Endophytic Fungi of Olive Tree
Abstract
:1. Introduction
2. Relevance of Microorganisms for a Sustainable Management in Olive Growing
3. Occurrence and Ecological Implications of Endophytic Fungi of Olive Tree
3.1. Endophytic Fungi as Plant Disease Agents
3.2. Endophytic Fungi as Mutualists
3.3. Endophytic Fungi as Neutral Associates
4. Biochemical Properties and Possible Biotechnological Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hirakue, A.; Sugiyama, S. Relationship between foliar endophytes and apple cultivar disease resistance in an organic orchard. Biol. Control 2018, 127, 139–144. [Google Scholar] [CrossRef]
- Zornoza, R.; Mataix-Solera, J.; Guerrero, C.; Arcenegui, V.; Mataix-Beneyto, J. Comparison of soil physical, chemical, and biochemical properties among native forest, maintained and abandoned almond orchards in mountainous areas of Eastern Spain. Arid Land Res. Manag. 2009, 23, 267–282. [Google Scholar] [CrossRef]
- Palese, A.M.; Magno, R.; Casacchia, T.; Curci, M.; Baronti, S.; Miglietta, F.; Crecchio, C.; Xiloyannis, C.; Sofo, A. Chemical, biochemical and microbiological properties of soils from abandoned and extensively cultivated olive orchards. Sci. World J. 2013, 496278. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, C.P.; Singh, K.P. Crop productivity and soil fertility in a tropical dryland agro-ecosystem: Impact of residue and tillage management. Exp. Agric. 2005, 41, 39–50. [Google Scholar] [CrossRef]
- Govaerts, B.; Mezzalama, M.; Sayre, K.D.; Crossa, J.; Lichter, K.; Troch, V.; Vanherck, K.; De Corte, P.; Deckers, J. Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl. Soil Ecol. 2008, 38, 197–210. [Google Scholar] [CrossRef]
- Di Vaio, C.; Marallo, N.; Marino, G.; Caruso, T. Effect of water stress on dry matter accumulation and partitioning in pot-grown olive trees (cv Leccino and Racioppella). Sci. Hortic. 2013, 164, 172–177. [Google Scholar] [CrossRef]
- Cirillo, C.; Russo, R.; Famiani, F.; Di Vaio, C. Investigation on rooting ability of twenty olive cultivars from Southern Italy. Adv. Hortic. Sci. 2017, 31, 311–317. [Google Scholar]
- Benitez, E.; Nogales, R.; Campos, M.; Ruano, F. Biochemical variability of olive-orchard soils under different management systems. Appl. Soil Ecol. 2006, 32, 221–231. [Google Scholar] [CrossRef]
- Sofo, A.; Ciarfaglia, A.; Scopa, A.; Camele, I.; Curci, M.; Crecchio, C.; Xiloyannis, C.; Palese, A.M. Soil microbial diversity and activity in a Mediterranean olive orchard managed by a set of sustainable agricultural practices. Soil Use Manag. 2014, 30, 160–167. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Valverde-Corredor, A.; Gómez-Lama Cabanás, C.; Sesmero, R.; Mercado-Blanco, J. What lies beneath: Root-associated bacteria to improve the growth and health of olive trees. In Soil Biological Communities and Ecosystem Resilience; Lukac, M., Grenni, P., Gamboni, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 107–122. [Google Scholar]
- IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Sofo, A.; Manfreda, S.; Dichio, B.; Fiorentino, M.; Xiloyannis, C. The olive tree: A paradigm for drought tolerance in Mediterranean climates. Hydrol. Earth Syst. Sci. 2008, 12, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, D.K. Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl. Microbiol. Biotechnol. 2012, 96, 1137–1155. [Google Scholar] [CrossRef] [PubMed]
- Bizos, G.; Papatheodorou, E.M.; Chatzistathis, T.; Ntalli, N.; Aschonitis, V.G.; Monokrousos, N. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.). Plants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Lata, R.; Chowdhury, S.; Gond, S.; White, J.F. Induction of abiotic stress tolerance in plants by endophytic microbes. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial effects of endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef]
- Kasotia, A.; Choundhary, D.K. Role of endophytic microbes in mitigation of abiotic stress in plants. In Emerging Technologies and Management of Crop Stress Tolerance; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 97–108. [Google Scholar]
- Dini, I.; Graziani, G.; Gaspari, A.; Fedele, F.L.; Sicari, A.; Vinale, F.; Cavallo, P.; Lorito, M.; Ritieni, A. New strategies in the cultivation of olive trees and repercussions on the nutritional value of the extra virgin olive oil. Molecules 2020, 25, 2345. [Google Scholar] [CrossRef]
- Fa, A.N. Endophytic fungi for sustainable agriculture. Microb. Biosyst. 2019, 4, 31–44. [Google Scholar]
- Stielow, J.B.; Levesque, C.A.; Seifert, K.A.; Meyer, W.; Iriny, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015, 35, 242–263. [Google Scholar] [CrossRef] [Green Version]
- Vergine, M.; Meyer, J.B.; Cardinale, M.; Sabella, E.; Hartmann, M.; Cherubini, P.; De Bellis, L.; Luvisi, A. The Xylella fastidiosa-resistant olive cultivar “Leccino” has stable endophytic microbiota during the olive quick decline syndrome (OQDS). Pathogens 2020, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Fernández-González, A.J.; Villadas, P.J.; Cabanás, C.G.L.; Valverde-Corredor, A.; Belaj, A.; Mercado-Blanco, J.; Fernández-López, M. Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Sci. Rep. 2019, 9, 20423. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, V.; Conigliaro, G.; Torta, L.; Burruano, S.; Moschetti, G. Preliminary investigation on the endophytic communities in Olea europaea in Sicily. In Proceedings of the 7th International Conference Integrated Fruit Production, Avignon, France, 27–30 October 2008; pp. 459–463. [Google Scholar]
- Martins, F.; Pereira, J.A.; Bota, P.; Bento, A.; Baptista, P. Fungal endophyte communities in above-and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol. 2016, 20, 193–201. [Google Scholar] [CrossRef]
- Malhadas, C.; Malheiro, R.; Pereira, J.A.; de Pinho, P.G.; Baptista, P. Antimicrobial activity of endophytic fungi from olive tree leaves. World J. Microbiol. Biotechnol. 2017, 33, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Materatski, P.; Varanda, C.; Carvalho, T.; Bento Dias, A.; Campos, M.D.; Rei, F.; Félix, M.R. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biol. 2019, 123, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Pereira, J.A.; Lino-Neto, T.; Bennett, A.E.; Baptista, P. Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype. Sci. Rep. 2019, 9, 5882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preto, G.; Martins, F.; Pereira, J.A.; Baptista, P. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. Biol. Control 2017, 110, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.; Pereira, J.A.; Benhadi, J.; Lino-Neto, T.; Baptista, P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb. Ecol. 2018, 36, 668–679. [Google Scholar] [CrossRef] [Green Version]
- Fisher, P.J.; Petrini, O.; Petrini, L.E.; Descals, E. A preliminary study of fungi inhabiting xylem and whole stems of Olea europaea. Sydowia 1992, 44, 117–121. [Google Scholar]
- Landum, M.C.; Félix, M.R.; Alho, J.; Garcia, R.; Cabrita, M.J.; Rei, F.; Varanda, C.M. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiol. Res. 2016, 183, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Varanda, C.M.; Materatski, P.; Landum, M.; Campos, M.D.; Félix, M.D.R. Fungal communities associated with peacock and cercospora leaf spots in olive. Plants 2019, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- de Freitas Sia, E.; Marcon, J.; Mazzer Luvizotto, D.; Quecine, M.C.; Tsui, S.; Pereira, J.O.; Pizzirani-Kleiner, A.A.; Azevedo, J.L. Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source. SpringerPlus 2013, 2, 579. [Google Scholar]
- Martins, F.; Pereira, J.A.; Baptista, P. Dynamics of fungal endophytes over different phenological stages of the olive tree host. In Proceedings of the 15th Congress of the Mediterranean Phytopathological Union, Cordoba, Spain, 20–23 June 2017. [Google Scholar]
- Hanani, A.; Valentini, F.; Sanzani, S.M.; Gallo, M.; Davino, S.-W.; D’Onghia, A.M. Assessment of the endophytic fungal community in Apulian olive varieties with different potential susceptibilities to Xylella fastidiosa. J. Plant Pathol. 2019, 101, 811. [Google Scholar]
- Mady, M.S.; Houssen, W.; Abdou, R.; Haggag, E.G.; El Sayed, K.A. Breast cancer migration and proliferation inhibitory and antibiotic secondary metabolites from the Egyptian olive tree endophytic fungus Penicillium citrinum. J. Advan. Pharm. Res. 2017, 1, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Oražem, P.; Celar, F.A.; Bohanec, B. Occurrence of endophytic fungi causing recalcitrance of olive cultivar ‘Istrska belica’ during shoot culture establishment. Arch. Biol. Sci. 2016, 68, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Agosteo, G.E.; Macrì, C.; Taccone, P. Susceptibility of olive cv Itrana to anthracnose. J. Plant Pathol. 2005, 87, 287. [Google Scholar]
- Liarzi, O.; Bar, E.; Lewinsohn, E.; Ezra, D. Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS ONE 2016, 11, e0168242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, F.; Pereira, J.A.; Bento, A.; Baptista, P. Potentialities of endophytic fungi of olive tree as biological control agents against Colletotrichum acutatum and Verticillium dahliae. In Endophytes for Plant Protection: The State of the Art; Schneider, C., Leifert, C., Feldmann, F., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2013; p. 190. [Google Scholar]
- Nicoletti, R.; Rinaldi, R. Indagine sulla micoflora del filloplano dell’olivo. Riv. Patol. Veg. 1993, 3, 41–47. [Google Scholar]
- Mady, M.S.; Mohyeldin, M.M.; Ebrahim, H.Y.; Elsayed, H.E.; Houssen, W.E.; Haggag, E.G.; Soliman, R.F.; El Sayed, K.A. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion. Bioorg. Med. Chem. 2016, 24, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Pereira, J.A.; Bento, A.; Baptista, P. Plant-mediated effects on antagonistic activity of endophytic fungi towards olive fungal diseases. In Endophytes for Plant Protection: The State of the Art; Schneider, C., Leifert, C., Feldmann, F., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2013; pp. 127–128. [Google Scholar]
- FAOSTAT Online Database. Available online: http://faostat.fao.org/ (accessed on 1 July 2020).
- Zicca, S.; De Bellis, P.; Masiello, M.; Saponari, M.; Saldarelli, P.; Boscia, D.; Sisto, A. Antagonistic activity of olive endophytic bacteria and of Bacillus spp. strains against Xylella fastidiosa. Microbiol. Res. 2020, 236, 126467. [Google Scholar] [CrossRef]
- López-Escudero, F.J.; Mercado-Blanco, J. Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 2011, 344, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Mercado-Blanco, J.; Rodríguez-Jurado, D.; Pérez-Artés, E.; Jiménez-Díaz, R.M. Detection of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Plant Pathol. 2001, 50, 609–619. [Google Scholar] [CrossRef]
- Chliyeh, M.; Touati, J.; Selmaoui, K.; Touhami, A.O.; Filali-Maltouf, A.; El Modafar, C.; Douira, A. Bibliographic inventory of the olive tree (Olea europaea L.) fungal diseases in the world. Int. J. Pure Appl. Biosci. 2014, 2, 46–79. [Google Scholar]
- Crous, P.W.; Groenewald, J.Z.; Nigro, F.; Antelmi, I. Fungal planet description sheets 351—Pseudophaeomoniella Nigro, Antelmi & Crous, gen. nov. Persoonia 2015, 34, 224–227. [Google Scholar]
- Úrbez-Torres, J.R.; Peduto, F.; Vossen, P.M.; Krueger, W.H.; Gubler, W.D. Olive twig and branch dieback: Etiology, incidence, and distribution in California. Plant Dis. 2013, 97, 231–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, Y.; Ennouri, K.; Bouazizi, E.; Cheffi, M.; Triki, M.A. First report of charcoal disease caused by Biscogniauxia mediterranea on Olea europaea in Tunisia. J. Plant Pathol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Frisullo, S.; Elshafie, H.S.; Mang, S.M. First report of two Phomopsis species on olive trees in Italy. J. Plant Pathol. 2015, 97, 401. [Google Scholar]
- Trouillas, F.P.; Nouri, M.T.; Lawrence, D.P.; Moral, J.; Travadon, R.; Aegerter, B.J.; Lightle, D. Identification and characterization of Neofabraea kienholzii and Phlyctema vagabunda causing leaf and shoot lesions of olive in California. Plant Dis. 2019, 103, 3018–3030. [Google Scholar] [CrossRef]
- Moral, J.; Agustí-Brisach, C.; Pérez-Rodríguez, M.; Xaviér, C.; Raya, M.C.; Rhouma, A.; Trapero, A. Identification of fungal species associated with branch dieback of olive and resistance of table cultivars to Neofusicoccum mediterraneum and Botryosphaeria dothidea. Plant Dis. 2017, 101, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.P.; Holland, L.A.; Nouri, M.T.; Travadon, R.; Abramians, A.; Michailides, T.J.; Trouillas, F.P. Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination. IMA Fungus 2018, 9, 333–369. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.R.; Lawrence, D.P.; Peduto Hand, F.; Trouillas, F. Olive twig and branch dieback in California caused by Cytospora oleicola and the newly described species Cytospora olivarum sp. nov. Plant Dis. 2020, 104. [Google Scholar] [CrossRef]
- Carlucci, A.; Raimondo, M.L.; Cibelli, F.; Phillips, A.J.; Lops, F. Pleurostomophora richardsiae, Neofusicoccum parvum and Phaeoacremonium aleophilum associated with a decline of olives in southern Italy. Phytopathol. Medit. 2013, 52, 517–527. [Google Scholar]
- Udayanga, D.; Liu, X.; McKenzie, E.H.C.; Chukeatirote, E.; Bahkali, A.H.A.; Hyde, K.D. The genus Phomopsis: Biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 2011, 50, 189–225. [Google Scholar] [CrossRef]
- Nigro, F.; Antelmi, I.; Labarile, R.; Sion, V.; Pentimone, I. Biological control of olive anthracnose. Acta Hortic. 2018, 439–444. [Google Scholar] [CrossRef]
- Nicoletti, R. Endophytic fungi of citrus plants. Agriculture 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Cacciola, S.O.; Faedda, R.; Sinatra, F.; Agosteo, G.E.; Schena, L.; Frisullo, S.; di San Lio, G.M. Olive anthracnose. J. Plant Pathol. 2012, 94, 29–44. [Google Scholar]
- Schena, L.; Mosca, S.; Cacciola, S.O.; Faedda, R.; Sanzani, S.M.; Agosteo, G.E.; Sergeeva, V.; di San Lio, G.M. Species of the Colletotrichum gloeosporioides and C. boninense complexes associated with olive anthracnose. Plant Pathol. 2014, 63, 437–446. [Google Scholar] [CrossRef]
- Msairi, S.; Chliyeh, M.; Touhami, A.O.; El Alaoui, A.; Selmaoui, K.; Benkirane, R.; Filali-Maltouf, A.; El Modafar, C.; Douira, A. First report of Colletotrichum lupini causing anthracnose disease on the olive fruits in Morocco. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 1–11. [Google Scholar]
- Faedda, R.; Agosteo, G.E.; Schena, L.; Mosca, S.; Frisullo, S.; di San Lio, G.M.; Cacciola, S.O. Colletotrichum clavatum sp. nov. identified as the causal agent of olive anthracnose in Italy. Phytopathol. Medit. 2011, 50, 283–302. [Google Scholar]
- Phillips, A.J.L.; Rumbos, I.C.; Alves, A.; Correia, A. Morphology and phylogeny of Botryosphaeria dothidea causing fruit rot of olives. Mycopathologia 2005, 159, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Latinović, J.; Hrnčić, S.; Perović, T.; Latinović, N. Botryosphaeria dothidea–causal agent of olive fruit rot–pathogen of wounds or not? IOBC-WPRS Bull. 2014, 108, 35–38. [Google Scholar]
- Zimowska, B.; Okoń, S.; Becchimanzi, A.; Krol, E.D.; Nicoletti, R. Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity 2020, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Carrero-Carrón, I.; Trapero-Casas, J.L.; Olivares-García, C.; Monte, E.; Hermosa, R.; Jiménez-Díaz, R.M. Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Prot. 2016, 88, 45–52. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Prieto, P.; Rincón, A.M.; Gómez-Rodríguez, M.V.; Valderrama, R.; Barroso, J.B.; Mercado-Blanco, J. Fate of Trichoderma harzianum in the olive rhizosphere: Time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl 2016, 61, 269–282. [Google Scholar] [CrossRef]
- Ben Amira, M.; Lopez, D.; Triki Mohamed, A.; Khouaja, A.; Chaar, H.; Fumanal, B.; Gousset-Dupont, A.; Bonhomme, L.; Label, P.; Goupil, P.; et al. Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biol. Control 2017, 110, 70–78. [Google Scholar] [CrossRef]
- Nicoletti, R.; De Stefano, M. Penicillium restrictum as an antagonist of plant pathogenic fungi. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2012, 6, 61–69. [Google Scholar]
- Nicoletti, R.; Fiorentino, A.; Scognamiglio, M. Endophytism of Penicillium species in woody plants. Open Mycol. J. 2014, 8, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J.C.; Li, D.W.; Peng, G.; Yu, H.; Zhang, P.G.; Valdebenito-Sanhueza, R.M. Gliocladium roseum—A versatile adversary of Botrytis cinerea in crops. Plant Dis. 1997, 81, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, Ż.; Sosnowska, D. Nematophagous fungus Paecilomyces lilacinus (Thom) Samson is also a biological agent for control of greenhouse insects and mite pests. BioControl 2007, 52, 547–558. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, J.; Zong, Z.; Ma, Q.; Wang, Y. Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant. BioMed Res. Int. 2017, 2017, 4101357. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, S.; Santamaria, O.; Halecker, S.; Lledó, S.; Stadler, M. Antagonism between Byssochlamys spectabilis (anamorph Paecilomyces variotii) and plant pathogens: Involvement of the bioactive compounds produced by the endophyte. Ann. Appl. Biol. 2017, 171, 464–476. [Google Scholar] [CrossRef]
- Al-Qasim, M.; Abu-Gharbieh, W.; Assas, K. Nematophagal ability of Jordanian isolates of Paecilomyces variotii on the root-knot nematode Meloidogyne javanica. Nematol. Medit. 2009, 37, 53–57. [Google Scholar]
- Herrera, C.S.; Hirooka, Y.; Chaverri, P. Pseudocospeciation of the mycoparasite Cosmospora with their fungal hosts. Ecol. Evol. 2016, 6, 1504–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauchline, N.; Hallett, I.; Hill, G.; Casonato, S. Process of infection of armored scale insects (Diaspididae) by an entomopathogenic Cosmospora sp. J. Invert. Pathol. 2011, 108, 46–51. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2017, 62, 1–17. [Google Scholar] [CrossRef]
- Behie, S.W.; Jones, S.J.; Bidochka, M.J. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 2015, 13, 112–119. [Google Scholar] [CrossRef]
- Nicoletti, R.; Becchimanzi, A. Endophytism of Lecanicillium and Akanthomyces. Agriculture 2020, 10, 205. [Google Scholar] [CrossRef]
- Aswini, C. A review on Chaetomium globosum is versatile weapons for various plant pathogens. J. Pharmocognosy Phytochem. 2019, 8, 946–949. [Google Scholar]
- Verkley, G.J.; da Silva, M.; Wicklow, D.T.; Crous, P.W. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud. Mycol. 2004, 50, 323–335. [Google Scholar]
- Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef]
- Braga, R.M.; Padilla, G.; Araújo, W.L. The biotechnological potential of Epicoccum spp.: Diversity of secondary metabolites. Crit. Rev. Microbiol. 2018, 44, 759–778. [Google Scholar] [CrossRef]
- Rahi, P.; Vyas, P.; Sharma, S.; Gulati, A.; Gulati, A. Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea. Indian J. Microbiol. 2009, 49, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamayun, M.; Khan, S.A.; Khan, A.L.; Rehman, G.; Sohn, E.Y.; Shah, A.A.; Kim, S.K.; Joo, G.J.; Lee, I.J. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol. 2009, 19, 1244–1249. [Google Scholar] [PubMed]
- Abdelfattah, A.; Li Destri Nicosia, M.G.; Cacciola, S.O.; Droby, S.; Schena, L. Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLoS ONE 2015, 10, e0131069. [Google Scholar] [CrossRef] [Green Version]
- Aschehoug, E.T.; Metlen, K.L.; Callaway, R.M.; Newcombe, G. Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 2012, 93, 3–8. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, A.R.A. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Phookamsak, R.; Liu, J.K.; Chukeatirote, E.; McKenzie, E.H.; Hyde, K.D. Phylogeny and morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces. Cryptogam. Mycol. 2013, 34, 303–319. [Google Scholar] [CrossRef]
- Verkley, G.J.M.; Dukik, K.; Renfurm, R.; Göker, M.; Stielow, J.B. Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 2014, 32, 25–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Crane, C.; Barrett, S.; Cano-Lira, J.F.; Le Roux, J.J.; Thangavel, R.; Guarro, J.; et al. Fungal planet description sheets: 469–557. Persoonia 2016, 37, 218–403. [Google Scholar] [CrossRef]
- Voglmayr, H.; Gardiennet, A.; Jaklitsch, W.M. Asterodiscus and Stigmatodiscus, two new apothecial dothideomycete genera and the new order Stigmatodiscales. Fungal Divers. 2016, 80, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Sherrington, S.L.; Kumwenda, P.; Kousser, C.; Hall, R.A. Host sensing by pathogenic fungi. Advan. Appl. Microbiol. 2018, 102, 159–221. [Google Scholar]
- Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zhao, H.; Zhao, X.; Xu, X.; Di, Y.; Jiang, C.; Shi, J.; Shao, D.; Huang, Q.; Yang, H.; et al. Production of bioproducts by endophytic fungi: Chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2018, 102, 6279–6298. [Google Scholar] [CrossRef] [PubMed]
- Cabello, A.M.; Platas, G.; Collado, J.; Díez, T.M.; Martín, I.; Vicente, F.; Meinz, M.; Onishi, J.C.; Thompson, C.D.J.; Kurtz, M.B.; et al. Arundifungin, a novel antifungal compound produced by fungi: Biological activity and taxonomy of the producing organisms. Int. Microbiol. 2001, 4, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Pereira, J.A.; Lino-Neto, T.; Baptista, P. Endophytic and epiphytic fungal community associated to olive tree differ in antagonistic activity against Pseudomonas savastanoi pv. savastanoi. In Proceedings of the 15th Congress Mediterranean Phytopathological Union, Cordoba, Spain, 20–23 June 2017; pp. 202–203. [Google Scholar]
- Berardo, C.; Bulai, I.M.; Venturino, E.; Baptista, P.; Gomes, T. Modeling the endophytic fungus Epicoccum nigrum action to fight the “olive knot” disease caused by Pseudomonas savastanoi pv. savastanoi (Psv) bacteria in Olea europaea L. Trees. In Trends in Biomathematics: Modeling, Optimization and Computational Problems; Springer: Cham, Switzerland, 2018; pp. 189–207. [Google Scholar]
- Di Francesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol. Control 2015, 81, 8–14. [Google Scholar] [CrossRef]
- Don, S.Y.; Schmidtke, L.M.; Gambetta, J.M.; Steel, C.C. Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Sci. Rep. 2020, 10, 4498. [Google Scholar]
- Liarzi, O.; Bucki, P.; Miyara, S.B.; Ezra, D. Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 2016, 11, e0168437. [Google Scholar]
- Cameirão, C.; Fernandes, G.; Martins, F.; Pereira, J.A.; Baptista, P. The effect of Philaenus spumarius feeding on the endophytic fungi community of Coleostephus myconis and its possible applicability in the insect biocontrol. In Proceedings of the 8th Meeting of the IOBC-WPRS Working Group ‘Integrated Protection of Olive Crops’, Florence, Italy, 4–7 June 2018. [Google Scholar]
- Schlaeppi, K.; Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 2015, 28, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Busby, P.E.; Ridout, M.; Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol. 2016, 90, 645–655. [Google Scholar] [CrossRef]
Endophyte 1 | Plant Part | Country | Reference |
---|---|---|---|
Absconditella sp. | branch | Salento, Italy | [21] |
Acaulium sp. | root | Córdoba, Spain | [22] |
Acremonium sp. | leaf, twig | Sicily, Italy | [23] |
branch, leaf | Salento, Italy | [21] | |
Alternaria alternata | leaf, root | Bragança district, Portugal | [24] |
leaf | Trás-os-Montes, Portugal | [25] | |
leaf | Alentejo, Portugal | [26] | |
twig | Mirandela, Portugal | [27] | |
fruit | Karaburun, Turkey | (GenBank) | |
Alternaria arborescens | leaf | Bragança district, Portugal | [24] |
Alternaria brassicae | fruit | Mirandela, Portugal | [28] |
Alternaria compacta | leaf | Alentejo, Portugal | [26] |
Altenaria consortialis | root | Bragança district, Portugal | [24] |
Alternaria infectoria | leaf | Alentejo, Portugal | [26] |
twig | Mirandela, Portugal | [27] | |
Alternaria murispora | leaf | Alentejo, Portugal | [26] |
Alternaria preussii | leaf | Mirandela, Portugal | [29] |
Alternaria solani | twig | Mirandela, Portugal | [27] |
Alternaria sp. | stem | Majorca, Spain | [30] |
leaf, twig | Sicily, Italy | [23] | |
leaf | Evora, Portugal | [31] | |
fruit | Mirandela, Portugal | [28] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
leaf | Alentejo, Portugal | [32] | |
branch, leaf | Salento, Italy | [21] | |
Alternaria tenuissima | stem, xylem | Majorca, Spain | [30] |
twig | Mirandela, Portugal | [27] | |
Anthostomella leucospermi | leaf, twig | Mirandela, Portugal | [27,29] |
Arcopilus aureus | leaf | Alentejo, Portugal | [26] |
Arthrinium phaeospermum | stem, xylem | Majorca, Spain | [30] |
Arthrinium sp. | leaf | Alentejo, Portugal | [32] |
leaf | Salento, Italy | [21] | |
Ascochyta sp. | leaf, twig | Sicily, Italy | [23] |
Ascochytulina deflectens | stem, xylem | Majorca, Spain | [30] |
Aspergillus sp. | leaf | Piracicaba, Brazil | [33] |
fruit | Bragança district, Portugal | [34] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
leaf | Alentejo, Portugal | [26,32] | |
root | Córdoba, Spain | [22] | |
xylem | Apulia, Italy | [35] | |
branch, leaf | Salento, Italy | [21] | |
Aspergillus stellatus | twig | Sicily, Italy | [23] |
Aspergillus tubingensis | root | Siwa oasis, Egypt | [36] |
Aureobasidium pullulans | stem, xylem | Majorca, Spain | [30] |
leaf, twig | Sicily, Italy | [23] | |
leaf | Alentejo, Portugal | [26] | |
Aureobasidium sp. | leaf, twig | Mirandela, Portugal | [29] |
leaf | Alentejo, Portugal | [32] | |
branch, leaf | Salento, Italy | [21] | |
Bartalinia sp. | fruit | Karaburun, Turkey | (GenBank) |
Berkeleyomyces basicola | root | Bragança district, Portugal | [24] |
Biatora sp. | branch | Salento, Italy | [21] |
Biscogniauxia mediterranea | flower buds | Bragança district, Portugal | [34] |
fruit | Mirandela, Portugal | [28] | |
leaf | Alentejo, Portugal | [26] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
Biscogniauxia nummularia | shoot | Ljubljana, Slovenia | [37] |
Botryosphaeria sp. | leaf, twig | Sicily, Italy | [23] |
Botrytis cinerea | leaf, twig | Sicily, Italy | [23] |
leaf | Alentejo, Portugal | [26] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
Botrytis sp. | leaf | Alentejo, Portugal | [32] |
branch | Salento, Italy | [21] | |
Cadophora luteo-olivacea | root | Bragança district, Portugal | [24] |
Camarosporium sp. | leaf, twig | Sicily, Italy | [23] |
leaf, twig | Mirandela, Portugal | [27,29] | |
Canalisporium sp. | root | Córdoba, Spain | [22] |
Candida sp. | twig | Sicily, Italy | [23] |
branch, leaf | Salento, Italy | [21] | |
Capnobotryella sp. | branch | Salento, Italy | [21] |
Catenulostroma sp. | branch, leaf | Salento, Italy | [21] |
Catillaria sp. | branch | Salento, Italy | [21] |
Ceratocystis sp. | leaf, twig | Sicily, Italy | [23] |
Cercospora sp. | branch | Salento, Italy | [21] |
Ceuthospora sp. | xylem | Apulia, Italy | [35] |
Chaetomium globosum | shoot | Ljubljana, Slovenia | [37] |
Chaetomium sp. | leaf | Sicily, Italy | [23] |
leaf | Evora, Portugal | [31] | |
shoot | Ljubljana, Slovenia | [37] | |
leaf | Alentejo, Portugal | [32] | |
Chalara sp. | leaf, twig | Sicily, Italy | [23] |
leaf | Alentejo, Portugal | [32] | |
Chalastospora gossypii | leaf, twig | Mirandela, Portugal | [27,29] |
Chromelosporium carneum | leaf, twig | Mirandela, Portugal | [27,29] |
Ciboria sp. | leaf | Salento, Italy | [21] |
Cladophialophora sp. | root | Córdoba, Spain | [22] |
Cladosporium cladosporioides | leaf | Alentejo, Portugal | [26] |
fruit | Mirandela, Portugal | [28] | |
Cladosporium cucumerinum | fruit | Mirandela, Portugal | [28] |
Cladosporium delicatulum | leaf | Alentejo, Portugal | [26] |
Cladosporium herbarum | leaf | Alentejo, Portugal | [26] |
Cladosporium pseudocladosporioides | leaf | Alentejo, Portugal | [26] |
Cladosporium ramotenellum | fruit | Karaburun, Turkey | (GenBank) |
Cladosporium sp. | leaf, twig | Sicily, Italy | [23] |
shoot | Ljubljana, Slovenia | [37] | |
fruit | Mirandela, Portugal | [28] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
xylem | Apulia, Italy | [35] | |
leaf | Salento, Italy | [21] | |
Cladosporium sphaerospermum | shoot | Ljubljana, Slovenia | [37] |
Cladosporium tenellum | leaf | Alentejo, Portugal | [26] |
Cladosporium tenuissimum | stem, xylem | Majorca, Spain | [30] |
Clonostachys rosea | root | Bragança district, Portugal | [24] |
Colletotrichum acutatum | fruit | Gioia Tauro area, Italy | [38] |
twig | Portugal | (GenBank) | |
Colletotrichum nymphaeae | leaf | Alentejo, Portugal | [26] |
Colletotrichum sp. | leaf | Piracicaba, Brazil | [33] |
leaf, twig | Mirandela, Portugal | [27,29] | |
fruit | Mirandela, Portugal | [28] | |
Coniothyrium sp. | leaf, twig | Sicily, Italy | [23] |
Coniozyma leucospermi | leaf, twig | Mirandela, Portugal | [27,29] |
Coniozyma sp. | flower buds | Bragança district, Portugal | [34] |
Cosmospora sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Cryptocoryneum sp. | leaf | Salento, Italy | [21] |
Curvularia trifolii | root | Bragança district, Portugal | [24] |
Cytospora pruinosa | leaf, twig | Bragança district, Portugal | [24] |
Cytospora sp. | stem, xylem | Majorca, Spain | [30] |
xylem | Apulia, Italy | [35] | |
Dactylonectria pauciseptata | root | Bragança district, Portugal | [24] |
Daldinia concentrica | leaf | Piracicaba, Brazil | [33] |
branch | Ha’Ela Valley, Israel | [39] | |
Dendrothyrium variisporum | leaf, twig | Mirandela, Portugal | [27,29] |
Devriesia sp. | branch, leaf | Salento, Italy | [21] |
Diaporthe ambigua | root | Bragança district, Portugal | [24] |
Diaporthe columnaris | leaf, root, twig | Bragança district, Portugal | [24] |
Diaporthe rudis | twig | Mirandela, Portugal | [27] |
Diaporthe sp. | stem | Majorca, Spain | [30] |
leaf | Sicily, Italy | [23] | |
leaf | Piracicaba, Brazil | [33] | |
leaf | Evora, Portugal | [31] | |
root | Bragança district, Portugal | [24] | |
flower buds | Bragança district, Portugal | [34] | |
leaf | Alentejo, Portugal | [32] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
Didymella macrostoma | leaf | Alentejo, Portugal | [26] |
Didymella sp. | branch | Salento, Italy | [21] |
Diplodia sp. | leaf, twig | Sicily, Italy | [23] |
Discosia sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Dothiora oleae | fruit | Karaburun, Turkey | (GenBank) |
Dothiorella iberica | twig | Mirandela, Portugal | [27] |
Drechslera avenae | leaf | Alentejo, Portugal | [26] |
Embellisia sp. | leaf, twig | Mirandela, Portugal | [29] |
Endoconidioma populi | leaf, twig | Mirandela, Portugal | [27,29] |
Epicoccum nigrum | stem | Majorca, Spain | [30] |
leaf | Evora, Portugal | [31] | |
root, twig | Bragança district, Portugal | [24] | |
leaf | Alentejo, Portugal | [26] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
Epicoccum sp. | leaf | Sicily, Italy | [23] |
leaf | Alentejo, Portugal | [32] | |
Eutypa tetragona | leaf, twig | Mirandela, Portugal | [27,29] |
Eutypella sp. | fruit | Bragança district, Portugal | [34] |
Exophiala sp. | root | Córdoba, Spain | [22] |
branch | Salento, Italy | [21] | |
Fimetariella rabenhorstii | leaf, twig | Bragança district, Portugal | [24,27,29] |
Foliophoma sp. | leaf | Alentejo, Portugal | [32] |
Fusarium lateritium | fruit | Mirandela, Portugal | [28] |
leaf | Alentejo, Portugal | [26] | |
twig | Mirandela, Portugal | [27] | |
Fusarium musae | leaf | Alentejo, Portugal | [26] |
Fusarium oxysporum | root | Bragança district, Portugal | [24,40] |
twig | Mirandela, Portugal | [27] | |
Fusarium sp. | leaf | Evora, Portugal | [31] |
leaf, twig | Mirandela, Portugal | [27,29] | |
leaf | Alentejo, Portugal | [32] | |
xylem | Apulia, Italy | [35] | |
Fusarium tricinctum | leaf | Alentejo, Portugal | [26] |
Fusarium verticillioides | leaf | Alentejo, Portugal | [26] |
Geopyxis sp. | leaf, twig | Mirandela, Portugal | [29] |
Gibberella avenacea | fruit | Mirandela, Portugal | [28] |
Gibberella sp. | twig | Mirandela, Portugal | [27] |
branch | Salento, Italy | [21] | |
Gloeosporium sp. | leaf | Sicily, Italy | [23] |
Gloeotinia granigena | leaf | Alentejo, Portugal | [26] |
Heydenia alpina | twig | Mirandela, Portugal | [27] |
Heydenia sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Homortomyces sp. | leaf, twig | Mirandela, Portugal | [29] |
Hormonema sp. | stem | Majorca, Spain | [30] |
leaf | Salento, Italy | [21] | |
Hortaea sp. | branch, leaf | Salento, Italy | [21] |
Hyalodendriella betulae | leaf, twig | Mirandela, Portugal | [27,29] |
Hyperphyscia sp. | branch | Salento, Italy | [21] |
Hypoxylon sp. | stem | Majorca, Spain | [30] |
Ilyonectria sp. | leaf, twig | Mirandela, Portugal | [29] |
Kabatina sp. | xylem | Majorca, Spain | [30] |
Lecania sp. | branch, leaf | Salento, Italy | [21] |
Lecanora sp. | branch, leaf | Salento, Italy | [21] |
Lecidella sp. | branch, leaf | Salento, Italy | [21] |
Lecythophora sp. | leaf, twig | Mirandela, Portugal | [29] |
Leimonis sp. | branch | Salento, Italy | [21] |
Leptosphaerulina americana | leaf | Alentejo, Portugal | [26] |
Leptosphaerulina australis | leaf | Alentejo, Portugal | [26] |
Leptosphaerulina saccharicola | leaf | Alentejo, Portugal | [26] |
Leptosphaerulina trifolii | leaf | Alentejo, Portugal | [26] |
Libertasomyces platani | xylem | Apulia, Italy | [35] |
Lophiostoma corticola | root | Bragança district, Portugal | [24] |
Lophiostoma sp. | branch, leaf | Salento, Italy | [21] |
Macrophomina phaseolina | root | Bragança district, Portugal | [24] |
Macrophomina sp. | root | Córdoba, Spain | [22] |
Microsphaeropsis arundinis | root | Bragança district, Portugal | [24] |
Microsphaeropsis proteae | leaf | Mirandela, Portugal | [27,29] |
Microsphaeropsis sp. | stem | Majorca, Spain | [30] |
leaf, twig | Mirandela, Portugal | [27,29] | |
Minimelanolocus sp. | root | Córdoba, Spain | [22] |
Mycocalicium victoriae | xylem | Apulia, Italy | [35] |
Mycosphaerella sp. | leaf, twig | Mirandela, Portugal | [29] |
Naevala sp. | leaf | Salento, Italy | [21] |
Nemania aenea | leaf | Mirandela, Portugal | [29] |
Nemania sp. | leaf, twig | Mirandela, Portugal | [29] |
Neocamarosporium sp. | leaf, twig | Mirandela, Portugal | [29] |
Neocatenulostroma sp. | branch, leaf | Salento, Italy | [21] |
Neocosmospora solani | root | Siwa oasis, Egypt | [36] |
twig | Mirandela, Portugal | [27] | |
Neodevriesia sp. | branch, leaf | Salento, Italy | [21] |
Neofabraea kienholzii | leaf, twig | Mirandela, Portugal | [27,29] |
Neofabraea sp. | twig | Sicily, Italy | [23] |
fruit | Mirandela, Portugal | [28] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
leaf | Alentejo, Portugal | [26] | |
Neofabraea vagabunda | leaf | Alentejo, Portugal | [26] |
fruit | Mirandela, Portugal | [28,34] | |
leaf, twig | Mirandela, Portugal | [27] | |
Neofusicoccum sp. | leaf | Alentejo, Portugal | [32] |
Neophaeomoniella sp. | branch, leaf | Salento, Italy | [21] |
Neosartorya sp. | leaf | Alentejo, Portugal | [26] |
Neosetophoma sp. | leaf | Salento, Italy | [21] |
Nigrospora oryzae | stem | Majorca, Spain | [30] |
leaf | Evora, Portugal | [31] | |
Nigrospora sp. | leaf | Piracicaba, Brazil | [33] |
leaf | Alentejo, Portugal | [32] | |
Ochrocladosporium sp. | leaf, twig | Mirandela, Portugal | [29] |
Paecilomyces variotii | xylem | Bisignano, Italy | [41] |
Paecilomyces verrucosus | root | Bragança district, Portugal | [24] |
Paraconiothyrium sp. | leaf, twig | Mirandela, Portugal | [29] |
xylem | Apulia, Italy | [35] | |
Paraphaeosphaeria sporulosa | root | Bragança district, Portugal | [24] |
Paraphoma chrysanthemicola | leaf, root | Bragança district, Portugal | [24] |
Paraphoma sp. | root | Bragança district, Portugal | [24] |
Parastagonospora avenae | twig | Mirandela, Portugal | [27] |
Penicillium canescens | root, twig | Bragança district, Portugal | [24] |
leaf | Trás-os-Montes, Portugal | [25] | |
Penicillium chrysogenum | leaf | Siwa oasis, Egypt | [42] |
fruit | Karaburun, Turkey | (GenBank) | |
Penicillium citrinum | fruit | Siwa oasis, Egypt | [36] |
Penicillium commune | leaf, twig | Bragança district, Portugal | [24,43] |
leaf | Trás-os-Montes, Portugal | [25] | |
Penicillium echinulatum | leaf | Alentejo, Portugal | [26] |
Penicillium expansum | leaf | Alentejo, Portugal | [26] |
Penicillium glabrum | twig | Mirandela, Portugal | [27] |
Penicillium restrictum | leaf, root | Bragança district, Portugal | [24] |
Penicillium roseopurpureum | root | Bragança district, Portugal | [24,40] |
Penicillum sp. | stem, xylem | Majorca, Spain | [30] |
leaf, twig | Sicily, Italy | [23] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
xylem | Apulia, Italy | [35] | |
branch, leaf | Salento, Italy | [21] | |
Penicillium spinulosum | leaf | Alentejo, Portugal | [26] |
Pestalotiopsis guepinii | stem | Majorca, Spain | [30] |
Pestalotiopsis sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Phaeoacremonium sp. | root | Córdoba, Spain | [22] |
Phaeococcomyces sp. | branch, leaf | Salento, Italy | [21] |
Phaeohelotium sp. | branch | Salento, Italy | [21] |
Phaeomoniella sp. | leaf, twig | Mirandela, Portugal | [27,29] |
branch, leaf | Salento, Italy | [21] | |
Phaeosphaeria sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Phaeothecoidea sp. | branch, leaf | Salento, Italy | [21] |
Phoma herbarum | leaf | Alentejo, Portugal | [26] |
Phoma sp. | stem, xylem | Majorca, Spain | [30] |
leaf, twig | Sicily, Italy | [23] | |
leaf, twig | Mirandela, Portugal | [27,29] | |
Phyllosticta sp. | leaf | Piracicaba, Brazil | [33] |
Pichia sp. | branch | Salento, Italy | [21] |
Pithomyces chartarum | xylem | Apulia, Italy | [35] |
Plectania rhytidia | twig | Mirandela, Portugal | [27] |
Plectania sp. | leaf, twig | Mirandela, Portugal | [29] |
Pleospora herbarum | stem | Majorca, Spain | [30] |
Pleospora sp. | leaf, twig | Sicily, Italy | [23] |
Pleurophoma sp. | stem | Majorca, Spain | [30] |
Podospora sp. | root | Bragança district, Portugal | [24] |
Preussia africana | leaf | Alentejo, Portugal | [26] |
Preussia sp. | leaf | Sicily, Italy | [23] |
shoot | Ljubljana, Slovenia | [37] | |
leaf, twig | Mirandela, Portugal | [29] | |
branch, leaf | Salento, Italy | [21] | |
Prosthemium sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Pseudocamarosporium sp. | xylem | Apulia, Italy | [35] |
Pseudocercospora sp. | leaf, twig | Mirandela, Portugal | [27,29] |
branch, leaf | Salento, Italy | [21] | |
Pseudocosmospora vilior | root | Bragança district, Portugal | [24] |
Pseudophaeomoniella oleae | xylem | Apulia, Italy | [35] |
Pseudophaeomoniella sp. | leaf, twig | Mirandela, Portugal | [29] |
xylem | Apulia, Italy | [35] | |
Purpureocillium lilacinum | root | Bragança district, Portugal | [24,40] |
Purpureocillium sp. | root | Córdoba, Spain | [22] |
Pycnidiophora sp. | leaf, twig | Mirandela, Portugal | [29] |
Pyrenochaeta sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Pyronema domesticum | leaf, twig | Mirandela, Portugal | [27,29] |
Pyrrhospora sp. | branch, leaf | Salento, Italy | [21] |
Rachicladosporium sp. | branch | Salento, Italy | [21] |
Ramularia sp. | stem | Majorca, Spain | [30] |
branch, leaf | Salento, Italy | [21] | |
Rhinocladiella similis | leaf, twig | Mirandela, Portugal | [27,29] |
Rhinocladiella sp. | branch, leaf | Salento, Italy | [21] |
Saccharata sp. | leaf | Alentejo, Portugal | [32] |
Sarocladium sp. | branch, leaf | Salento, Italy | [21] |
Scoliciosporum sp. | branch, leaf | Salento, Italy | [21] |
Scutellinia sp. | root | Córdoba, Spain | [22] |
Seimatosporium sp. | leaf, twig | Mirandela, Portugal | [29] |
Seiridium sp. | twig | Sicily, Italy | [23] |
Septoria sp. | leaf, twig | Sicily, Italy | [23] |
leaf, twig | Mirandela, Portugal | [27,29] | |
Sordaria macrospora | stem, xylem | Majorca, Spain | [30] |
twig | Mirandela, Portugal | [27] | |
Sordaria sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Sporormiella intermedia | stem, xylem | Majorca, Spain | [30] |
Stagonosporopsis cucurbitacearum | fruit | Karaburun, Turkey | (GenBank) |
Stemphylium solani | leaf | Alentejo, Portugal | [26] |
Stemphylium sp. | leaf, twig | Sicily, Italy | [23] |
branch, leaf | Salento, Italy | [21] | |
Stemphylium vesicarium | leaf | Alentejo, Portugal | [26] |
fruit | Karaburun, Turkey | [GenBank] | |
Stigmatodiscus enigmaticus | xylem | Apulia, Italy | [35] |
Talaromyces purpureogenus | root | Portugal | [GenBank] |
Taphrina sp. | branch, leaf | Salento, Italy | [21] |
Teratosphaeria sp. | branch, leaf | Salento, Italy | [21] |
Tricharina sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Tricharina striispora | twig | Mirandela, Portugal | [27] |
Trichoderma gamsii | root, twig | Bragança district, Portugal | [24] |
Trichoderma koningii | fruit | Mirandela, Portugal | [28] |
Trichoderma lixii | root | Bragança district, Portugal | [24,40] |
Trichoderma polysporum | stem | Majorca, Spain | [30] |
Trichoderma sp. | root, twig | Bragança district, Portugal | [24] |
fruit | Mirandela, Portugal | [28] | |
leaf, twig | Mirandela, Portugal | [29] | |
Tumularia sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Valsa sp. | leaf, twig | Mirandela, Portugal | [29] |
Valsaria sp. | leaf, twig | Mirandela, Portugal | [29] |
Venturia sp. | flower buds | Bragança district, Portugal | [34] |
Verticillium sp. | leaf, twig | Mirandela, Portugal | [29] |
Wickerhamomyces sp. | branch, leaf | Salento, Italy | [21] |
Xanthoparmelia sp. | leaf | Salento, Italy | [21] |
Xanthoria sp. | branch, leaf | Salento, Italy | [21] |
Xenosonderhenia sp. | branch, leaf | Salento, Italy | [21] |
Xylaria sp. | leaf | Piracicaba, Brazil | [33] |
twig | Mirandela, Portugal | [27] | |
Zygoascus sp. | branch | Salento, Italy | [21] |
Endophyte 1 | Plant Part | Country | Reference |
---|---|---|---|
Basidiomycota | |||
Bullera sp. | leaf | Alentejo, Portugal | [32] |
Chondrostereum purpureum | fruit | Mirandela, Portugal | [28] |
Colacogloea sp. | branch | Salento, Italy | [21] |
Conocybe sp. | root | Córdoba, Spain | [22] |
Coprinellus sp. | leaf, twig | Mirandela, Portugal | [27,29] |
Coriolopsis sp. | fruit | Bragança district, Portugal | [34] |
Cryptococcus sp. | leaf, twig | Mirandela, Portugal | [29] |
leaf | Alentejo, Portugal | [32] | |
branch, leaf | Salento, Italy | [21] | |
Cystofilobasidium sp. | branch | Salento, Italy | [21] |
Dioszegia sp. | branch | Salento, Italy | [21] |
Entoloma sp. | root | Córdoba, Spain | [22] |
Erythrobasidium sp. | leaf | Alentejo, Portugal | [32] |
branch, leaf | Salento, Italy | [21] | |
Filobasidium sp. | branch | Salento, Italy | [21] |
Kockovaella sp. | branch, leaf | Salento, Italy | [21] |
Kondoa sp. | branch | Salento, Italy | [21] |
Lepiota sp. | root | Córdoba, Spain | [22] |
Malassezia sp. | root | Córdoba, Spain | [22] |
branch, leaf | Salento, Italy | [21] | |
Meira sp. | branch | Salento, Italy | [21] |
Moniliophthora sp. | root | Córdoba, Spain | [22] |
Peniophora cinerea | leaf | Alentejo, Portugal | [26] |
Peniophora lycii | leaf | Alentejo, Portugal | [26] |
Peniophora sp. | leaf, twig | Mirandela, Portugal | [29] |
branch | Salento, Italy | [21] | |
Phlebiopsis gigantea | leaf | Alentejo, Portugal | [26] |
Porostereum sp. | leaf, twig | Mirandela, Portugal | [29] |
Pseudomicrostroma sp. | branch | Salento, Italy | [21] |
Quambalaria sp. | branch, leaf | Salento, Italy | [21] |
Rhizoctonia sp. | stem | Majorca, Spain | [30] |
leaf, twig | Sicily, Italy | [23] | |
Rhodotorula mucilaginosa | leaf | Alentejo, Portugal | [26] |
Sistotrema brinkmannii | shoot | Ljubljana, Slovenia | [37] |
Sporobolomyces sp. | leaf | Alentejo, Portugal | [32] |
branch, leaf | Salento, Italy | [21] | |
Sporotrichum sp. | leaf | Sicily, Italy | [23] |
Symmetrospora sp. | branch, leaf | Salento, Italy | [21] |
Trametes sp. | leaf, twig | Mirandela, Portugal | [27,29] |
branch, leaf | Salento, Italy | [21] | |
Tremella sp. | branch | Salento, Italy | [21] |
Tricholoma sp. | leaf, twig | Mirandela, Portugal | [29] |
Vishniacozyma sp. | branch, leaf | Salento, Italy | [21] |
Wallemia sp. | leaf | Salento, Italy | [21] |
Xylobolus annosus | twig | Mirandela, Portugal | [27] |
Mucoromycota | |||
Mucor plumbeus | stem, xylem | Majorca, Spain | [30] |
Mucor racemosus | stem | Majorca, Spain | [30] |
Rhizopus arrhizus | root | Bragança district, Portugal | [24] |
Rhizopus sp. | leaf | Alentejo, Portugal | [26] |
Rhizopus stolonifer | fruit | Karaburun, Turkey | (GenBank) |
Umbelopsis vinacea | stem | Majorca, Spain | [30] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, R.; Di Vaio, C.; Cirillo, C. Endophytic Fungi of Olive Tree. Microorganisms 2020, 8, 1321. https://doi.org/10.3390/microorganisms8091321
Nicoletti R, Di Vaio C, Cirillo C. Endophytic Fungi of Olive Tree. Microorganisms. 2020; 8(9):1321. https://doi.org/10.3390/microorganisms8091321
Chicago/Turabian StyleNicoletti, Rosario, Claudio Di Vaio, and Chiara Cirillo. 2020. "Endophytic Fungi of Olive Tree" Microorganisms 8, no. 9: 1321. https://doi.org/10.3390/microorganisms8091321
APA StyleNicoletti, R., Di Vaio, C., & Cirillo, C. (2020). Endophytic Fungi of Olive Tree. Microorganisms, 8(9), 1321. https://doi.org/10.3390/microorganisms8091321