Tick-Borne Encephalitis Virus and Its European Distribution in Ticks and Endothermic Mammals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tick-Borne Encephalitis Virus Detections in Ticks and Endothermic Mammals
2.2. Environmental Variables
2.3. Random Forests Model
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindquist, L.; Vapalahti, O. Tick-borne encephalitis. Lancet 2008, 371, 1861–1871. [Google Scholar] [CrossRef]
- Beauté, J.; Spiteri, G.; Warns-Petit, E.; Zeller, H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018, 23, 1800201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Růžek, D.; Avšič-Županc, T.; Borde, J.; Chrdle, A.; Eyer, L.; Karganova, G.; Kholodilov, I.; Knap, N.; Kozlovskaya, L.; Matveev, A.; et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019, 164, 23–51. [Google Scholar] [CrossRef] [PubMed]
- EU Commission. Commission Implementing Decision 2012/506/EU of 8 August 2012 amending Decision 2002/253/EC laying down case definitions for reporting communicable diseases to the Community network under Decision No 2119/98/EC of the European Parliament and of the Council. Off. J. Eur. Union 2012, L262, 57. [Google Scholar]
- Pfizer Germany GmbH. TBE in Europe. 2019. Available online: https://www.zecken.de/en/tbe-europe (accessed on 1 October 2019).
- Dobler, G.; Erber, W.; Bröker, M.; Schmitt, H.J. (Eds.) Tick-Borne Encephalitis (TBE)—The Book, 2nd ed.; Global Health Press Pte Ltd.: Singapore, 2019. [Google Scholar]
- Robert Koch-Institut. [FSME: Risikogebiete in Deutschland (Stand: Januar 2020)], in German. Epid. Bull. 2020, 8, 3–19. [Google Scholar] [CrossRef]
- Robert Koch-Institute. SurvStat@RKI 2.0. 2020. Available online: https://survstat.rki.de (accessed on 12 June 2020).
- Hosseini, P.R.; Mills, J.N.; Prieur-Richard, A.H.; Ezenwa, V.O.; Bailly, X.; Rizzoli, A.; Suzán, G.; Vittecoq, M.; García-Peña, G.E.; Daszak, P.; et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B 2017, 372, 20160129. [Google Scholar] [CrossRef]
- Zeimes, C.B.; Olsson, G.E.; Hjertqvist, M.; Vanwambeke, S.O. Shaping zoonosis risk: Landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasit. Vectors 2014, 7, 370. [Google Scholar] [CrossRef] [Green Version]
- Keukeleire, M.D.; Vanwambeke, S.O.; Somassè, E.; Kabamba, B.; Luyasu, V.; Robert, A. Scouts, forests, and ticks: Impact of landscapes on human-tick contacts. Ticks Tick-Borne Dis. 2015, 6, 636–644. [Google Scholar] [CrossRef]
- Busby, J.R. A biogeoclimatic analysis of Nothofagus cunninghamii (Hook.) Oerst. in southeastern Australia. Austral Ecol. 1986, 11, 1–7. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araú, M.B. Ecological Niches and Geographic Distributions, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Peterson, A.T. Ecologic niche modeling and spatial patterns of disease transmission. Emerg. Infect. Dis. 2006, 12, 1822–1826. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; Belkhiria, J.; Napp, S.; Cano-Terriza, D.; Jiménez-Ruiz, S.; Martínez-López, B. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound. Emerg. Dis. 2017, 65, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Brugger, K.; Rubel, F. Usutu virus induced mass mortalities of songbirds in Central Europe: Are habitat models suitable to predict dead birds in unsampled regions? Prev. Vet. Med. 2018, 159, 162–170. [Google Scholar] [CrossRef]
- Nsoesie, E.O.; Kraemer, M.U.; Golding, N.; Pigott, D.M.; Brady, O.J.; Moyes, C.L.; Johansson, M.A.; Gething, P.W.; Velayudhan, R.; Khan, K.; et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill. 2016, 21, 30234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melaun, C.; Werblow, A.; Cunze, S.; Zotzmann, S.; Koch, L.K.; Mehlhorn, H.; Dörge, D.D.; Huber, K.; Tackenberg, O.; Klimpel, S. Modeling of the putative distribution of the arbovirus vector Ochlerotatus japonicus japonicus (Diptera: Culicidae) in Germany. Parasitol. Res. 2015, 114, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Brugger, K.; Rubel, F. The ecological niche of Dermacentor marginatus in Germany. Parasitol. Res. 2016, 115, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, R.; Siljander, M.; Dub, T.; Sane, J.; Sormunen, J.J.; Pellikka, P.; Vapalahti, O. Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland. Ticks Tick-Borne Dis. 2020, 11, 101457. [Google Scholar] [CrossRef]
- Walter, M.; Brugger, K. Habitatmodellierung für das FSME-Virus in Deutschland. In FSME in Deutschland: Stand der Wissenschaft; Rubel, F., Schiffner-Rohe, J., Eds.; DeutscherWissenschafts-Verlag: Baden-Baden, Germany, 2019; pp. 229–241. (In German) [Google Scholar]
- Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014, 186, 20–31. [Google Scholar] [CrossRef]
- Ergunay, K.; Tkachev, S.; Kozlova, I.; Růžek, D. A review of methods for detecting tick-borne encephalitis virus infection in tick, animal, and human specimens. Vector-Borne Zoonotic Dis. 2016, 16, 4–12. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Samy, A.M.; Peterson, A.T. Climate change influences on the global potential distribution of bluetongue virus. PLoS ONE 2016, 11, e0150489. [Google Scholar] [CrossRef]
- European Space Agency. GlobCover 2009 (Global Land Cover Map). 2010. Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 12 June 2020).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Mason, S.J.; Graham, N.E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002, 128, 2145–2166. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org (accessed on 12 June 2020).
- Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Forrest, D.; Ghosh, A.; et al. raster: Geographic Data Analysis and Modeling. 2020. Available online: http://cran.at.r-project.org/package=raster (accessed on 12 June 2020).
- Liaw, A.; Wiener, M. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. 2018. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 12 June 2020).
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P.; Bjornson, R.; Weston, S. spThin: Functions for Spatial Thinning of Species Occurrence Records for Use in Ecological Models. 2019. Available online: https://cran.r-project.org/web/packages/spThin/index.html (accessed on 12 June 2020).
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Eisen, R.J.; Eisen, L.; Girard, Y.A.; Fedorova, N.; Mun, J.; Slikas, B.; Leonhard, S.; Kitron, U.; Lane, R.S. A spatially-explicit model of acarological risk of exposure to Borrelia burgdorferi-infected Ixodes pacificus nymphs in northwestern California based on woodland type, temperature, and water vapor. Ticks Tick-Borne Dis. 2010, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Hönig, V.; Švec, P.; Marek, L.; Mrkvička, T.; Dana, Z.; Wittmann, M.; Masař, O.; Szturcová, D.; Růžek, D.; Pfister, K.; et al. Model of risk of exposure to Lyme borreliosis and tick-borne encephalitis virus-infected ticks in the border area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). Int. J. Environ. Res. Public Health 2019, 16, 1173. [Google Scholar] [CrossRef] [Green Version]
- EU. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Off. J. 2016, L119, 156. [Google Scholar]
- Radda, A. [Populationsstudien an Rötelmäusen (Clethrionomys glareolus Schreber, 1780) durch Markierungsfang in Niederösterreich], in German. Oecologia 1968, 1, 219–235. [Google Scholar] [CrossRef]
- Lovari, S.; Serrao, G.; Mori, E. Woodland features determining home range size of roe deer. Behav. Process. 2017, 140, 115–120. [Google Scholar] [CrossRef]
- de Graaf, J.A.; Reimerink, J.H.J.; Voorn, G.P.; bij de Vaate, E.A.; de Vries, A.; Rockx, B.; Schuitemaker, A.; Hira, V. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Euro Surveill. 2016, 21, 30318. [Google Scholar] [CrossRef] [PubMed]
- Jaenson, T.G.T.; Petersson, E.H.; Jaenson, D.G.E.; Kindberg, J.; Pettersson, J.H.O.; Hjertqvist, M.; Medlock, J.M.; Bengtsson, H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasit. Vectors 2018, 11, 477. [Google Scholar] [CrossRef]
- Erber, W.; Schmitt, H.J. Self-reported tick-borne encephalitis (TBE) vaccination coverage in Europe: Results from a cross-sectional study. Ticks Tick-Borne Dis. 2018, 9, 768–777. [Google Scholar] [CrossRef]
- Rubel, F.; Walter, M.; Vogelgesang, J.R.; Brugger, K. Tick-borne encephalitis (TBE) cases are not random: Explaining trend, low- and high-frequency oscillations based on the Austrian TBE time series. BMC Infect. Dis. 2020, 20. [Google Scholar] [CrossRef]
- Rubel, F.; Brugger, K. Tick-borne encephalitis incidence forecasts for Austria, Germany, and Switzerland. Ticks Tick Borne Dis. 2020, 11, 101437. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Epidemiological Situation of Tick-Borne Encephalitis in the European Union and European Free Trade Association Countries; ECDC: Stockholm, Sweden, 2012. [CrossRef]
- Boehnke, D.; Brugger, K.; Pfäffle, M.; Sebastian, P.; Norra, S.; Petney, T.N.; Oehme, R.; Littwin, N.; Lebl, K.; Raith, J.; et al. Estimating Ixodes ricinus densities on the landscape scale. Int. J. Health Geogr. 2015, 14. [Google Scholar] [CrossRef] [Green Version]
- Brugger, K.; Boehnke, D.; Petney, T.N.; Dobler, G.; Pfeffer, M.; Silaghi, C.; Schaub, G.A.; Pinior, B.; Dautel, H.; Kahl, O.; et al. A density map of the tick-borne encephalitis and Lyme borreliosis vector Ixodes ricinus (Acari: Ixodidae) for Germany. J. Med. Entomol. 2016, 53, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
Bioclimatic Variables | Abbr. | Min. | Median | Max. | Unit |
---|---|---|---|---|---|
Mean annual temperature | bio01 | 2.9 | 8.3 | 13.0 | °C |
Mean diurnal temperature range | bio02 | 4.7 | 8.0 | 11.2 | °C |
Isothermality | bio03 | 20.9 | 29.7 | 36.0 | °C |
Temperature seasonality | bio04 | 488.5 | 701.6 | 868.4 | °C |
Annual precipitation | bio12 | 483.0 | 710.0 | 3451.0 | mm/a |
Precipitation seasonality | bio15 | 8.8 | 26.6 | 49.3 | mm/a |
Class | GlobCover Global Legend | Value |
---|---|---|
(A) | Post-flooding or irrigated croplands | 11 |
Rainfed croplands | 14 | |
Mosaic cropland (50–70%)/vegetation (grassland, shrubland, forest) (20–50%) | 20 | |
Mosaic vegetation (grassland, shrubland, forest) (50–70%)/cropland (20–50%) | 30 | |
(B) | Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m) | 40 |
Closed (>40%) broadleaved deciduous forest (>5 m) | 50 | |
Open (15–40%) broadleaved deciduous forest (>5 m) | 60 | |
(C) | Closed (>40%) needleleaved evergreen forest (>5 m) | 70 |
Open (15–40%) needleleaved deciduous or evergreen forest (>5 m) | 90 | |
(M) | Closed to open (>15%) mixed broadleaved and needleleaved forest (>5 m) | 100 |
Mosaic forest/shrubland (50–70%)/grassland (20–50%) | 110 | |
(V) | Mosaic grassland (50–70%)/forest/shrubland (20–50%) | 120 |
Closed to open (>15%) shrubland (<5 m) | 130 | |
Closed to open (>15%) grassland | 140 | |
Sparse (>15%) vegetation (woody vegetation, shrubs, grassland) | 150 | |
Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged soil – Fresh, brackish or saline water | 180 | |
(U) | Artificial surfaces and associated areas (urban areas >50%) | 190 |
(X) | Bare areas | 200 |
Water bodies | 210 | |
Permanent snow and ice | 220 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, M.; Vogelgesang, J.R.; Rubel, F.; Brugger, K. Tick-Borne Encephalitis Virus and Its European Distribution in Ticks and Endothermic Mammals. Microorganisms 2020, 8, 1065. https://doi.org/10.3390/microorganisms8071065
Walter M, Vogelgesang JR, Rubel F, Brugger K. Tick-Borne Encephalitis Virus and Its European Distribution in Ticks and Endothermic Mammals. Microorganisms. 2020; 8(7):1065. https://doi.org/10.3390/microorganisms8071065
Chicago/Turabian StyleWalter, Melanie, Janna R. Vogelgesang, Franz Rubel, and Katharina Brugger. 2020. "Tick-Borne Encephalitis Virus and Its European Distribution in Ticks and Endothermic Mammals" Microorganisms 8, no. 7: 1065. https://doi.org/10.3390/microorganisms8071065
APA StyleWalter, M., Vogelgesang, J. R., Rubel, F., & Brugger, K. (2020). Tick-Borne Encephalitis Virus and Its European Distribution in Ticks and Endothermic Mammals. Microorganisms, 8(7), 1065. https://doi.org/10.3390/microorganisms8071065