Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide Synthesis and Validation
2.2. Bacteria Strains and Reagents
2.3. Antibacterial Activity Tests
2.4. Hemolysis Analysis
2.5. CD Measurements
2.6. Outer Membrane Permeabilization
2.7. Membrane Permeability Assay
2.8. Cytoplasmic Membrane Potential
2.9. ROS Measurements
2.10. Prevention of Biofilm Formation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Characterizations of Engineered Peptides
3.2. Broad-Spectrum Antibacterial Activity of Engineered Peptides In Vitro
3.3. A Desirable Safety and Stability of WRK-12 against Bacteria
3.4. WRK-12 Targets LPS and Bacteria-Specific Phospholipids
3.5. WRK-12 Increases Membrane Permeability, Dissipates Membrane Potential and Induces ROS Production
3.6. WRK-12 Inhibits Biofilm Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Koulenti, D.; Song, A.; Ellingboe, A.; Abdul-Aziz, M.H.; Harris, P.; Gavey, E.; Lipman, J. Infections by multidrug-resistant Gram-negative Bacteria: What’s new in our arsenal and what’s in the pipeline? Int. J. Antimicrob. Agents 2019, 53, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [Green Version]
- Cillóniz, C.; Dominedò, C.; Torres, A. Multidrug resistant gram-negative bacteria in community-acquired Pneumonia. Crit. Care 2019, 23, 79. [Google Scholar] [CrossRef] [Green Version]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, R.; Schwarz, S.; Wu, C.; Shen, J.; Walsh, T.R.; Wang, Y. Farm animals and aquaculture: Significant reservoirs of mobile colistin resistance genes. Environ. Microbiol. 2020, 22, 2469–2484. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chen, C.; Cui, C.Y.; Zhang, Y.; Liu, X.; Cui, Z.H.; Ma, X.Y.; Feng, Y.; Fang, L.X.; Lian, X.L.; et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat. Microbiol. 2019, 4, 1457–1464. [Google Scholar] [CrossRef]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef] [PubMed]
- Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 2019, 10, 4538. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, S.; Shen, J.; Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep. 2019, 36, 573–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, Y.; Chen, T.; Shang, L.; Yang, Y.; Li, Z.; Zhu, J.; Shan, A. Design of Trp-rich dodecapeptides with broad-spectrum antimicrobial potency and membrane-disruptive mechanism. J. Med. Chem. 2019, 62, 6941–6957. [Google Scholar] [CrossRef]
- Deslouches, B.; Phadke, S.M.; Lazarevic, V.; Cascio, M.; Islam, K.; Montelaro, R.C.; Mietzner, T.A. De novo generation of cationic antimicrobial peptides: Influence of length and tryptophan substitution on antimicrobial activity. Antimicrob. Agents Chemother. 2005, 49, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochran, A.G.; Skelton, N.J.; Starovasnik, M.A. Tryptophan zippers: Stable, monomeric beta -hairpins. Proc. Natl. Acad. Sci. USA 2001, 98, 5578–5583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, M.; Chiriac, A.I.; Otto, A.; Zweytick, D.; May, C.; Schumacher, C.; Gust, R.; Albada, H.B.; Penkova, M.; Krämer, U. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc. Natl. Acad. Sci. USA 2014, 111, E1409–E1418. [Google Scholar] [CrossRef] [Green Version]
- Albada, H.B.; Prochnow, P.; Bobersky, S.; Langklotz, S.; Bandow, J.E.; Metzler-Nolte, N. Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. ACS Comb. Sci. 2013, 15, 585–592. [Google Scholar] [CrossRef]
- Albada, H.B.; Prochnow, P.; Bobersky, S.; Langklotz, S.; Schriek, P.; Bandow, J.E.; Metzler-Nolte, N. Tuning the activity of a short arg-trp antimicrobial peptide by lipidation of a C-or N-terminal lysine side-chain. ACS Med. Chem. Lett. 2012, 3, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Phambu, N.; Almarwani, B.; Garcia, A.M.; Hamza, N.S.; Muhsen, A.; Baidoo, J.E.; Sunda-Meya, A. Chain length effect on the structure and stability of antimicrobial peptides of the (RW) series. Biophys. Chem. 2017, 227, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, S.; Dietrich, R.; Märtlbauer, E.; Zhu, K. A biosurfactant-inspired heptapeptide with improved specificity to kill MRSA. Angew. Chem. Int. Ed. 2017, 56, 1486–1490. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. M100: Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Liu, Y.; Jia, Y.; Yang, K.; Li, R.; Xiao, X.; Wang, Z. Anti-HIV agent azidothymidine decreases Tet(X)-mediated bacterial resistance to tigecycline in Escherichia coli. Commun. Biol. 2020, 3, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Jia, Y.; Yang, K.; Li, R.; Xiao, X.; Zhu, K.; Wang, Z. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv. Sci. 2020, 7, 1902227. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Liu, Y.; Huang, X.; Ding, S.; Wang, Y.; Shen, J.; Zhu, K. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat. Microbiol. 2020, 5, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, H.; Urai, M.; Ishii, K.; Yasukawa, J.; Paudel, A.; Murai, M.; Kaji, T.; Kuranaga, T.; Hamase, K.; Katsu, T.; et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat. Chem. Biol. 2015, 11, 127–133. [Google Scholar] [CrossRef] [PubMed]
- De, A.B.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; De, L.B.; Koning, R.I.; Ravensbergen, E.; Franken, M.; Van, T.D.H.; Boekema, B.K. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 2018, 10, eaan4044. [Google Scholar]
- Deslouches, B.; Montelaro, R.C.; Urish, K.L.; Di, Y.P. Engineered cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics 2020, 12, 501. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Alvares, D.S.; Wilke, N.; Ruggiero Neto, J. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. BBA-Biomembranes 2018, 1860, 737–748. [Google Scholar] [CrossRef]
- Bhattacharjya, S.; Straus, S.K. Design, Engineering and discovery of novel α-helical and β-boomerang antimicrobial peptides against drug resistant bacteria. Int. J. Mol. Sci. 2020, 21, 5773. [Google Scholar] [CrossRef]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug. Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef]
- Rojas, E.R.; Billings, G.; Odermatt, P.D.; Auer, G.K.; Zhu, L.; Miguel, A.; Chang, F.; Weibel, D.B.; Theriot, J.A.; Huang, K.C. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 2018, 559, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Henzler-Wildman, K.A.; Martinez, G.V.; Brown, M.F.; Ramamoorthy, A. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 2004, 43, 8459–8469. [Google Scholar] [CrossRef]
- Hallock, K.J.; Lee, D.-K.; Ramamoorthy, A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 2003, 84, 3052–3060. [Google Scholar] [CrossRef] [Green Version]
- Malanovic, N.; Lohner, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta. 2016, 1858, 936–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandidan, S.; Mechler, A. Membrane morphology effects in quartz crystal microbalance characterization of antimicrobial peptide activity. Biophys. Chem. 2020, 262, 106381. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackerman, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Bacterial metabolism-inspired molecules to modulate antibiotic efficacy. J. Antimicrob. Chemother. 2019, 74, 3409–3417. [Google Scholar] [CrossRef]
Name | Sequence (N → C) | Formula | MW | Net Charge | pI a | H b | Purity (%) | MIC c (μg/mL) |
---|---|---|---|---|---|---|---|---|
MP196 | RWRWRW-NH2 | C51H69N19O6 | 1044.24 | +3 | 12.30 | 30.275 | 99.15 | >64 |
WR-6 | WRWRWR-NH2 | C51H69N19O6 | 1044.24 | +3 | 12.30 | 34.157 | 95.31 | >64 |
KW-6 | KWKWKW-NH2 | C51H69N13O6 | 960.20 | +3 | 10.30 | 31.903 | 95.98 | >64 |
WK-6 | WKWKWK-NH2 | C51H69N13O6 | 960.20 | +3 | 10.30 | 25.517 | 98.83 | >64 |
WL-9 | WRLWRLWRL-NH2 | C69H102N22O9 | 1383.72 | +3 | 12.30 | 35.818 | 95.59 | 8 |
WV-9 | WKVWKVWKV-NH2 | C66H96N16O9 | 1257.60 | +3 | 10.30 | 32.456 | 99.22 | >64 |
WR-12 | WRLRWRLRWRLR- NH2 | C87H138N34O12 | 1852.29 | +6 | 12.70 | 30.329 | 99.40 | 2 |
WRK-12 | Ac-WRLRWKTRWRLK-NH2 | C87H136N30O14 | 1826.25 | +6 | 12.48 | 36.513 | 98.79 | 2 |
WKK-12 | Ac-WKVKWKVKWKVK-NH2 | C86H134N22O13 | 1684.17 | +6 | 10.70 | 31.424 | 95.27 | 64 |
Organism and Genotype | WRK-12 | WKK-12 | AMP | VAN | COL | TIG | |
---|---|---|---|---|---|---|---|
MIC | MBC | MIC | |||||
Gram-positive bacteria | |||||||
S. aureus ATCC 29213 | 4 | 4 | 128 | 0.25 | 0.5 | 16 | 0.125 |
MRSA T144 | 2 | 2 | 64 | 32 | 1 | 128 | 2 |
S. aureus 215 (cfr + LZDR) | 2 | 2 | 64 | 64 | 1 | 64 | 1 |
E. faecalis A4 (VRE) | 4 | 8 | 64 | 32 | >128 | 128 | 0.125 |
Gram-negative bacteria | |||||||
E. coli ATCC 25922 | 4 | 8 | 128 | 8 | 128 | 0.5 | 0.125 |
E. coli B2 (mcr-1 + blaNDM-5) | 4 | 4 | >128 | >128 | 128 | 8 | 2 |
E. coli B3-1 (tet(X4)) | 2 | 2 | 64 | >128 | 64 | 0.25 | 32 |
E. coli 1F28 (tet(X4)) | 2 | 8 | 64 | >128 | 128 | 0.25 | 32 |
S. enteritidis ATCC 13076 | 4 | 4 | 64 | 8 | 128 | 0.25 | 0.125 |
Clinical Isolates | Origin | WRK-12 | WKK-12 | Tigecycline |
---|---|---|---|---|
E. coli 1N28 | Nasal swab | 8 | 64 | 32 |
E. coli 1N31 | 16 | 64 | 128 | |
E. coli 1C1 | Dust | 4 | 64 | 32 |
E. coli 1F16 | Feces | 4 | 64 | >64 |
E. coli 1F31 | 4 | 64 | 32 | |
E. coli 1A34 | Anal swab | 2 | 64 | 16 |
E. coli 2A19 | 16 | 128 | 8 | |
E. coli 2W25 | Water | 4 | 64 | 64 |
Shigella 1F25 | Feces | 8 | 64 | 8 |
Strains | WRK-12 | WKK-12 |
---|---|---|
E. coli 1F28 | 2 | 64 |
+Na+ (10 mM) | 2 | >128 |
+K+ (10 mM) | 2 | 64 |
+Ca2+ (10 mM) | 8 | >128 |
+10% Serum | 4 | >128 |
+10% DMEM | 4 | >128 |
E. coli 1A34 | 2 | 64 |
+Na+ (10 mM) | 2 | >128 |
+K+ (10 mM) | 2 | 64 |
+Ca2+ (10 mM) | 4 | >128 |
+10% Serum | 4 | >128 |
+10% DMEM | 4 | >128 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shi, J.; Tong, Z.; Jia, Y.; Yang, K.; Wang, Z. Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms 2020, 8, 1398. https://doi.org/10.3390/microorganisms8091398
Liu Y, Shi J, Tong Z, Jia Y, Yang K, Wang Z. Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms. 2020; 8(9):1398. https://doi.org/10.3390/microorganisms8091398
Chicago/Turabian StyleLiu, Yuan, Jingru Shi, Ziwen Tong, Yuqian Jia, Kangni Yang, and Zhiqiang Wang. 2020. "Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria" Microorganisms 8, no. 9: 1398. https://doi.org/10.3390/microorganisms8091398
APA StyleLiu, Y., Shi, J., Tong, Z., Jia, Y., Yang, K., & Wang, Z. (2020). Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms, 8(9), 1398. https://doi.org/10.3390/microorganisms8091398