nd | 0.067 ± 0.022 a | 0.22 [15] | Pineapple [15] |
Diethyl succinate | 0.839 ± 0.074 b | 0.522 ± 0.054 c | 1.19 ± 0.267 a | 0.046 ± 0.012 d | 200 [19] | Light fruity [19] |
Ethyl caprylate | 12.7 ± 0.501 a | 11.1 ± 0.906 b | Nd | Nd | 0.005 [22] | Fruity, pineapple, pear, floral [22] |
Ethyl nonanoate | 0.158 ± 0.038 b | 0.257 ± 0.025 a | Nd | Nd | 1.3 [19] | Waxy, fruity [19] |
Ethylhexadec-9-enoate | 0.268 ± 0.066 b | 0.226 ± 0.017 b | 1.281 ± 0.336 a | Nd | 0.1 [19] | Green, fruity, fatty [19] |
Ethyl caprate | 7.23 ± 1.41 a | 8.78 ± 1.51 a | 8.65 ± 1.79 a | Nd | 0.5 [19] | Fruity, grape [19] |
Ethyl undecanoate | 0.030 ± 0.006 a | 0.028 ± 0.003 a | 0.031 ± 0.002 a | Nd | - | - |
Ethyl laurate | Nd | 2.10 ± 0.38 b | 3.13 ± 0.819 a | 0.180 ± 0.041 c | 1.5 [16] | Flowery, fruity [16] |
Ethyl palmitate | 0.037 ± 0.006 a | 0.044 ± 0.008 a | Nd | Nd | 1 [15] | Wax, fatty [15] |
Fatty acid ethyl esters | 28.0 ± 2.43 a | 30.0 ± 4.62 a | 21.0 ± 4.42 b | 0.293 ± 0.075 c | ||
Isoamyl acetate | 7.22 ± 1.65 a | 4.07 ± 0.489 b | 6.32 ± 0.815 a | Nd | 0.03 [15] | Fresh, banana [15] |
3-Methylpentyl acetate | 0.372 ± 0.042 a | 0.042 ± 0.003 d | 0.308 ± 0.017 b | 0.205 ± 0.017 c | - | - |
Isobutyl acetate | Nd | Nd | 0.061 ± 0.016 a | Nd | 1.6 [15] | Strawberry, fruity, flowery [19] |
Butyl acetate | Nd | 0.036 ± 0.007 a | Nd | Nd | 1.8 [23] | Pear, banana [23] |
Pentyl acetate | 0.014 ± 0.003 b | 0.217 ± 0.002 a | Nd | Nd | - | - |
Hexyl acetate | 0.060 ± 0.005 a | Nd | 0.048 ± 0.008 b | Nd | 1.5 [19] | Pleasant fruity, pear [19] |
Octyl acetate | 0.072 ± 0.004 a | 0.081 ± 0.005 a | 0.072 ± 0.010 a | 0.057 ± 0.026 a | 0.012 [15] | Fruity, fennel, sweet [15] |
Nonyl acetate | Nd | 0.021 ± 0.003 a | 0.029 ± 0.008 a | Nd | - | - |
Acetic esters | 7.74 ± 1.70 a | 4.47 ± 0.509 b | 6.84 ± 0.874 a | 0.262 ± 0.043 c | ||
Butyrolactone | Nd | Nd | 0.092 ± 0.015 b | 0.141 ± 0.003 a | - | - |
Isoamyl butyrate | 0.080 ± 0.024 a | 0.003 ± 0.000 b | 0.005 ± 0.001 b | Nd | - | - |
Methyl hexanoate | Nd | 0.005 ± 0.001 a | Nd | 0.004 ± 0.000 b | - | - |
Isobutyl hexanoate | 0.004 ± 0.001 b | 0.010 ± 0.004 a | Nd | Nd | - | - |
Isoamyl hexanoate | 0.175 ± 0.005 a | 0.182 ± 0.04 a | 0.207 ± 0.019 a | 0.166 ± 0.004 a,b | - | - |
Isobutyl caprylate | 0.127 ± 0.005 a | Nd | 0.035 ± 0.009 b | Nd | - | - |
Isoamyl caprylate | 0.323 ± 0.043 b | 0.377 ± 0.002 b | 0.625 ± 0.140 a | Nd | - | - |
Propyl decanoate | 0.011 ± 0.000 a | 0.006 ± 0.000 c | 0.009 ± 0.001 b | 0.010 ± 0.001 a | - | - |
Isoamyl dodecanoate | 3.03 ± 0.255 a | 0.163 ± 0.058 b | 0.392 ± 0.103 b | Nd | - | - |
Isoamyl laurate | 0.168 ± 0.023 a | 0.012 ± 0.001 b | 0.016 ± 0.000 b | Nd | - | - |
Methyl caprylate | 0.025 ± 0.005 b | 0.066 ± 0.017 a | 0.008 ± 0.001 c | 0.005 ± 0.000 c | 0.2 [24] | Intense citrus [24] |
Isopropyl myristate | 0.618 ± 0.035 b | 0.821 ± 0.049 a | 0.621 ± 0.066 b | 0.330 ± 0.022 c | - | - |
Other esters | 4.56 ± 0.399 a | 1.65 ± 0.172 b | 2.01 ± 0.355 b | 0.656 ± 0.030 c | ||
Esters | 40.3 ± 4.54 a | 36.2 ± 5.30 b | 29.8 ± 5.64 b | 1.21 ± 0.148 c | ||
Nonanal | 0.021 ± 0.002 a | Nd | Nd | 0.017 ± 0.002 b | 0.015 [15] | Rose, almond [15] |
Geranylacetone | 0.046 ± 0.006 a | 0.028 ± 0.002 b | 0.027 ± 0.006 b | 0.025 ± 0.003 b | - | - |
Decanal | 0.029 ± 0.008 b | 0.031 ± 0.004 a,b | 0.029 ± 0.014 b | 0.046 ± 0.004 a | 0.001 [16] | Green, fresh [16] |
2,3-Pentanedione | 0.741 ± 0.038 b | 0.929 ± 0.049 a | Nd | Nd | <0.1 [15] | Butter, cheese [15] |
3-Hydroxybutyraldehyde | 0.062 ± 0.019 a | 0.037 ± 0.016 b | Nd | Nd | - | - |
Carbonyl compounds | 0.899 ± 0.073 b | 1.03 ± 0.071 a | 0.056 ± 0.020 c | 0.088 ± 0.009 c | ||
Fermentative aroma | 80.8 ± 5.19 a | 63.0 ± 7.21 b | 61.0 ± 8.35 b | 33.4 ± 1.74 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhuo, X.; Hu, L.; Zhang, X. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines. Microorganisms 2020, 8, 953. https://doi.org/10.3390/microorganisms8060953
Zhang W, Zhuo X, Hu L, Zhang X. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines. Microorganisms. 2020; 8(6):953. https://doi.org/10.3390/microorganisms8060953
Chicago/Turabian StyleZhang, Wenxia, Xuanhan Zhuo, Lanlan Hu, and Xiuyan Zhang. 2020. "Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines" Microorganisms 8, no. 6: 953. https://doi.org/10.3390/microorganisms8060953
APA StyleZhang, W., Zhuo, X., Hu, L., & Zhang, X. (2020). Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschnikowia pulcherrima on the Flavor Complexity and Characteristics of Wines. Microorganisms, 8(6), 953. https://doi.org/10.3390/microorganisms8060953