Prevalence and Antimicrobial Susceptibility of Indicator Organisms Escherichia coli and Enterococcus spp. Isolated from U.S. Animal Food, 2005–2011
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Screen for the mcr-1 Gene in E. coli
2.5. Statistical Analysis
3. Results
3.1. Prevalence of E. coli and Enterococcus spp.
3.2. Composition of E. coli and Enterococcus Isolates
3.3. Absence of mcr-1 in E. coli
3.4. Antimicrobial Susceptibility Profiles
3.5. Multidrug Resistance
3.6. Comparison of animal feed data with NARMS 2011 Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FDA. 21 CFR Subchapter E: Animal Drugs, Feeds, and Related Products (Parts 500–599). Available online: https://www.govinfo.gov/content/pkg/CFR-2019-title21-vol6/pdf/CFR-2019-title21-vol6-chapI-subchapE.pdf (accessed on 10 February 2020).
- AAFCO. Association of American Feed Control Officials 2020 Official Publication. Available online: https://www.aafco.org/Publications (accessed on 10 February 2020).
- Plantz, B. 2019 World Feed Production Trends: Growth Continues Worldwide. Feed Strategy. 4–11 June 2019. Available online: https://www.feedstrategy.com/audience-database-taxonomy/feed-milling-manufacturing/2019-world-feed-production-trends-growth-continues-worldwide/ (accessed on 10 February 2020).
- Alltech. Alltech 2020 Global Feed Survey. Available online: https://www.alltech.com/feed-survey (accessed on 10 February 2020).
- FAO. Protein Sources for the Animal Feed Industry. Bangkok, Thailand. 2002. Available online: http://www.fao.org/docrep/007/y5019e/y5019e03.htm (accessed on 10 February 2020).
- AVMA. 2017–2018 U.S. Pet Ownership & Demographics Sourcebook. Available online: https://www.avma.org/resources-tools/reports-statistics/us-pet-ownership-statistics (accessed on 10 February 2020).
- WHO. Urgent Health Challenges for the Next Decade. 2020. Available online: https://www.who.int/news-room/photo-story/photo-story-detail/urgent-health-challenges-for-the-next-decade (accessed on 26 February 2020).
- CDC. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 26 February 2020).
- Wang, R.; van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Meinersmann, R.J.; Ladely, S.R.; Plumblee, J.R.; Cook, K.L.; Thacker, E. Prevalence of mcr-1 in the cecal contents of food animals in the United States. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Perrin-Guyomard, A.; Bruneau, M.; Houee, P.; Deleurme, K.; Legrandois, P.; Poirier, C.; Soumet, C.; Sanders, P. Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro. Surveill. 2016, 21. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Shen, Y.; Shen, J.; Wu, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect. Dis 2016, 16, 293. [Google Scholar] [CrossRef] [Green Version]
- Slettemeas, J.S.; Urdahl, A.M.; Mo, S.S.; Johannessen, G.S.; Grave, K.; Norstrom, M.; Steinbakk, M.; Sunde, M. Imported food and feed as contributors to the introduction of plasmid-mediated colistin-resistant Enterobacteriaceae to a ‘low prevalence’ country. J. Antimicrob. Chemother. 2017, 72, 2675–2677. [Google Scholar] [CrossRef]
- White, A.; Hughes, J.M. Critical importance of a one health approach to antimicrobial resistance. Ecohealth 2019, 16, 404–409. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Action Plan on Antimicrobial Resistance. 2015. Available online: https://www.who.int/publications-detail/global-action-plan-on-antimicrobial-resistance (accessed on 26 February 2020).
- White House. National Action Plan for Combating Antibiotic-Resistant Bacteria. 2015. Available online: https://obamawhitehouse.archives.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf (accessed on 26 February 2020).
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS). 2015. Available online: https://www.who.int/glass/en/ (accessed on 26 February 2020).
- FDA. The National Antimicrobial Resistance Monitoring System: NARMS Integrated Report, 2016-2017. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2016-2017-narms-integrated-summary (accessed on 26 February 2020).
- Public Health Agency of Canada. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2016 Annual Report. Available online: http://publications.gc.ca/collections/collection_2018/aspc-phac/HP2-4-2016-eng.pdf (accessed on 26 February 2020).
- Technical University of Denmark. DANMAP 2018 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. 2019. Available online: https://www.danmap.org/-/media/arkiv/projekt-sites/danmap/danmap-reports/danmap-2018/danmap_2018.pdf?la=en (accessed on 26 February 2020).
- Swedish National Veterinary Institute. Swedres-Svarm 2018: Consumption of Antibiotics and Occurrence of Antibiotic Resistance in Sweden. Available online: https://www.sva.se/en/antibiotics/antibiotics/svarm-resistance-monitoring/swedres-svarm-reports/swedres-svarm-summary-2018/ (accessed on 26 February 2020).
- EFSA. The European Union One Health 2018 zoonoses report. EFSA J. 2019, 17, 5926. [Google Scholar]
- EFSA. Microbiological risk assessment in feedingstuffs for food-producing animals - Scientific Opinion of the Panel on Biological Hazards. EFSA J. 2008, 720, 1–84. [Google Scholar]
- WHO. Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach. 2017. Available online: https://www.who.int/foodsafety/publications/agisar_guidance2017/en/ (accessed on 26 February 2020).
- Ge, B.; LaFon, P.C.; Carter, P.J.; McDermott, S.D.; Abbott, J.; Glenn, A.; Ayers, S.L.; Friedman, S.L.; Paige, J.C.; Wagner, D.D.; et al. Retrospective analysis of Salmonella, Campylobacter, Escherichia coli, and Enterococcus in animal feed ingredients. Foodborne Pathog. Dis. 2013, 10, 684–691. [Google Scholar] [CrossRef]
- FDA. Feed Contaminants Program. Available online: https://www.fda.gov/media/74766/download (accessed on 9 March 2020).
- FDA. Biological Hazards. Available online: https://www.fda.gov/animal-veterinary/biological-chemical-and-physical-contaminants-animal-food/biological-hazards (accessed on 9 March 2020).
- Li, X.; Bethune, L.A.; Jia, Y.; Lovell, R.A.; Proescholdt, T.A.; Benz, S.A.; Schell, T.C.; Kaplan, G.; McChesney, D.G. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility. Foodborne Pathog. Dis. 2012, 9, 692–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Investigations Operations Manual. Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-references/investigations-operations-manual (accessed on 9 March 2020).
- Feng, P.; Weagant, S.D.; Grant, M.A.; Burkhardt, W. Bacteriological Analytical Manual. Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-4-enumeration-escherichia-coli-and-coliform-bacteria (accessed on 9 March 2020).
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a genus- and species-specific multiplex PCR for identification of enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition (M7-A9). Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. Available online: https://clsi.org/standards/products/microbiology/documents/m07/ (accessed on 9 March 2020).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 30th Edition (M100-S30). Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 9 March 2020).
- FDA/CDC/USDA. NARMS Integrated Reports/Summaries. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/integrated-reportssummaries (accessed on 9 March 2020).
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 9 March 2020).
- Singh, K.V.; Weinstock, G.M.; Murray, B.E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 2002, 46, 1845–1850. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, S.N.; Carattoli, A.; Tinguely, R.; Lupo, A.; Perreten, V.; Endimiani, A. High prevalence of extended-spectrum beta-lactamase, plasmid-mediated AmpC, and carbapenemase genes in pet food. Antimicrob. Agents Chemother. 2014, 58, 6320–6323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Domesle, K.J.; Wang, F.; Ge, B. Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time. BMC Microbiol. 2016, 16, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynn, T.V.; Hancock, D.D.; Besser, T.E.; Harrison, J.H.; Rice, D.H.; Stewart, N.T.; Rowan, L.L. The occurrence and replication of Escherichia coli in cattle feeds. J. Dairy Sci. 1998, 81, 1102–1108. [Google Scholar] [CrossRef]
- Dargatz, D.A.; Strohmeyer, R.A.; Morley, P.S.; Hyatt, D.R.; Salman, M.D. Characterization of Escherichia coli and Salmonella enterica from cattle feed ingredients. Foodborne Pathog. Dis. 2005, 2, 341–347. [Google Scholar] [CrossRef] [Green Version]
- da Costa, P.M.; Oliveira, M.; Bica, A.; Vaz-Pires, P.; Bernardo, F. Antimicrobial resistance in Enterococcus spp. and Escherichia coli isolated from poultry feed and feed ingredients. Vet. Microbiol. 2007, 120, 122–131. [Google Scholar] [CrossRef]
- Kinley, B.; Rieck, J.; Dawson, P.; Jiang, X. Analysis of Salmonella and enterococci isolated from rendered animal products. Can. J. Microbiol. 2010, 56, 65–73. [Google Scholar] [CrossRef]
- Tyson, G.H.; Nyirabahizi, E.; Crarey, E.; Kabera, C.; Lam, C.; Rice-Trujillo, C.; McDermott, P.F.; Tate, H. Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Hofacre, C.L.; White, D.G.; Maurer, J.J.; Morales, C.; Lobsinger, C.; Hudson, C. Characterization of antibiotic-resistant bacteria in rendered animal products. Avian. Dis. 2001, 45, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Kidd, R.S.; Rossignol, A.M.; Gamroth, M.J. Salmonella and other Enterobacteriaceae in dairy-cow feed ingredients: Antimicrobial resistance in western Oregon. J. Environ. Health 2002, 64, 9–16. [Google Scholar] [PubMed]
- FDA. 21 CFR Part 507: Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for Food for Animals. Available online: https://www.ecfr.gov/cgi-bin/text-idx?SID=2dae3ed6aff60a1d08b2c1e418057788&mc=true&node=pt21.6.507&rgn=div5 (accessed on 20 May 2020).
- FDA. Guide for Industry #209: The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals. Available online: https://www.fda.gov/media/79140/download (accessed on 20 May 2020).
Animal Food Category/Type | No. of Samples | No. (%) of Positive Samples | ||
---|---|---|---|---|
E. coli | Enterococcus | Both | ||
Animal Feed (all) | 378 | 106 (28.0)A | 266 (70.4)A | 98 (25.9)A |
Ingredients | 113 | 33 (29.2)ab | 61 (54.0)b | 26 (23.0)b |
Animal Feed (for unspecified animal species) | 80 | 15 (18.8)b | 52 (65.0)ab | 14 (17.5)b |
Poultry Feed | 65 | 22 (33.8)ab | 56 (86.2)a | 22 (33.8)ab |
Cattle Feed | 61 | 28 (45.9)a | 52 (85.2)a | 28 (45.9)a |
Feed for Minor Species | 31 | 3 (9.7)b | 22 (71.0)ab | 3 (9.7)b |
Swine Feed | 12 | 3 (25.0)ab | 10 (83.3)ab | 3 (25.0)ab |
Horse Feed | 8 | 0 (0)ab | 6 (75.0)ab | 0 (0)ab |
Medicated Feed | 8 | 2 (25.0)ab | 7 (87.5)ab | 2 (25.0)ab |
Pet Food (all) | 647 | 22 (3.4)B | 197 (30.4)B | 17 (2.6)B |
Pet Food/Treats | 564 | 20 (3.5)a | 182 (32.3)a | 15 (2.7)a |
Supplements for Pets | 83 | 2 (2.4)a | 15 (18.1)b | 2 (2.4)a |
Total | 1025 | 128 (12.5) | 463 (45.2) | 115 (11.2) |
Antimicrobial Class | Antimicrobial Agent | Resistant Breakpoint (μg/mL) | No. (%) of Resistant Isolates | ||
---|---|---|---|---|---|
All (n = 241) | Animal Feed (n = 200) | Pet Food (n = 41) | |||
Aminoglycosides | Amikacin | ≥ 64 | 0 (0) | 0 (0) | 0 (0) |
Gentamicin | ≥ 16 | 0 (0) | 0 (0) | 0 (0) | |
Kanamycin | ≥ 64 | 2 (0.8) | 1 (0.5)A | 1 (2.4)A | |
Streptomycin | ≥ 64 | 11 (4.6) | 7 (3.5)A | 4 (9.8)A | |
Β-Lactam/β-Lactamase Inhibitor Combinations | Amoxicillin-Clavulanic Acid | ≥ 32/16 | 1 (0.4) | 0 (0)B | 1 (2.4)A |
Cephems | Cefoxitin | ≥ 32 | 1 (0.4) | 0 (0)B | 1 (2.4)A |
Ceftiofur | ≥ 8 | 0 (0) | 0 (0) | 0 (0) | |
Ceftriaxone | ≥ 4 | 0 (0) | 0 (0) | 0 (0) | |
Folate Pathway Inhibitors | Sulfisoxazole | ≥ 512 | 7 (2.9) | 6 (3)A | 1 (2.4)A |
Trimethoprim-Sulfamethoxazole | ≥ 4/76 | 2 (0.8) | 2 (1)A | 0 (0)A | |
Penicillins | Ampicillin | ≥ 32 | 7 (2.9) | 6 (3)A | 1 (2.4)A |
Phenicols | Chloramphenicol | ≥ 32 | 0 (0) | 0 (0) | 0 (0) |
Quinolones | Ciprofloxacin | ≥ 1 | 2 (0.8) | 2 (1)A | 0 (0)A |
Nalidixic Acid | ≥ 32 | 2 (0.8) | 2 (1)A | 0 (0)A | |
Tetracyclines | Tetracycline | ≥ 16 | 27 (11.2) | 23 (11.5)A | 4 (9.8)A |
Antimicrobial Class | Antimicrobial Agent | Resistant Breakpoint (μg/mL) | No. (%) of Resistant Isolates | ||
---|---|---|---|---|---|
All (n = 1074) | Animal Feed (n = 622) | Pet Food (n = 452) | |||
Aminoglycosides | Gentamicin | > 500 | 0 | 0 | 0 |
Kanamycin | ≥ 1024 | 21 (2.0) | 10 (1.6)A | 11 (2.4)A | |
Streptomycin | > 1000 | 16 (1.5) | 11 (1.8)A | 5 (1.1)A | |
Glycopeptides | Vancomycin | ≥ 32 | 0 | 0 | 0 |
Glycylcyclines | Tigecycline | ≥ 0.5 | 0 | 0 | 0 |
Lipopeptides | Daptomycin | ≥ 8 | 13 (1.2) | 6 (1.0)A | 7 (1.5)A |
Macrolides | Erythromycin | ≥ 8 | 73 (6.8) | 44 (7.1)A | 29 (6.4)A |
Tylosin | ≥ 32 | 41 (3.8) | 29 (4.7)A | 12 (2.7)A | |
Nitrofurans | Nitrofurantoin | ≥ 128 | 0 | 0 | 0 |
Oxazolidinones | Linezolid | ≥ 8 | 0 | 0 | 0 |
Penicillins | Penicillin | ≥ 16 | 9 (0.8) | 5 (0.8)A | 4 (0.9)A |
Phenicols | Chloramphenicol | ≥ 32 | 2 (0.2) | 2 (0.3)A | 0A |
Quinolones | Ciprofloxacin | ≥ 4 | 115 (10.7) | 60 (9.6)A | 55 (12.2)A |
Streptogramins | Quinupristin/Dalfopristin | ≥ 4 | 101 (9.5) | 69 (11.1)A | 32 (7.1)B |
Tetracyclines | Tetracycline | ≥ 16 | 323 (30.1) | 180 (28.9)A | 143 (31.6)A |
No. of Antimicrobial Classes Resistant to | Resistance Pattern | Year | Animal Food Type |
---|---|---|---|
3 | AMP-STR-TET | 2006 | Cattle feed |
2010 | Ingredient | ||
FIS-STR-TET | 2010 | Ingredient | |
FIS-[KAN-STR]-TET | 2007 | Pet food | |
2010 | Cattle feed | ||
4 | AMC-AMP-FOX-STR | 2006 | Pet food |
AMP-[COT-FIS]-STR-TET | 2010 | Animal feed (for unspecified animal species) | |
2010 | Animal feed (for unspecified animal species) |
No. of Antimicrobial Classes Resistant to | Resistance Pattern | Year | Animal Food Type |
---|---|---|---|
4 | CIP-PEN-QDA-TET | 2006 | Pet food |
2006 | Pet food | ||
ERY-KAN-QDA-TET | 2009 | Pet food | |
CIP-[ERY-TYL]-STR-TET | 2006 | Poultry feed | |
[ERY-TYL]-[KAN-STR]-QDA-TET | 2010 | Feed for minor species | |
2011 | Animal feed (for unspecified animal species) | ||
5 | CIP-DAP-ERY-QDA-TET | 2009 | Pet food |
2009 | Pet food | ||
CHL-[ERY-TYL]-QDA-STR-TET | 2005 | Swine feed | |
CIP-[ERY-TYL]-[KAN-STR]-QDA-TET | 2009 | Feed for minor species |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, B.; Domesle, K.J.; Gaines, S.A.; Lam, C.; Bodeis Jones, S.M.; Yang, Q.; Ayers, S.L.; McDermott, P.F. Prevalence and Antimicrobial Susceptibility of Indicator Organisms Escherichia coli and Enterococcus spp. Isolated from U.S. Animal Food, 2005–2011. Microorganisms 2020, 8, 1048. https://doi.org/10.3390/microorganisms8071048
Ge B, Domesle KJ, Gaines SA, Lam C, Bodeis Jones SM, Yang Q, Ayers SL, McDermott PF. Prevalence and Antimicrobial Susceptibility of Indicator Organisms Escherichia coli and Enterococcus spp. Isolated from U.S. Animal Food, 2005–2011. Microorganisms. 2020; 8(7):1048. https://doi.org/10.3390/microorganisms8071048
Chicago/Turabian StyleGe, Beilei, Kelly J. Domesle, Stuart A. Gaines, Claudia Lam, Sonya M. Bodeis Jones, Qianru Yang, Sherry L. Ayers, and Patrick F. McDermott. 2020. "Prevalence and Antimicrobial Susceptibility of Indicator Organisms Escherichia coli and Enterococcus spp. Isolated from U.S. Animal Food, 2005–2011" Microorganisms 8, no. 7: 1048. https://doi.org/10.3390/microorganisms8071048
APA StyleGe, B., Domesle, K. J., Gaines, S. A., Lam, C., Bodeis Jones, S. M., Yang, Q., Ayers, S. L., & McDermott, P. F. (2020). Prevalence and Antimicrobial Susceptibility of Indicator Organisms Escherichia coli and Enterococcus spp. Isolated from U.S. Animal Food, 2005–2011. Microorganisms, 8(7), 1048. https://doi.org/10.3390/microorganisms8071048