Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Newly Obtained Sequences
2.2. Genbank Sequences
2.3. Sequence Analysis
2.3.1. Total Number of Sequences Included
2.3.2. Consensus Definition
2.3.3. Limits of PPR
2.3.4. Amino Acid Composition
2.3.5. Residue Variability
2.3.6. Sequence Homology Analysis
2.3.7. Analysis of Insertions
2.3.8. Regulation Sites Analysis
2.4. Statistical Analysis
3. Results
3.1. PPR-N-Terminal Region
3.2. PPR-C-Terminal Region
3.3. PPR Intermediate Region
3.3.1. Variability and Composition
3.3.2. Length, Deletions and Insertions
3.3.3. Specific Analysis of Newly Obtained HEV-3 Sequences
4. Discussion
5. Conclusions
- We describe PPR length differences between HEV genotypes.
- We describe for the first time the specific location of HEV-3 PPR rearrangements in sites 1 to 14 of the PPR, noting that duplications are more attached to sites 11 and 12 (AAs 74–79 and 113–118, respectively). The cadence of repetitions follows a circular-like pattern of blocks A to J, with blocks F, G, H, and I being the most frequent. Duplicated fragments increase the frequency of potential N-glycosylation sites and negatively charged AAs.
- We identify a previously unreported insertion homologous to apolipoprotein C1 in a chronic patient sample.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aspinall, E.J.; Couturier, E.; Faber, M.; Said, B.; Ijaz, S.; Tavoschi, L.; Takkinen, J.; Adlhoch, C.; The Country, E. Hepatitis E virus infection in Europe: Surveillance and descriptive epidemiology of confirmed cases, 2005 to 2015. Euro Surveill. 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, J.J.; Preiss, J.; Schemmerer, M.; Huber, B.; Plentz, A.; Jilg, W. Detection of hepatitis E virus (HEV) from porcine livers in Southeastern Germany and high sequence homology to human HEV isolates. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2011, 52, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, L.; Wang, L.; Bu, Q.; Fu, H.; Han, J.; Zhu, Y.; Lu, F.; Zhuang, H. Phylogenetic analysis of 626 hepatitis E virus (HEV) isolates from humans and animals in China (1986–2011) showing genotype diversity and zoonotic transmission. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2012, 12, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, J.; Tesse, S.; Lunazzi, A.; Eloit, M.; Rose, N.; Nicand, E.; Pavio, N. Close similarity between sequences of hepatitis E virus recovered from humans and swine, France, 2008–2009. Emerg. Infect. Dis. 2011, 17, 2018–2025. [Google Scholar] [CrossRef]
- Widen, F.; Sundqvist, L.; Matyi-Toth, A.; Metreveli, G.; Belak, S.; Hallgren, G.; Norder, H. Molecular epidemiology of hepatitis E virus in humans, pigs and wild boars in Sweden. Epidemiol. Infect. 2011, 139, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Filho, E.F.; Bank-Wolf, B.R.; Thiel, H.J.; Konig, M. Phylogenetic analysis of hepatitis E virus in domestic swine and wild boar in Germany. Vet. Microbiol. 2014, 174, 233–238. [Google Scholar] [CrossRef]
- Nakano, T.; Takahashi, K.; Arai, M.; Okano, H.; Kato, H.; Ayada, M.; Okamoto, H.; Mishiro, S. Identification of European-type hepatitis E virus subtype 3e isolates in Japanese wild boars: Molecular tracing of HEV from swine to wild boars. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 18, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Boadella, M.; Casas, M.; Martin, M.; Vicente, J.; Segales, J.; de la Fuente, J.; Gortazar, C. Increasing contact with hepatitis E virus in red deer, Spain. Emerg. Infect. Dis. 2010, 16, 1994–1996. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.W.; Smith, M.M.; Guerra, M.E.; Huang, C.C.; Bradley, D.W.; Fry, K.E.; Reyes, G.R. Hepatitis E virus (HEV): Molecular cloning and sequencing of the full-length viral genome. Virology 1991, 185, 120–131. [Google Scholar] [CrossRef]
- Emerson, S.U.; Nguyen, H.T.; Torian, U.; Mather, K.; Firth, A.E. An essential RNA element resides in a central region of hepatitis E virus ORF2. J. Gen. Virol. 2013, 94, 1468–1476. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Gu, H.; Chen, W.; Zeng, M.; Ji, C.; Song, R.; Zhang, G. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein. PLoS ONE 2017, 12, e0184947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.; Takahashi, M.; Hoshino, Y.; Takahashi, H.; Ichiyama, K.; Nagashima, S.; Tanaka, T.; Okamoto, H. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J. Gen. Virol. 2009, 90, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Heller, B.; Capuccino, J.M.; Song, B.; Nimgaonkar, I.; Hrebikova, G.; Contreras, J.E.; Ploss, A. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc. Natl. Acad. Sci. USA 2017, 114, 1147–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koonin, E.V.; Gorbalenya, A.E.; Purdy, M.A.; Rozanov, M.N.; Reyes, G.R.; Bradley, D.W. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: Delineation of an additional group of positive-strand RNA plant and animal viruses. Proc. Natl. Acad. Sci. USA 1992, 89, 8259–8263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purdy, M.A.; Lara, J.; Khudyakov, Y.E. The hepatitis E virus polyproline region is involved in viral adaptation. PLoS ONE 2012, 7, e35974. [Google Scholar] [CrossRef] [Green Version]
- Pudupakam, R.S.; Kenney, S.P.; Cordoba, L.; Huang, Y.W.; Dryman, B.A.; Leroith, T.; Pierson, F.W.; Meng, X.J. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication. J. Virol. 2011, 85, 10031–10040. [Google Scholar] [CrossRef] [Green Version]
- LeDesma, R.; Nimgaonkar, I.; Ploss, A. Hepatitis E Virus Replication. Viruses 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Pudupakam, R.S.; Huang, Y.W.; Opriessnig, T.; Halbur, P.G.; Pierson, F.W.; Meng, X.J. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: Evidence for attenuation of HVR deletion mutants in vivo. J. Virol. 2009, 83, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Chimeno, M.; Forero, J.E.; Echevarria, J.M.; Munoz-Bellido, J.L.; Vazquez-Lopez, L.; Morago, L.; Garcia-Galera, M.C.; Avellon, A. Full coding hepatitis E virus genotype 3 genome amplification method. J. Virol. Methods 2016, 230, 18–23. [Google Scholar] [CrossRef]
- Lhomme, S.; Abravanel, F.; Dubois, M.; Sandres-Saune, K.; Mansuy, J.M.; Rostaing, L.; Kamar, N.; Izopet, J. Characterization of the polyproline region of the hepatitis E virus in immunocompromised patients. J. Virol. 2014, 88, 12017–12025. [Google Scholar] [CrossRef] [Green Version]
- Lhomme, S.; Abravanel, F.; Dubois, M.; Chapuy-Regaud, S.; Sandres-Saune, K.; Mansuy, J.M.; Rostaing, L.; Kamar, N.; Izopet, J. Temporal evolution of the distribution of hepatitis E virus genotypes in Southwestern France. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2015, 35, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Lhomme, S.; Garrouste, C.; Kamar, N.; Saune, K.; Abravanel, F.; Mansuy, J.M.; Dubois, M.; Rostaing, L.; Izopet, J. Influence of polyproline region and macro domain genetic heterogeneity on HEV persistence in immunocompromised patients. J. Infect. Dis. 2014, 209, 300–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johne, R.; Reetz, J.; Ulrich, R.G.; Machnowska, P.; Sachsenroder, J.; Nickel, P.; Hofmann, J. An ORF1-rearranged hepatitis E virus derived from a chronically infected patient efficiently replicates in cell culture. J. Viral Hepat. 2014, 21, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Lhomme, S.; Nicot, F.; Jeanne, N.; Dimeglio, C.; Roulet, A.; Lefebvre, C.; Carcenac, R.; Manno, M.; Dubois, M.; Peron, J.M.; et al. Insertions and Duplications in the Polyproline Region of the Hepatitis E Virus. Front. Microbiol. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, P.; Nguyen, H.T.; Torian, U.; Engle, R.E.; Faulk, K.; Dalton, H.R.; Bendall, R.P.; Keane, F.E.; Purcell, R.H.; Emerson, S.U. Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus-host recombinant. Proc. Natl. Acad. Sci. USA 2011, 108, 2438–2443. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Torian, U.; Faulk, K.; Mather, K.; Engle, R.E.; Thompson, E.; Bonkovsky, H.L.; Emerson, S.U. A naturally occurring human/hepatitis E recombinant virus predominates in serum but not in faeces of a chronic hepatitis E patient and has a growth advantage in cell culture. J. Gen. Virol. 2012, 93, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.; Nguyen, H.T.; Faulk, K.; Mather, K.; Torian, U.; Engle, R.E.; Emerson, S.U. Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J. Virol. 2012, 86, 5697–5707. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.B.; Izopet, J.; Nicot, F.; Simmonds, P.; Jameel, S.; Meng, X.J.; Norder, H.; Okamoto, H.; van der Poel, W.H.M.; Reuter, G.; et al. Update: Proposed reference sequences for subtypes of hepatitis E virus (species Orthohepevirus A). J. Gen. Virol. 2020. [Google Scholar] [CrossRef]
- Purdy, M.A. Evolution of the hepatitis E virus polyproline region: Order from disorder. J. Virol. 2012, 86, 10186–10193. [Google Scholar] [CrossRef] [Green Version]
- Depaoli-Roach, A.A.; Park, I.K.; Cerovsky, V.; Csortos, C.; Durbin, S.D.; Kuntz, M.J.; Sitikov, A.; Tang, P.M.; Verin, A.; Zolnierowicz, S. Serine/threonine protein phosphatases in the control of cell function. Adv. Enzym. Regul. 1994, 34, 199–224. [Google Scholar] [CrossRef]
- Chen, Z.; Gowan, K.; Leach, S.M.; Viboolsittiseri, S.S.; Mishra, A.K.; Kadoishi, T.; Diener, K.; Gao, B.; Jones, K.; Wang, J.H. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing. Bmc Genom. 2016, 17, 823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicot, F.; Jeanne, N.; Roulet, A.; Lefebvre, C.; Carcenac, R.; Manno, M.; Dubois, M.; Kamar, N.; Lhomme, S.; Abravanel, F.; et al. Diversity of hepatitis E virus genotype 3. Rev. Med Virol. 2018, 28, e1987. [Google Scholar] [CrossRef] [PubMed]
- Fedele, C.G.; Ciardi, M.R.; Delia, S.; Contreras, G.; Perez, J.L.; De Ona, M.; Vidal, E.; Tenorio, A. Identical rearranged forms of JC polyomavirus transcriptional control region in plasma and cerebrospinal fluid of acquired immunodeficiency syndrome patients with progressive multifocal leukoencephalopathy. J. Neurovirol. 2003, 9, 551–558. [Google Scholar] [CrossRef]
- Gosert, R.; Kardas, P.; Major, E.O.; Hirsch, H.H. Rearranged JC virus noncoding control regions found in progressive multifocal leukoencephalopathy patient samples increase virus early gene expression and replication rate. J. Virol. 2010, 84, 10448–10456. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Ren, L.; Abenes, G.; Hai, R. Genome sequence divergences and functional variations in human cytomegalovirus strains. Fems Immunol. Med. Microbiol. 2009, 55, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Gao, P.; Kong, C.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. The nsp2 Hypervariable Region of Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06 Is Associated with Viral Cellular Tropism to Primary Porcine Alveolar Macrophages. J. Virol. 2019, 93. [Google Scholar] [CrossRef]
- Yun, S.I.; Choi, Y.J.; Song, B.H.; Lee, Y.M. 3’ cis-acting elements that contribute to the competence and efficiency of Japanese encephalitis virus genome replication: Functional importance of sequence duplications, deletions, and substitutions. J. Virol. 2009, 83, 7909–7930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshaghi, A.; Duvvuri, V.R.; Lai, R.; Nadarajah, J.T.; Li, A.; Patel, S.N.; Low, D.E.; Gubbay, J.B. Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: A novel genotype with a 72 nucleotide G gene duplication. PLoS ONE 2012, 7, e32807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Qiao, L.; Luo, G. Characterization of apolipoprotein C1 in hepatitis C virus infection and morphogenesis. Virology 2018, 524, 1–9. [Google Scholar] [CrossRef]
- Yuan, T.; Li, J.; Zhang, M.Y. HIV-1 envelope glycoprotein variable loops are indispensable for envelope structural integrity and virus entry. PLoS ONE 2013, 8, e69789. [Google Scholar] [CrossRef] [Green Version]
- Prentoe, J.; Bukh, J. Hypervariable Region 1 in Envelope Protein 2 of Hepatitis C Virus: A Linchpin in Neutralizing Antibody Evasion and Viral Entry. Front. Immunol. 2018, 9, 2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozzi, A.; Forni, D.; Cagliani, R.; Clerici, M.; Pozzoli, U.; Sironi, M. Intrinsically disordered regions are abundant in simplexvirus proteomes and display signatures of positive selection. Virus Evol. 2020, 6, veaa028. [Google Scholar] [CrossRef] [PubMed]
- Szkolnicka, D.; Pollan, A.; Da Silva, N.; Oechslin, N.; Gouttenoire, J.; Moradpour, D. Recombinant Hepatitis E Viruses Harboring Tags in the ORF1 Protein. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEV-1 | H | V | W | E | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | E | V | D | A | V | S | S | P | A | R | P |
HEV-2 | H | E | W | R | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | T | - | I | T | - | - | - | - | D | T | P |
HEV-3 * | H | L | W | E | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | T | - | S | G | F | S | S | C | F | S | P |
HEV-4 | H | S | W | E | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | V | - | S | G | F | S | S | C | F | S | P |
HEV-5 | H | K | W | E | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | T | - | S | G | F | S | S | N | F | S | P |
HEV-6 | H | K | W | E | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | T | - | S | G | F | S | S | S | F | S | P |
HEV-7 | H | I | W | D | S | A | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | V | - | S | G | F | S | S | D | F | A | P |
HEV-8 | H | V | W | D | S | N | N | P | F | C | G | E | S | T | L | Y | T | R | T | W | S | T | - | S | G | F | S | S | N | F | S | P |
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | |
---|---|---|---|---|---|---|---|---|---|
HEV-1 | R | R | L | L | F | T | Y | P | D |
HEV-2 | R | R | L | L | H | T | Y | P | D |
HEV-3 * | R | R | L | L | Y | T | Y | P | D |
HEV-4 | R | R | L | L | H | T | Y | P | D |
HEV-5 | R | R | L | L | H | A | Y | P | D |
HEV-6 | R | R | L | L | H | T | Y | P | D |
HEV-7 | R | R | L | L | F | T | Y | P | D |
HEV-8 | R | R | L | L | H | V | Y | P | D |
PRP(1)+RdRp (3f) | 1AA (3c, 3-Unk) | ApoC1 (3f) | RPS17(1) (3f) | RPL6(1) (3m) RPS19(1) (3a) RNF19A(1) (3h) | RPS17(1) (3a) PPR(1)+RdRp (3c) | PPR (3e, 3f) EEF1a1P13(1) | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||||||||||||||||||||||||||||||||||||||
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | |
HEV-1 | D | L | G | F | M | S | E | P | S | I | P | S | R | A | A | T | P | T | P | A | A | P | L | P | P | P | A | P | D | P | S | P | |||||||||||||||||
HEV-2 | L | T | V | G | L | I | S | G | H | L | D | A | A | P | H | S | G | G | P | P | A | T | A | T | G | P | A | V | G | S | S | D | S | P | D | P | D | P | |||||||||||
HEV-3 | P | E | A | A | Y | A | A | P | A | P | D | M | G | L | P | S | G | T | P | S | S | A | S | D | I | W | V | L | P | P | P | S | E | G | S | A | I | D | P | ||||||||||
HEV-4 | L | E | P | C | A | P | D | L | P | P | P | V | E | T | D | T | P | V | A | V | D | V | P | P | P | A | T | S | A | Q | P | Q | P | P | A | P | E | R | A | A | P | ||||||||
HEV-5 | F | E | T | G | A | A | D | Q | P | P | G | V | G | A | V | V | L | S | A | E | A | A | R | P | P | V | V | T | L | P | P | A | S | P | K | L | Q | A | N | L | K | ||||||||
HEV-6 | X | X | X | D | X | V | D | A | P | P | A | A | X | X | T | X | X | X | X | X | I | X | X | X | P | X | X | X | M | S | X | X | X | X | A | ||||||||||||||
HEV-7 | V | G | X | S | X | X | A | P | X | X | X | X | X | X | X | X | C | X | P | P | P | X | S | X | Q | X | X | X | Q | P | X | ||||||||||||||||||
HEV-8 | P | E | A | X | L | X | K | P | X | X | V | X | C | E | P | X | G | P | L | L | X | X | T | X | X | X | X | X | G | A | P | T | E | A | X | X |
ZNF787(1) (3f) GATM(1) (3f) RNA18S(1) (3f) | ITIH2(1) (3f) | KIF1B (3f) | PPR (3a, 3f, 3, 3j) | PPR (3e(1), 3c, 3f(1)) PPR (3f-long) TRANSPEPTIDASE, SUBSTRATE BINDING DOMAIN AND SYNTHASE (3f) | ||||||||||||||||||||||||||||||||||||||||||||
8 | 9 | 10 | 11 | 12 | 1AA 4c, 4d, 4a | 1AA (2a) | ||||||||||||||||||||||||||||||||||||||||||
13 | 14 | |||||||||||||||||||||||||||||||||||||||||||||||
82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | |
HEV-1 | P | P | S | A | P | A | P | D | E | P | A | S | G | T | T | A | G | A | P | A | I | T | H | Q | T | A | R | H | ||||||||||||||||||||
HEV-2 | L | P | D | V | T | D | G | S | R | P | S | G | A | R | P | A | G | P | N | P | N | G | V | P | ||||||||||||||||||||||||
HEV-3 | P | P | V | T | P | V | S | K | P | A | N | P | P | S | P | T | T | P | R | P | P | V | R | K | P | P | T | P | P | P | A | R | N | |||||||||||||||
HEV-4 | P | P | D | L | V | D | G | G | A | X | P | A | L | P | S | A | S | V | A | P | P | A | P | A | Q | P | V | X | P | S | G | P | R | |||||||||||||||
HEV-5 | E | N | E | R | A | A | D | G | G | S | A | A | P | V | A | A | V | P | C | P | Q | P | P | A | Q | P | V | G | R | L | F | C | A | G | ||||||||||||||
HEV-6 | X | G | X | X | X | P | X | P | A | X | X | X | P | X | X | X | P | X | X | X | E | A | X | X | P | X | P | Q | X | X | X | X | S | X | A | X | X | X | X | A | X | |||||||
HEV-7 | Q | X | P | X | P | X | X | X | X | X | P | X | X | P | X | X | X | X | S | X | X | X | P | A | Q | G | X | X | X | X | V | X | R | N | ||||||||||||||
HEV-8 | X | V | I | X | P | L | X | A | H | S | X | S | A | G | V | A | E | T | T | S | A | R | P | X | E | X | T | P | X | P | G | P | X | X | R | G |
Blocks | A | B | C | D | E | F | G | H | I | J | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Positions | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 87 | 88 | 89 | 90 | 94 | 95 | 97 | 98 | 99 | 100 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | ||||||
HEV | I | W | V | L | P | P | P | S | E | G | S | A | I | D | P | P | P | V | T | P | V | S | K | P | A | N | P | P | S | P | T | T | P | R | P | P | V | R | K | P | P | T | P | P | P | A | R | N | ||||||
KC618402 KC618403 | 74 | B | C | D | E | F | G | a | 75 | |||||||||||||||||||||||||||||||||||||||||||||
MH184580 MH184581 | 78 | C | D | E | F | G | B | 79 | ||||||||||||||||||||||||||||||||||||||||||||||
MF444088 MF444098 KJ917758 | 78 | C | D | E | F | G | 79 | |||||||||||||||||||||||||||||||||||||||||||||||
n = 35 | 113 | I | 114 | 113 | ||||||||||||||||||||||||||||||||||||||||||||||||||
FJ956757 | 113 | G | 114 | |||||||||||||||||||||||||||||||||||||||||||||||||||
EU495180 | 113 | G | H | I | F | 114 | ||||||||||||||||||||||||||||||||||||||||||||||||
MF444107 | 113 | G | H | I | J | F | 114 | |||||||||||||||||||||||||||||||||||||||||||||||
MF444036 MF444137 | 113 | G | H | I | J | F | 114 | |||||||||||||||||||||||||||||||||||||||||||||||
n = 6 | 117 | H | I | 118 | ||||||||||||||||||||||||||||||||||||||||||||||||||
KJ917712 | 117 | H | I | F | G | 118 | ||||||||||||||||||||||||||||||||||||||||||||||||
MT899272 | 117 | H | I | J | F | G | 118 | |||||||||||||||||||||||||||||||||||||||||||||||
n = 189 | 117 | H | I | J | F | G | 118 | |||||||||||||||||||||||||||||||||||||||||||||||
KJ917720 | 117 | H | I | J | e | F | 118 | |||||||||||||||||||||||||||||||||||||||||||||||
KJ917704 | 117 | H | I | J | b | d | F | G | 118 | |||||||||||||||||||||||||||||||||||||||||||||
MF444086 | 117 | H | c | A | B | C | D | E | F | G | 118 | |||||||||||||||||||||||||||||||||||||||||||
MN646690 MN646691 | 117 | H | I | J | b | A | B | C | D | E | F | G | 118 | |||||||||||||||||||||||||||||||||||||||||
KJ917717 | 117 | H | I | J | F | G | H | I | J | b | E | F | G | H | I | J | F | G | 118 |
Regulation Sites and AA Composition | Sequences with Human Fragment Insertions (n = 3) | Sequences with HEV Genome Duplication (n = 91) | Sequences without Insertions/DUPLICATIONS (n = 51) | p (Insertion/No Insertion) | p (Duplication/No Duplication) |
---|---|---|---|---|---|
Positively charged AA (%) | 4.2 | 2.5 | 2.8 | <0.05 | NS |
Negatively charged AA (%) | 3.5 | 4.1 | 2.8 | NS | <0.05 |
Polar AA (%) | 3.6 | 3.2 | 4.3 | NS | <0.05 |
Hydrophobic AA (%) | 6.8 | 7.6 | 7.1 | <0.05 | <0.05 |
Aromatic AA (%) | 0.99 | 0.8 | 1.0 | <0.05 | <0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Chimeno, M.; Cenalmor, A.; Garcia-Lugo, M.A.; Hernandez, M.; Rodriguez-Lazaro, D.; Avellon, A. Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder. Microorganisms 2020, 8, 1417. https://doi.org/10.3390/microorganisms8091417
Muñoz-Chimeno M, Cenalmor A, Garcia-Lugo MA, Hernandez M, Rodriguez-Lazaro D, Avellon A. Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder. Microorganisms. 2020; 8(9):1417. https://doi.org/10.3390/microorganisms8091417
Chicago/Turabian StyleMuñoz-Chimeno, Milagros, Alejandro Cenalmor, Maira Alejandra Garcia-Lugo, Marta Hernandez, David Rodriguez-Lazaro, and Ana Avellon. 2020. "Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder" Microorganisms 8, no. 9: 1417. https://doi.org/10.3390/microorganisms8091417
APA StyleMuñoz-Chimeno, M., Cenalmor, A., Garcia-Lugo, M. A., Hernandez, M., Rodriguez-Lazaro, D., & Avellon, A. (2020). Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder. Microorganisms, 8(9), 1417. https://doi.org/10.3390/microorganisms8091417