The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules
Abstract
:1. Bioprospecting in Polar Environments
2. Biotechnologically Relevant Molecules
2.1. Biosurfactants (BSs)
2.1.1. BS Producers from Abiotic Matrices
2.1.2. BS Producers from Biotic Matrices
2.2. Extracellular Polymeric Substances (EPSs)
2.2.1. EPS Producers from Abiotic Matrices
2.2.2. EPS Producers from Biotic Matrices
2.3. Antibiotics (Abs)
2.3.1. Abs Producers from Abiotic Matrices
2.3.2. Abs Producers from Biotic Matrices
2.4. Cold-Enzymes
2.4.1. Cold-Enzyme Producers from Abiotic Matrices
2.4.2. Cold-Enzyme Producers from Biotic Matrices
3. Biodiversity and Ecological Role in Cold Environments
4. Methodological Approach on Polar Environments for Bioprospectors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borchert, E.; Jackson, S.A.; O’Gara, F.; Dobson, A.D.W. Psychrophiles as a Source of Novel Antimicrobials. In Psychrophiles: From Biodiversity to Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 527–540. [Google Scholar]
- Perfumo, A.; Banat, I.M.; Marchant, R. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications. Trends Biotechnol. 2018, 36, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Bakermans, C. Determining the Limits of Microbial Life at Subzero Temperatures. In Psychrophiles: From Biodiversity to Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 21–38. [Google Scholar]
- Giudice, A.L.; Rizzo, C. Bacteria Associated with Marine Benthic Invertebrates from Polar Environments: Unexplored Frontiers for Biodiscovery? Diversity 2018, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, D.; De Santi, C.; Fu, J.; Landfald, B. The microbial diversity of Polar environments is a fertile ground for bioprospecting. Mar. Genom. 2012, 8, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Watt, W.B.; Dean, A.M. Molecular-Functional Studies of Adaptive Genetic Variation in Prokaryotes and Eukaryotes. Annu. Rev. Genet. 2000, 34, 593–622. [Google Scholar] [CrossRef] [PubMed]
- Leary, D. Bioprospecting in the Arcti; United Nation University-Institute of Advanced Study Report (UNU-IAS 2008 Report): Nishi-ku, Yokohama, Japan; pp. 1–45.
- Liu, J.-T.; Lu, X.-L.; Liu, X.-Y.; Gao, Y.; Hu, B.; Jiao, B.-H.; Zheng, H. Bioactive natural products from the antarctic and arctic organisms. Mini-Reviews Med. Chem. 2013, 13, 617–626. [Google Scholar] [CrossRef]
- Msc, J.B.L.D.M.; Quintero, M.G.; Vizcaíno, A.L.G.; Cáceres, D.C.J.; Riaño, S.M.G.; García, J.M. Bioremediación de suelos contaminados con hidrocarburos derivados del petróleo. Nova 2006, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Canals, M.V. Biorremediación de suelos contaminados por hidrocarburos: Caracterización microbiológica, química y ecotoxicológica hidrocarburos: Caracterización microbiológica, química y ecotoxicológica. Microbiol. Madrid. 2005, 352, 48. [Google Scholar]
- Ruberto, L.; Vazquez, S.; Lo Balbo, A.; Mac Cormack, W. Biorremediación de suelos contaminados con hidrocarburos utilizando bacterias antarticas sicrotolerantes. Actas del V Simp. Argent. 2004, 1. [Google Scholar]
- Lamilla, C.; Braga, D.; Castro, R.; Guimarães, C.; De Castilho, L.V.A.; Freire, D.M.G.; Barrientos, L. Streptomyces luridus So3.2 from Antarctic soil as a novel producer of compounds with bioemulsification potential. PLoS ONE 2018, 13, e196054. [Google Scholar] [CrossRef]
- De Santi, C.; Altermark, B.; De Pascale, D.; Willassen, N.-P. Bioprospecting around Arctic islands: Marine bacteria as rich source of biocatalysts. J. Basic Microbiol. 2015, 56, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Janek, T.; Łukaszewicz, M.; Krasowska, A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf. B Biointerfaces 2013, 110, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-L.; Zhao, F.; Shi, M.; Zhang, X.-Y.; Zhou, B.-C.; Zhang, Y.-Z.; Chen, X.-L. Characterization and Biotechnological Potential Analysis of a New Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127. Sci. Rep. 2015, 5, 18435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiran, G.S.; Thomas, T.A.; Selvin, J.; Sabarathnam, B.; Lipton, A. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour. Technol. 2010, 101, 2389–2396. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, C.; Rappazzo, A.C.; Michaud, L.; De Domenico, E.; Rochera, C.; Camacho, A.; Giudice, A.L. Efficiency in hydrocarbon degradation and biosurfactant production by Joostella sp. A8 when grown in pure culture and consortia. J. Environ. Sci. 2018, 67, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Graziano, M.; Rizzo, C.; Michaud, L.; Porporato, E.; De Domenico, E.; Spanò, N.; Giudice, A.L. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea penPteroeides spinosum(Ellis, 1764). J. Basic Microbiol. 2016, 56, 963–974. [Google Scholar] [CrossRef]
- Rizzo, C.; Michaud, L.; Hörmann, B.; Gerçe, B.; Syldatk, C.; Hausmann, R.; De Domenico, E.; Giudice, A.L. Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar. Pollut. Bull. 2013, 70, 125–133. [Google Scholar] [CrossRef]
- Rizzo, C.; Michaud, L.; Syldatk, C.; Hausmann, R.; De Domenico, E.; Giudice, A.L. Influence of salinity and temperature on the activity of biosurfactants by polychaete-associated isolates. Environ. Sci. Pollut. Res. 2013, 21, 2988–3004. [Google Scholar] [CrossRef]
- Rizzo, C.; Michaud, L.; Graziano, M.; De Domenico, E.; Syldatk, C.; Hausmann, R.; Giudice, A.L. Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906). Ecotoxicology 2015, 24, 1294–1304. [Google Scholar] [CrossRef]
- Cao, X.-H.; Liao, Z.; Wang, C.-L.; Cai, P.; Yang, W.-Y.; Lu, M.-F.; Huang, G.-W. Purification and antitumour activity of a lipopeptide biosurfactant produced by Bacillus natto TK-1. Biotechnol. Appl. Biochem. 2009, 52, 97–106. [Google Scholar] [CrossRef]
- Mukherjee, S.; Das, P.; Sen, R. Towards commercial production of microbial surfactants. Trends Biotechnol. 2006, 24, 509–515. [Google Scholar] [CrossRef]
- Remichkova, M.; Galabova, D.; Roeva, I.; Karpenko, E.; Shulga, A.; Galabov, A.S. Anti-Herpesvirus Activities of Pseudomonas sp. S-17 Rhamnolipid and its Complex with Alginate. Z. für Nat. C 2008, 63, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hester, K.C.; Brewer, P. Clathrate Hydrates in Nature. Annu. Rev. Mar. Sci. 2009, 1, 303–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, C.; Giudice, A.L. Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. Diversity 2018, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Ewert, M.; Deming, J.W. Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses. Boilogy 2013, 2, 603–628. [Google Scholar] [CrossRef]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big Effects from Small Changes: Possible Ways to Explore Nature’s Chemical Diversity. ChemBioChem 2002, 3, 619. [Google Scholar] [CrossRef]
- Kristoffersen, V.; Rämä, T.; Isaksson, J.; Andersen, J.H.; Gerwick, W.H.; Hansen, E. Characterization of Rhamnolipids Produced by an Arctic Marine Bacterium from the Pseudomonas fluorescence Group. Mar. Drugs 2018, 16, 163. [Google Scholar] [CrossRef] [Green Version]
- Tiso, T.; Sabelhaus, P.; Behrens, P.; Wittgens, A.; Rosenau, F.; Hayen, H.; Blanka, L.M. Creating metabolic demand as an engineering strategy in Pseudomonas putida—rhamnolipid synthesis as an example. Metab. Eng. Commun. 2016, 3, 234–244. [Google Scholar] [CrossRef]
- Gesheva, V.; Negoita, T. Psychrotrophic microorganism communities in soils of Haswell Island, Antarctica, and their biosynthetic potential. Polar Biol. 2011, 35, 291–297. [Google Scholar] [CrossRef]
- Sigurbjornsdottir, M.A.; Vilhelmsson, O. Selective isolation of potentially phosphate-mobilizing, biosurfactant-producing and biodegradative bacteria associated with a sub-Arctic, terricolous lichen, Peltigera membranacea. FEMS Microbiol. Ecol. 2016, 92, 90. [Google Scholar] [CrossRef] [Green Version]
- Kubicki, S.; Bollinger, A.; Katzke, N.; Jaeger, K.-E.; Loeschcke, A.; Thies, S. Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar. Drugs 2019, 17, 408. [Google Scholar] [CrossRef] [Green Version]
- Irorere, V.; Tripathi, L.; Marchant, R.; McClean, S.; Banat, I.M. Microbial rhamnolipid production: A critical re-evaluation of published data and suggested future publication criteria. Appl. Microbiol. Biotechnol. 2017, 101, 3941–3951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malavenda, R.; Rizzo, C.; Michaud, L.; Gerçe, B.; Bruni, V.; Syldatk, C.; Hausmann, R.; Giudice, A.L. Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol. 2015, 38, 1565–1574. [Google Scholar] [CrossRef]
- Coronel-León, J.; De Grau, G.; Grau-Campistany, A.; Farfán, M.; Rabanal, F.; Manresa, A.; Marqués, A.M.; Grau-Campistany, A. Biosurfactant production by AL 1.1, a Bacillus licheniformis strain isolated from Antarctica: Production, chemical characterization and properties. Ann. Microbiol. 2015, 65, 2065–2078. [Google Scholar] [CrossRef]
- Muthusamy, K.; Gopalakrishnan, S.; Ravi, T.K.; Sivachidambaram, P. Biosurfactants: Properties, commercial production and application. Curr. Sci. 2008, 94, 736–747. [Google Scholar]
- Vollú, R.E.; Jurelevicius, D.; Ramos, L.R.; Peixoto, R.S.; Rosado, A.S.; Seldin, L. Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biol. 2014, 37, 1121–1131. [Google Scholar] [CrossRef]
- Gesheva, V.; Stackebrandt, E.; Vasileva-Tonkova, E. Biosurfactant Production by Halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr. Microbiol. 2010, 61, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Pepi, M.; Ro, A.C.; Liut, G.; Baldi, F. An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid. FEMS Microbiol. Ecol. 2005, 53, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Teixeira, J.A. Biomedical and therapeutic applications of biosurfactants. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 672, pp. 75–87. [Google Scholar]
- Jadhav, V.V.; Yadav, A.; Shouche, Y.S.; Aphale, S.; Moghe, A.; Pillai, S.; Arora, A.; Bhadekar, R. Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from Antarctic sea water. Desalination 2013, 318, 64–71. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Giuliano, L.; Bruni, V.; Scarfì, S.; Golyshin, P.N. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 1999, 22, 249–259. [Google Scholar]
- Pini, F.; Grossi, C.; Nereo, S.; Michaud, L.; Giudice, A.L.; Bruni, V.; Baldi, F.; Fani, R. Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). Eur. J. Soil Biol. 2007, 43, 368–379. [Google Scholar] [CrossRef]
- Trudgeon, B.; Dieser, M.; Balasubramanian, N.; Messmer, M.; Foreman, C.M. Low-Temperature Biosurfactants from Polar Microbes. Microorganisms 2020, 8, 1183. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, P.; Maida, I.; Esposito, F.P.; Tortorella, E.; Subko, K.; Ezeofor, C.C.; Zhang, Y.; Tabudravu, J.; Jaspars, M.; Fani, R.; et al. Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica). Mar. Drugs 2016, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Parhi, P.; Jadhav, V.V.; Bhadekar, R. Increase in production of biosurfactant from Oceanobacillus sp. BRI 10 using low cost substrates. Songklanakarin J. Sci. Technol. 2016, 38, 207–211. [Google Scholar]
- Corradini, D.; Strekalova, E.G.; Stanley, H.E.; Gallo, P. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose. Sci. Rep. 2013, 3, 1218. [Google Scholar] [CrossRef]
- Vasileva-Tonkova, E.; Gesheva, V. Potential for Biodegradation of Hydrocarbons by Microorganisms Isolated from Antarctic Soils. Zeitschrift für Naturforschung C 2004, 59, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Vasileva-Tonkova, E.; Gesheva, V. Biosurfactant Production by Antarctic Facultative Anaerobe Pantoea sp. During Growth on Hydrocarbons. Curr. Microbiol. 2007, 54, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Janek, T.; Łukaszewicz, M.; Řezanka, T.; Krasowska, A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol. 2010, 101, 6118–6123. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Griebe, T.; Mayer, C. Physico-Chemical properties of Biofilms. In Biofilms: Recent Advances in Their Study and Control; Evans, L.V., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 19–34. ISBN 978-9058230935. [Google Scholar]
- Kumar, A.S.; Mody, K.; Jha, B. Bacterial exopolysaccharides—A perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 2002, 12, 163–171. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Giudice, A.L. Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ. Sci. Pollut. Res. 2017, 25, 4667–4677. [Google Scholar] [CrossRef]
- Nicolaus, B.; Kambourova, M.; Öner, E.T. Exopolysaccharides from extremophiles: From fundamentals to biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial Exopolysaccharides from Extreme Marine Habitats: Production, Characterization and Biological Activities. Mar. Drugs 2010, 8, 1779–1802. [Google Scholar] [CrossRef]
- Carrión, O.; Delgado, L.; Mercade, E. New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym. 2015, 117, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, M.M.; Lanzetta, R.; Parrilli, E.; Parrilli, M.; Tutino, M.L.; Ummarino, S. Influence of Growth Temperature on Lipid and Phosphate Contents of Surface Polysaccharides from the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC 125. J. Bacteriol. 2004, 186, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Yim, J.H. Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J. Microbiol. 2007, 45, 510–514. [Google Scholar]
- Nichols, C.M.; Garon, S.; Bowman, J.P.; Raguenes, G.; Guezennec, J. Production of exopolysaccharides by Antarctic marine bacterial isolates. J. Appl. Microbiol. 2004, 96, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.M.; Bowman, J.P.; Guezennec, J. Effects of Incubation Temperature on Growth and Production of Exopolysaccharides by an Antarctic Sea Ice Bacterium Grown in Batch Culture. Appl. Environ. Microbiol. 2005, 71, 3519–3523. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.M.; Lardière, S.G.; Bowman, J.P.; Nichols, P.D.; Gibson, J.A.; Guezennec, J. Chemical Characterization of Exopolysaccharides from Antarctic Marine Bacteria. Microb. Ecol. 2005, 49, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Krembs, C.; Eicken, H.; Junge, K.; Deming, J. High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep. Sea Res. Part. I: Oceanogr. Res. Pap. 2002, 49, 2163–2181. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Finore, I.; Di Marco, G.; Michaud, L.; Giudice, A.L. Isolation, characterization and optimization of EPSs produced by a cold-adapted Marinobacter isolate from Antarctic seawater. Antarct. Sci. 2019, 31, 69–79. [Google Scholar] [CrossRef]
- Rizzo, C.; Conte, A.; Azzaro, M.; Papale, M.; Rappazzo, A.C.; Battistel, D.; Roman, M.; Giudice, A.L.; Guglielmin, M. Cultivable Bacterial Communities in Brines from Perennially Ice-Covered and Pristine Antarctic Lakes: Ecological and Biotechnological Implications. Microorganisms 2020, 8, 819. [Google Scholar] [CrossRef]
- Sathiyanarayanan, G.; Yi, D.-H.; Bhatia, S.K.; Jeong, D.; Jung, S.; Yang, Y.-H.; Kim, J.-H.; Seo, H.M.; Park, S.-H.; Lee, Y.K. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv. 2015, 5, 84492–84502. [Google Scholar] [CrossRef]
- Liu, S.-B.; Chen, X.-L.; He, H.-L.; Zhang, X.-Y.; Xie, B.-B.; Yu, Y.; Chen, B.; Zhou, B.-C.; Zhang, Y.-Z. Structure and Ecological Roles of a Novel Exopolysaccharide from the Arctic Sea Ice Bacterium Pseudoalteromonas sp. Strain SM20310. Appl. Environ. Microbiol. 2012, 79, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, J.G.; Carpenter, S.D.; Deming, J.W. Production of cryoprotectant extracellular polysaccharide substance (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 2009, 55, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kim, B.-G.; Park, H.J.; Yim, J.H. Cryoprotective Properties and Preliminary Characterization of Exopolysaccharide (P-ArcPo 15) Produced by the Arctic Bacterium Pseudoalteromonas elyakovii ArcPo 15. Prep. Biochem. Biotechnol. 2016, 46, 261–266. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Finore, I.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Giudice, A.L. Production and Biotechnological Potential of Extracellular Polymeric Substances from Sponge-Associated Antarctic Bacteria. Appl. Environ. Microbiol. 2017, 84, e01624-17. [Google Scholar] [CrossRef] [Green Version]
- Papaleo, M.C.; Fondi, M.; Maida, I.; Perrin, E.; Giudice, A.L.; Michaud, L.; Mangano, S.; Bartolucci, G.; Romoli, R.; Fani, R. Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol. Adv. 2012, 30, 272–293. [Google Scholar] [CrossRef]
- Li, J.W.-H.; Vederas, J.C. Drug Discovery and Natural Products: End of an Era or an Endless Frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, A.; Sharp, R.; Russell, N.J.; Roller, S. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol. Ecol. 2004, 48, 157–167. [Google Scholar] [CrossRef]
- Ravot, G.; Masson, J.-M.; Lefèvre, F. 34 Applications of Extremophiles: The Industrial Screening of Extremophiles for Valuable Biomolecules. Methods Microbiol. 2006, 35, 785–813. [Google Scholar] [CrossRef]
- Giudice, A.L.; Bruni, V.; Michaud, L. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J. Basic Microbiol. 2007, 47, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.A.; Gómez, F.F.; Delgado, O.D. Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 2008, 13, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, L.A.; Hedström, M.; Delgado, M.; Delgado, O. Production, purification and characterization of serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J. Appl. Microbiol. 2010, 109, 936–945. [Google Scholar] [CrossRef]
- Giudice, A.L.; Fani, R. Cold-adapted bacteria from a coastal area of the Ross Sea (Terra Nova Bay, Antarctica): Linking microbial ecology to biotechnology. Hydrobiology 2015, 761, 417–441. [Google Scholar] [CrossRef]
- Giudice, A.L.; Fani, R. Antimicrobial Potential of Cold-Adapted Bacteria and Fungi from Polar Regions. In Grand Challenges in Fungal Biotechnology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, pp. 83–115. [Google Scholar]
- Moncheva, P.; Tishkov, S.; Dimitrova, N.; Chipeva, V.; Antonova-Nikolova, S.; Bogatzevska, N. Characteristics of soil actinomycetes from Antarctica. J. Cult. Collect. 2002, 3, 3–14. [Google Scholar]
- Nedialkova, D.; Naidenova, M. Screening the antimicrobial activity of Actinomycetes strains isolated from Antarctica. J. Cult. Collect. 2004, 4, 29–35. [Google Scholar]
- De Souza, M.-J.; Nair, S.; Bharathi, P.A.L.; Chandramohan, D. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 2006, 15, 379–384. [Google Scholar] [CrossRef]
- Biondi, N.; Tredici, M.R.; Taton, A.; Wilmotte, A.; Hodgson, D.; Losi, D.; Marinelli, F. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J. Appl. Microbiol. 2008, 105, 105–115. [Google Scholar] [CrossRef]
- Shekh, R.M.; Singh, P.; Singh, S.M.; Roy, U. Antifungal activity of Arctic and Antarctic bacteria isolates. Polar Biol. 2010, 34, 139–143. [Google Scholar] [CrossRef]
- Solecka, J.; Zajko, J.; Postek, M.; Rajnisz, A. Biologically active secondary metabolites from Actinomycetes. Open Life Sci. 2012, 7, 373–390. [Google Scholar] [CrossRef]
- Dong, N.; Di, Z.; Yu, Y.; Yuan, M.; Zhang, X.; Li, H. Extracellular enzyme activity and antimicrobial activity of culturable bacteria isolated from soil of Grove Mountains, East Antarctica. Acta Microbiol. Sin. 2013, 53, 1295–1306. [Google Scholar]
- Encheva, M.; Zaharieva, N.; Kenarova, A.; Chipev, N.; Chipeva, V.; Hristova, P.; Ivanova, I.; Moncheva, P. Abundance and activity of soil actinomycetes from Livingston Island, Antarctica. Bulg. J. Agric. Sci. 2013, 19, 68–71. [Google Scholar]
- Asencio, G.; Lavin, P.; Alegría, K.; Domínguez, M.; Bello-Toledo, H.; González-Rocha, G.; Gonzalez-Aravena, M. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electron. J. Biotechnol. 2014, 17, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mangano, S.; Michaud, L.; Caruso, C.; Brilli, M.; Bruni, V.; Fani, R.; Giudice, A.L. Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: A preliminary analysis. Res. Microbiol. 2009, 160, 27–37. [Google Scholar] [CrossRef]
- Brinkmeyer, R.; Knittel, K.; Jürgens, J.; Weyland, H.; Amann, R.; Helmke, E. Diversity and Structure of Bacterial Communities in Arctic versus Antarctic Pack Ice. Appl. Environ. Microbiol. 2003, 69, 6610–6619. [Google Scholar] [CrossRef] [Green Version]
- Newton, R.J.; E. Griffin, L.; Bowles, K.M.; Meile, C.; Gifford, S.M.; E Givens, C.; Howard, E.C.; King, E.; Oakley, C.A.; Reisch, C.R.; et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010, 4, 784–798. [Google Scholar] [CrossRef] [Green Version]
- Al-Zereini, W.; Schuhmann, I.; Laatsch, H.; Helmke, E.; Anke, H. New aromatic nitro compounds from Salegentibacter sp. T436, an Arctic Sea ice bacterium: Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2007, 60, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Wiese, J.; Thiel, V.; Nagel, K.; Staufenberger, T.; Imhoff, J.F. Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea. Mar. Biotechnol. 2008, 11, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Mergaert, J.; Verhelst, A.n.; Cnockaert, M.C.; Tan, T.L.; Swings, J. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst. Appl. Microbiol. 2001, 24, 98–107. [Google Scholar] [CrossRef]
- Bowman, J.P. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 2007, 5, 220–241. [Google Scholar] [CrossRef]
- Gram, L.; Melchiorsen, J.; Bruhn, J.B. Antibacterial Activity of Marine Culturable Bacteria Collected from a Global Sampling of Ocean Surface Waters and Surface Swabs of Marine Organisms. Mar. Biotechnology 2009, 12, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.R.; Mincer, T.J.; Williams, P.G.; Fenical, W. Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek 2005, 87, 43–48. [Google Scholar] [CrossRef]
- Martens, T.; Gram, L.; Grossart, H.-P.; Kessler, D.; Müller, R.; Simon, M.; Wenzel, S.C.; Brinkhoff, T. Bacteria of the Roseobacter Clade Show Potential for Secondary Metabolite Production. Microb. Ecol. 2007, 54, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Danilovich, M.E.; Sánchez, L.A.; Acosta, F.; Delgado, O.D. Antarctic bioprospecting: In pursuit of microorganisms producing new antimicrobials and enzymes. Polar Biol. 2018, 41, 1417–1433. [Google Scholar] [CrossRef]
- Tomova, I.; Stoilova-Disheva, M.; Lazarkevich, I.; Vasileva-Tonkova, E. Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front. Life Sci. 2015, 8, 348–357. [Google Scholar] [CrossRef]
- Bruntner, C.; Binder, T.; Pathom-Aree, W.; Goodfellow, M.; Bull, A.T.; Potterat, O.; Puder, C.; Hörer, S.; Schmid, A.; Bolek, W.; et al. Frigocyclinone, a Novel Angucyclinone Antibiotic Produced by a Streptomyces griseus Strain from Antarctica. J. Antibiot. 2005, 58, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Encheva-Malinova, M.; Stoyanova, M.; Avramova, H.; Pavlova, Y.; Gocheva, B.; Ivanova, I.; Moncheva, P. Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnol. Biotechnol. Equip. 2014, 28, 721–727. [Google Scholar] [CrossRef]
- Lavin, P.; Yong, S.T.; Wong, C.M.; De Stefano, M. Isolation and characterization of Antarctic psychrotroph Streptomyces sp. strain INACH3013. Antarct. Sci. 2016, 28, 433–442. [Google Scholar] [CrossRef]
- Cheah, Y.K.; Lee, L.; Chieng, C.C.; Wong, V.C.M. Isolation, identification and screening of Actinobacteria in volcanic soil of Deception Island (the Antarctic) for antimicrobial metabolites. Pol. Polar Res. 2015, 36, 67–78. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, G.; Jung, Y.-J.; Choe, C.-D.; Yim, J.H.; Lee, H.K.; Hong, S.G. Polar and Alpine Microbial Collection (PAMC): A culture collection dedicated to polar and alpine microorganisms. Polar Biol. 2012, 35, 1433–1438. [Google Scholar] [CrossRef]
- Mojib, N.; Philpott, R.; Huang, J.P.; Niederweis, M.E.; Bej, A.K. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie van Leeuwenhoek 2010, 98, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Cui, P.; Chen, X. Complete genome of Bacillus sp. Pc3 isolated from the Antarctic seawater with antimicrobial activity. Mar. Genom. 2015, 20, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.M.V.L.; Tam, H.; Alias, S.; González, M.; González-Rocha, G.; Domínguez-Yévenes, M. Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Pol. Polar Res. 2011, 32, 3–14. [Google Scholar] [CrossRef]
- Silva, T.R.; Duarte, A.W.F.; Passarini, M.R.Z.; Ruiz, A.; Franco, C.H.; Moraes, C.B.; De Melo, I.S.; Rodrigues, R.A.; Fantinatti-Garboggini, F.; Oliveira, V.M. Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol. 2018, 41, 1505–1519. [Google Scholar] [CrossRef]
- Papaleo, M.C.; Romoli, R.; Bartolucci, G.; Maida, I.; Perrin, E.; Fondi, M.; Orlandini, V.; Mengoni, A.; Emiliani, G.; Tutino, M.L.; et al. Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnol. 2013, 30, 824–838. [Google Scholar] [CrossRef]
- Sannino, F.; Parrilli, E.; Apuzzo, G.A.; De Pascale, D.; Tedesco, P.; Maida, I.; Perrin, E.; Fondi, M.; Fani, R.; Marino, G.; et al. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains. New Biotechnol. 2017, 35, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Papa, R.; Parrilli, E.; Sannino, F.; Barbato, G.; Tutino, M.L.; Artini, M.; Selan, L. Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res. Microbiol. 2013, 164, 450–456. [Google Scholar] [CrossRef]
- Leyton, A.; Urrutia, H.; Vidal, J.M.; De La Fuente, M.; Alarcón, M.; Aroca, G.; González-Rocha, G.; Sossa, K. Actividad inhibitoria del sobrenadante de la bacteria Antártica Pseudomonas sp. M19B en la formación de biopelículas de Flavobacterium psychrophilum 19749. Rev. Biol. Mar. y Oceanogr. 2015, 50, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, S.; Gu, X.; Li, J.; Lin, X. Biosynthesis, characterization and antibacterial activity of silver nanoparticles by the Arctic anti-oxidative bacterium Paracoccus sp. Arc7-R13. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1488–1495. [Google Scholar] [CrossRef] [Green Version]
- Arunachalam, K.D.; Annamalai, S.K. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications. Int. J. Nanomed. 2013, 8, 2375–2384. [Google Scholar] [CrossRef] [Green Version]
- Youn, U.J.; Kim, M.-J.; Han, S.J.; Yim, J.H. Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities. Korean J. Microbiol. 2016, 52, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, C.; Gugliandolo, C.; Giudice, A.L. Exploring Mediterranean and Arctic Environments as a Novel Source of Bacteria Producing Antibacterial Compounds to be Applied in Aquaculture. Appl. Sci. 2020, 10, 4006. [Google Scholar] [CrossRef]
- Papale, M.; Giannarelli, S.; Francesconi, S.; Di Marco, G.; Mikkonen, A.; Conte, A.; Rizzo, C.; De Domenico, E.; Michaud, L.; Lo Giudice, A. Enrichment, isolation and biodegradation potential of psychrotolerantpolychlorinated-biphenyl degrading bacteria from the Kongsfjorden (Svalbard Islands, High Arctic Norway). Mar. Poll. Bull. 2017, 114, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Wietz, M.; Månsson, M.; Bowman, J.S.; Blom, N.S.; Ng, Y.; Gram, L. Wide Distribution of Closely Related, Antibiotic-Producing Arthrobacter Strains throughout the Arctic Ocean. Appl. Environ. Microbiol. 2012, 78, 2039–2042. [Google Scholar] [CrossRef] [Green Version]
- Marcolefas, E.; Leung, T.; Okshevsky, M.; McKay, G.; Hignett, E.; Hamel, J.; Aguirre, G.; Blenner-Hassett, O.; Boyle, B.; Lévesque, R.C.; et al. Culture-Dependent Bioprospecting of Bacterial Isolates From the Canadian High Arctic Displaying Antibacterial Activity. Front. Microbiol. 2019, 10, 1836. [Google Scholar] [CrossRef] [Green Version]
- Jayatilake, G.S.; Thornton, M.P.; Leonard, A.C.; Grimwade, J.E.; Baker, B.J. Metabolites from an Antarctic Sponge-Associated Bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 1996, 59, 293–296. [Google Scholar] [CrossRef]
- Asthana, R.K.; Deepali; Tripathi, M.K.; Srivastava, A.; Singh, A.P.; Singh, S.P.; Nath, G.; Srivastava, R.; Srivastava, B.S. Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. Environ. Biol. Fishes 2008, 21, 81–88. [Google Scholar] [CrossRef]
- Rojas, J.L.; Martín, J.; Tormo, J.R.; Vicente, F.; Brunati, M.; Ciciliato, I.; Losi, D.; Van Trappen, S.; Mergaert, J.; Swings, J.; et al. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar. Genom. 2009, 2, 33–41. [Google Scholar] [CrossRef]
- Taton, A.; Grubisic, S.; Ertz, D.; Hodgson, D.A.; Piccardi, R.; Biondi, N.; Tredici, M.R.; Mainini, M.; Losi, D.; Marinelli, F.; et al. Polyphasic Study Of Antarctic Cyanobacterial Strains1. J. Phycol. 2006, 42, 1257–1270. [Google Scholar] [CrossRef]
- Burg, B.V.D. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 2003, 6, 213–218. [Google Scholar] [CrossRef]
- Feller, G.; Gerday, C. Psychrophilic enzymes: Hot topics in cold adaptation. Nat. Rev. Genet. 2003, 1, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Coppola, D.; Russo, R.; Tinajero-Trejo, M.; Di Prisco, G.; Lauro, F.; Ascenzi, P.; Verde, C. The Globins of Cold-Adapted Pseudoalteromonas haloplanktis TAC125: From the Structure to the Physiological Functions. Adv. Microb. Physiol. 2013, 63, 329–389. [Google Scholar] [CrossRef]
- Kube, M.; Chernikova, T.N.; Al-Ramahi, Y.; Beloqui, A.; Lopez-Cortez, N.; Guazzaroni, M.-E.; Heipieper, H.J.; Klages, S.; Kotsyurbenko, O.R.; Langer, I.; et al. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat. Commun. 2013, 4, 2156. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Coppola, D.; Di Prisco, G.; Giordano, D.; Verde, C. Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar. Drugs 2019, 17, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margesin, R.; Feller, G. Biotechnological applications of psychrophiles. Environ. Technol. 2010, 31, 835–844. [Google Scholar] [CrossRef]
- Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Front. Bioeng. Biotechnol. 2015, 3, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, S.C.; Coria, S.H.; Mac Cormack, W.P. Extracellular proteases from eight psychrotolerant antarctic strains. Microbiol. Res. 2004, 159, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, T.N.R.; Rao, S.S.S.N.; Reddy, P.V.V.; Pratibha, M.S.; Sailaja, B.; Kavya, B.; Kishore, K.H.; Begum, Z.; Singh, S.M.; Shivaji, S. Bacterial Diversity and Bioprospecting for Cold-Active Lipases, Amylases and Proteases, from Culturable Bacteria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic. Curr. Microbiol. 2009, 59, 537–547. [Google Scholar] [CrossRef]
- Tropeano, M.; Coria, S.; Turjanski, A.G.; Cicero, D.; Bercovich, A.; Mac Cormack, W.; Vazquez, S. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production. Polar Res. 2012, 31, 18507. [Google Scholar] [CrossRef]
- Marx, J.-C.; Collins, T.; D’Amico, S.; Feller, G.; Gerday, C. Cold-Adapted Enzymes from Marine Antarctic Microorganisms. Mar. Biotechnol. 2006, 9, 293–304. [Google Scholar] [CrossRef]
- Tribelli, P.M.; López, N.I. Reporting Key Features in Cold-Adapted Bacteria. Life 2018, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieśliński, H.; Białkowskaa, A.; Tkaczuk, K.; Długołecka, A.; Kur, J.; Turkiewicz, M. Identification and molecular modeling of a novel lipase from an Antarctic soil metagenomic library. Pol. J. Microbiol. 2009, 58, 199–204. [Google Scholar] [PubMed]
- Yu, Y.; Li, H.-R.; Zeng, Y.-X.; Chen, B. Bacterial Diversity and Bioprospecting for Cold-Active Hydrolytic Enzymes from Culturable Bacteria Associated with Sediment from Nella Fjord, Eastern Antarctica. Mar. Drugs 2011, 9, 184–195. [Google Scholar] [CrossRef]
- Jeon, J.H.; Kim, J.-T.; Kang, S.G.; Lee, J.-H.; Kim, S.-J. Characterization and its Potential Application of Two Esterases Derived from the Arctic Sediment Metagenome. Mar. Biotechnol. 2008, 11, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.V.V.; Rao, S.S.S.N.; Pratibha, M.S.; Sailaja, B.; Kavya, B.; Manorama, R.R.; Singh, S.M.; Srinivas, T.N.R.; Shivaji, S. Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Loenbreen glacier, an Arctic glacier. Res. Microbiology 2009, 160, 538–546. [Google Scholar] [CrossRef]
- Prasad, S.; Manasa, P.; Buddhi, S.; Tirunagari, P.; Begum, Z.; Rajan, S.; Shivaji, S. Diversity and Bioprospective Potential (Cold-Active Enzymes) of Cultivable Marine Bacteria from the Subarctic Glacial Fjord, Kongsfjorden. Curr. Microbiol. 2013, 68, 233–238. [Google Scholar] [CrossRef]
- Simon, C.; Herath, J.; Rockstroh, S.; Daniel, R. Rapid Identification of Genes Encoding DNA Polymerases by Function-Based Screening of Metagenomic Libraries Derived from Glacial Ice. Appl. Environ. Microbiol. 2009, 75, 2964–2968. [Google Scholar] [CrossRef] [Green Version]
- Petrovskaya, L.E.; Novototskaya-Vlasova, K.A.; Spirina, E.V.; Khokhlova, G.V.; Rivkina, E.; Gilichinsky, D.A.; Dolgikh, D.; Kirpichnikov, M.P. Lipolytic enzymes of microorganisms from permafrost cryopegs. Dokl. Biol. Sci. 2012, 445, 279–282. [Google Scholar] [CrossRef]
- Goodfellow, M.; Fiedler, H.-P. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010, 98, 119–142. [Google Scholar] [CrossRef]
- Papale, M.; Conte, A.; Mikkonen, A.; Michaud, L.; La Ferla, R.; Azzaro, M.; Caruso, G.; Paranhos, R.; Anderson, S.C.; Maimone, G.; et al. Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land, Antarctica). Soil Biol. Biochem. 2018, 123, 165–179. [Google Scholar] [CrossRef]
- Feller, G.; Lonhienne, T.; Deroanne, C.; Libioulle, C.; Van Beeumen, J.; Gerday, C. Purification, characterization and nucleotide sequence of the thermolabile α-amylase from the antarctic psychrotroph AIteromonas haloplanctis A23. J. Biol. Chem. 1992, 267, 5217–5221. [Google Scholar]
- Feller, G.; Payan, F.; Theys, F.; Qian, M.; Haser, R.; Gerday, C. Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. JBIC J. Biol. Inorg. Chem. 1994, 222, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Feller, G.; D’Amic, D.; Gerday, C.; D’Amico, D. Thermodynamic Stability of a Cold-Active α-Amylase from the Antarctic Bacterium Alteromonas haloplanctis†. Biochemistry 1999, 38, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Feller, G.; Narinx, E.; Louis, J.; Arpigny, J.L.; Aittaleb, M.; Baise, E.; Genicot, S.; Gerday, C. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 1996, 18, 189–202. [Google Scholar] [CrossRef]
- Narinx, E.; Davail, S.; Feller, G.; Gerday, C. Nucleotide and derived amino acid sequence of the subtilisin from the antarctic psychrotroph Bacillus TA39. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1992, 1131, 111–113. [Google Scholar] [CrossRef]
- Davail, S.; Feller, G.; Narinx, E.; Gerday, C. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J. Biol. Chem. 1994, 269, 17448–17453. [Google Scholar]
- Feller, G.; Thiry, M.; Arpigny, J.L.; Gerday, C. Cloning and expression in E. coli of three lipase-encoding genes from the psychrophilic antarctic strain Moraxella TAI44. Gene 1991, 102, 111–115. [Google Scholar] [CrossRef]
- Feller, G.; Thiry, M.; Gerday, C. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TAI44 and site specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 1991, 10, 381–388. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Feller, G.; Gerday, C. Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis BI0. Biochim. Biophys. Acta 1993, 1171, 331–333. [Google Scholar] [CrossRef]
- Arpigny, J.L.; Feller, G.; Gerday, C. Corrigendum to Cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10”. Biochim. Biophys. Acta 1995, 1263, 103. [Google Scholar] [CrossRef]
- Fukuda, W.; Kimura, T.; Araki, S.; Miyoshi, Y.; Atomi, H.; Imanaka, T. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int. J. Syst. Evol. Microbiol. 2013, 63, 3313–3318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerday, C.; Aittaleb, M.; Bentahir, M.; Chessa, J.-P.; Claverie, P.; Collins, T.; D’Amico, S.; Dumont, J.; Garsoux, G.; Georlette, D.; et al. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol. 2000, 18, 103–107. [Google Scholar] [CrossRef]
- Santos, A.F.; Pires, F.; Jesus, H.E.; Dos Santos, A.L.S.; Peixoto, R.; Rosado, A.S.; D’Avila-Levy, C.M.; Branquinha, M.H. Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. An. Acad. Bras. Ciências 2015, 87, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, M.; Kawamata, A.; Kosugi, M.; Imura, S.; Kurosawa, N. Diversity of proteolytic microbes isolated from Antarctic freshwater lakes and characteristics of their cold-active proteases. Polar Sci. 2017, 13, 82–90. [Google Scholar] [CrossRef]
- Vazquez, S.; Hernández, E.; Mac Cormack, W.P. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96-47 strain. Rev. Argent. Microbiol. 2008, 40, 63–71. [Google Scholar]
- Park, I.; Cho, J. Production of an extracellular protease by an Antarctic bacterial isolate (Bacillus sp. JSP1) as a potential feed additive. Rev. Colomb. Cienc. Pecu. 2011, 24, 3–10. [Google Scholar]
- Wang, Q.-F.; Miao, J.-L.; Hou, Y.-H.; Ding, Y.; Wang, G.-D.; Li, G.-Y. Purification and Characterization of an Extracellular Cold-Active Serine Protease from the Psychrophilic Bacterium Colwellia sp. NJ341. Biotechnol. Lett. 2005, 27, 1195–1198. [Google Scholar] [CrossRef]
- Tomova, I.; Gladka, G.; Tashyrev, A.; Vasileva-Tonkova, E. Isolation, identification and hydrolytic enzymes production of aerobic heterotrophic bacteria from two Antarctic islands. Int. J. Environ. Sci. 2014, 4, 5. [Google Scholar]
- Zheng, Z.; Jiang, Y.-H.; Miao, J.-L.; Wang, Q.-F.; Zhang, B.-T.; Li, G.-Y. Purification and Characterization of a Cold-active Iron Superoxide Dismutase from a Psychrophilic Bacterium, Marinomonas sp. NJ522. Biotechnol. Lett. 2006, 28, 85–88. [Google Scholar] [CrossRef]
- Gratia, E.; Weekers, F.; Margesin, R.; D’Amico, S.; Thonart, P.; Feller, G. Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 2009, 13, 763–768. [Google Scholar] [CrossRef]
- Holmström, C.; Kjelleberg, S.; Holmström, C. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 1999, 30, 285–293. [Google Scholar] [CrossRef]
- Van Truong, L.; Tuyen, H.; Helmke, E.; Binh, L.T.; Schweder, T. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 2001, 5, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tutino, M.L.; Parrilli, E.; Giaquinto, L.; Duilio, A.; Sannia, G.; Feller, G.; Marino, G. Secretion of α-Amylase from Pseudoalteromonas haloplanktis TAB23: Two Different Pathways in Different Hosts. J. Bacteriol. 2002, 184, 5814–5817. [Google Scholar] [CrossRef] [Green Version]
- Van Petegem, F.; Collins, T.; Meuwis, M.A.; Gerday, C.; Feller, G.; Van Beeumen, J. The structure of a cold−adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site. J. Biol. Chem. 2003, 278, 7531–7539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, R.Y.; Xiong, P.; Wen, J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 2005, 10, 79–82. [Google Scholar] [CrossRef]
- Dang, H.; Zhu, H.; Wang, J.; Li, T. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J. Microbiol. Biotechnol. 2008, 25, 71–79. [Google Scholar] [CrossRef]
- Dias, A.C.F.; Andreote, F.D.; Dini-Andreote, F.; Lacava, P.T.; Sá, A.L.B.; Melo, I.S.; Azevedo, J.L.; Araújo, W.L. Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J. Microbiol. Biotechnol. 2009, 25, 1305–1311. [Google Scholar] [CrossRef]
- Loperena, L.; Soria, V.; Varela, H.; Lupo, S.; Bergalli, A.; Guigou, M.; Pellegrino, A.; Bernardo, A.; Calviño, A.; Rivas, F.; et al. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J. Microbiol. Biotechnol. 2012, 28, 2249–2256. [Google Scholar] [CrossRef]
- Lamilla, C.; Pavez, M.; Santos, A.; Hermosilla, A.; Llanquinao, V.; Barrientos, L. Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol. 2016, 40, 719–726. [Google Scholar] [CrossRef]
- Buchon, L.; Laurent, P.; Gounot, A.; Guespin-Michel, J. Temperature dependence of extracellular enzymes production by psychrotrophic and psychrophilic bacteria. Biotechnol. Lett. 2000, 22, 1577–1581. [Google Scholar] [CrossRef]
- Vázquez, S.C.; Mac Cormack, W.P. Effect of isolation temperature on the characteristics of extracellular proteases produced by Antarctic bacteria. Polar Res. 2002, 21, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Olivera, N.; Sequeiros, C.; Nievas, M.L. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 2007, 11, 517–526. [Google Scholar] [CrossRef]
- Gesheva, V.; Vasileva-Tonkova, E. Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J. Microbiol. Biotechnol. 2012, 28, 2069–2076. [Google Scholar] [CrossRef] [Green Version]
- Vester, J.K.; Glaring, M.A.; Stougaard, P. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb. Cell Factories 2014, 13, 72. [Google Scholar] [CrossRef] [Green Version]
- Konieczna, I.; Wojtasik, B.; Kwinkowski, M.; Burska, D.; Nowiński, K.; Zarnowiec, P.; Kaca, W. Analysis of cultivable aerobic bacteria isolated from bottom sediments in the Wijdefjorden region, Spitsbergen. Pol. Polar Res. 2011, 32, 181–195. [Google Scholar] [CrossRef]
- Groudieva, T.; Kambourova, M.; Yusef, H.; Royter, M.; Grote, R.; Trinks, H.; Antranikian, G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 2004, 8, 475–488. [Google Scholar] [CrossRef]
- Rentier-Delrue, F.; Mande, S.C.; Moyens, S.; Terpstra, P.; Mainfroid, V.; Goraj, K.; Lion, M.; Hol, W.G.; Martial, J.A. Cloning and Overexpression of the Triosephosphate Isomerase Genes from Psychrophilic and Thermophilic Bacteria. J. Mol. Biol. 1993, 229, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Herrera, L.M.; García-Laviña, C.X.; Marizcurrena, J.J.; Volonterio, O.; De León, R.P.; Castro-Sowinski, S. Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biol. 2016, 40, 947–953. [Google Scholar] [CrossRef]
- Hwang, C.Y.; Zhang, G.I.; Kang, S.-H.; Kim, H.J.; Cho, B.C. Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int. J. Syst. Evol. Microbiol. 2009, 59, 3019–3024. [Google Scholar] [CrossRef] [PubMed]
- Haernvall, K.; Zitzenbacher, S.; Wallig, K.; Yamamoto, M.; Schick, M.B.; Ribitsch, D.; Guebitz, G.M. Hydrolysis of Ionic Phthalic Acid Based Polyesters by Wastewater Microorganisms and Their Enzymes. Environ. Sci. Technol. 2017, 51, 4596–4605. [Google Scholar] [CrossRef]
- Bollinger, A.; Thies, S.; Katzke, N.; Jaeger, K.-E. The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microb. Biotechnol. 2020, 13, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Montero, K.; Barrientos, L. Advances in Antarctic Research for Antimicrobial Discovery: A Comprehensive Narrative Review of Bacteria from Antarctic Environments as Potential Sources of Novel Antibiotic Compounds Against Human Pathogens and Microorganisms of Industrial Importance. Antibiotics 2018, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Cristóbal, H.A.; López, M.A.; Kothe, E.; Abate, C.M. Diversity of protease-producing marine bacteria from sub-antarctic environments. J. Basic Microbiol. 2011, 51, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.L.; Caruso, C.; Mangano, S.; Bruni, V.; De Domenico, M.; Michaud, L. Marine Bacterioplankton Diversity and Community Composition in an Antarctic Coastal Environment. Microb. Ecol. 2011, 63, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Parrilli, E.; Tedesco, P.; Fondi, M.; Tutino, M.L.; Giudice, A.L.; De Pascale, D.; Fani, R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys. Life Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bosi, E.; Fondi, M.; Orlandini, V.; Perrin, E.; Maida, I.; De Pascale, D.; Tutino, M.L.; Parrilli, E.; Giudice, A.L.; Filloux, A.; et al. The pangenome of (Antarctic) Pseudoalteromonas bacteria: Evolutionary and functional insights. BMC Genom. 2017, 18, 93. [Google Scholar] [CrossRef] [Green Version]
- Maida, I.; Bosi, E.; Fondi, M.; Perrin, E.; Orlandini, V.; Papaleo, M.C.; Mengoni, A.; De Pascale, D.; Tutino, M.L.; Michaud, L.; et al. Antimicrobial activity of Pseudoalteromonas strains isolated from the Ross Sea (Antarctica) versus Cystic Fibrosis opportunistic pathogens. Hydrobiology 2015, 761, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Romoli, R.; Papaleo, M.C.; Pascale, D.; Tutino, M.L.; Michaud, L.; Logiudice, A.; Fani, R.; Bartolucci, G. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry. J. Mass Spectrom. 2011, 46, 1051–1059. [Google Scholar] [CrossRef]
- Ferrer, M.; Chernikova, T.N.; Yakimov, M.M.; Golyshin, P.N.; Timmis, K.N. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 2003, 21, 1266–1267. [Google Scholar] [CrossRef]
- Steinert, G.; Wemheuer, B.; Janussen, D.; Erpenbeck, D.; Daniel, R.; Simon, M.; Brinkhoff, T.; Schupp, P.J. Prokaryotic Diversity and Community Patterns in Antarctic Continental Shelf Sponges. Front. Mar. Sci. 2019, 6, 297. [Google Scholar] [CrossRef]
- Papale, M.; Rizzo, C.; Fani, R.; Bertolino, M.; Costa, G.; Paytuví-Gallart, A.; Schiaparelli, S.; Michaud, L.; Azzaro, M.; Giudice, A.L. Exploring the Diversity and Metabolic Profiles of Bacterial Communities Associated With Antarctic Sponges (Terra Nova Bay, Ross Sea). Front. Ecol. Evol. 2020, 8. [Google Scholar] [CrossRef]
- de Bruijn, I.; de Kock, M.J.D.; Yang, M.; de Waard, P.; van Beek, T.A.; Raaijmakers, J.M. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 2007, 63, 417–428. [Google Scholar] [CrossRef]
- Dubeau, D.; Déziel, E.; Woods, D.E.; Lépine, F. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol. 2009, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Margesin, R. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 2008, 13, 257–262. [Google Scholar] [CrossRef] [PubMed]
Origin | Strain | Chemical Elucidation | Reference |
---|---|---|---|
Antarctic_Abiotic Sources | |||
Seawater | Oceanobacillus sp. BRI 10 | Glycoproteic BS | [42,47] |
Sea-ice/seawater interface (Terra Nova Bay) | Halomonas sp. ANT-3b | Glycolipidic BS | [40] |
Seawater (Terra Nova Bay) | Rhodococcus sp. | Trehalose lipids | [43] |
Seawater (Terra Nova Bay) | Rhodococcus sp. | Trehalose lipids | [43] |
Seawater (Terra Nova Bay) | Rhodococcus sp. | [44] | |
Antarctic lakes, Cotton Glacier | Janthinobacterium sp., Serratia sp., Psychrobacter sp. | Sophorolipids and Di-Rhamnolipids | [45] |
Sediment (Terra Nova Bay) | Pseudomonas sp. BNT1 | Rhamnolipids | [46] |
Sand (Deception Island) | Bacillus licheniformis AL 1.1 | Lipopeptide | [36] |
Soil (Peninsula Byers, Fildes Bay, Robert Island, Doumer Island, Fildes Bay-Escudero Base) | Streptomyces luridus So3.2 | nd° | [18] |
Soil (King George Island) | Bacillus spp., Sporosarcina spp., Paenibacillus antarticus | nd° | [38] |
Soil (Casey Station) | Rhodococcus fascians A3 | Rhamnolipids | [39] |
Soil (Casey Station, Dewart Island, Terra Nova Bay) | Coryneform sp. A1, A3, A9, A11, A14, A16 Nocardioform sp. A8, A15, A17 Micromonospora sp. A10 | Glycolipids | [49] |
Soil (Dewart Island) | Pantoea sp. strain A-13 | [50] | |
Antarctic soil enrichments | Idiomarina loihiensis L2TR sp. 185 | nd° | [35] |
Pseudoalteromonas BG-1-E1 sp.93 | nd° | ||
Pseudomonas sp. AC4 sp. 235 | nd° | ||
Rhodococcus spp. 174, 176, 179-181, 187, 188, 190-192, 224, 225, 227, 231 | nd° | ||
Freshwater (Svaldbard Island) | Pseudomonas fluorescens BD5 | Lipopeptides (Pseudofactin I, Pseudofactin II) | [51] |
Soil (Svalbard Archipelago) | Pseudomonas putida BD2 | Rhamnolipids | [14] |
Arctic soil enrichments | Pseudomonas sp. 280 | nd | [35] |
Arctic_Biotic sources | |||
Hippoglossus hippoglossus | Pseudomonas sp. M10B774 | Rhamnolipids | [29] |
Origin | Strain | Chemical Elucidation * | Sugar Content | Ref. |
---|---|---|---|---|
Antarctic_Abiotic sources | ||||
Seawater (Terra Nova Bay) | Pseudoalteromonas sp. MER144 | CRB, 18%; UA, 14%; PRT, 12% | Glc, Man, GalN, Ara, GlcA, GalA, Gal (1:0.36:0.26:0.06:0.06:0.05:0.03) | [55] |
Seawater | Pseudoalteromonas haloplanktis TAC 125 | ND | Man, Glc | [59] |
Seawater (Terra Nova Bay) | Marinobacter sp. W1-16 | CRB, 38%; UA, 2.7%; PRT, 7% | Glc, Man, Gal, GalN, GalA, GlcA (1:0.9:0.2:0.1:0.1:0.01) | [65] |
Sediment (King George Island) | Pseudoalteromonas sp. KOPRI | ND | Gal, Glc (1:1.5) | [60] |
Sediment (South Shetland Islands) | Pseudomonas sp. ID1 | CRB, 33.81%; UA, 2.40%; PRT, 2.81% | Glc, Gal, Fuc | [58] |
Melted fast ice Antarctic | Flavobacterium sp. CAM005 | NS ≈ 50%; PRT ≈ 40%, AS and UA presence | Man, Glc, GlcA, Ara, Gal, GlcNAc | [61,62] |
Shewanella sp. CAM090 | NS ≈ 40%; UA ≈ 40%; PRT ≈ 15%, AS presence | Man, GlcA, Ara, Glc, GlcNAc, Gal, Xyl, Rha | ||
Pseudoalteromonas sp. CAM003 | NS ≈ 50%; UA ≈ 10%; PRT ≈ 20%, SULF ≈ 20%; AS presence | Man, Fuc, Glc, Rha, Ara, Rib, GlcA, GalNAc, GlcNAc | ||
Pseudoalteromonas sp. CAM015 | NS ≈ 40%; UA ≈ 30%; PRT ≈ 30% | Glc, Man, Ara, Rha, Gal, GlcA, GalNAc, Xyl | ||
Pseudoalteromonas sp. CAM064 | NS ≈ 50%; UA ≈ 30%; PRT ≈ 10%, AS ≈ 10%, SUL presence | Man, GalNAc, Glc, GlcA, Ara, Gal, GlcNAc | ||
Particles from Antarctic sea | Pseudoalteromonas sp. CAM025 | NS, 74%; UA, 22%; PRT, 2%, SUL, 5% | Glc, GalA, Gal, Rha, Ara, Fuc, Rib, Man, GalNAc | [62] |
Pseudoalteromonas sp. CAM036 | NS, 50%; UA, 25%; PRT, 3%, SUL 5% | GalA, Glc, Man, GalNAc, Ara, Gal | ||
Seawater (Arctic Ocean) | Pseudoalteromonas elyakovii sp. ArcPo15 | ND | Man, GalA (3.3:1.0) | [70] |
Sediments | Colwellia psychrerythraea 34H | ND | ND | [69] |
Glacier soil (Ny-Ålesund, Svalbard) | Flavobacterium sp. ASB 3-3 | CRB, 56%; PRT, 23%; SUL, 21% | Glc, D-galactose | [67] |
Sea-ice | Pseudoalteromonas sp. | ND | Man, Glc, Gal, GlcNAc, Rha, GalNAc, Xyl | [8] |
Antarctic_Biotic sources | ||||
Plankton tow | Flavobacteriaceae CAM030, | NS ≈ 40%; UA ≈ 30%; PRT ≈ 20%, AS ≈ 15% | Man, GlcA, Glc, GalNAc, Ara, Gal, GalA, GlcNAc, Xyl, Rha | [61,62] |
Pseudoalteromonas sp. CAM023 | NS ≈ 70%; UA ≈ 20%; PRT ≈ 10%, AS presence | Glc, Ara, GalA, GlcA, GalNAc, Man, Gal | ||
Polaribacter sp. CAM006 | NS ≈ 30%; PRT ≈ 45%, AS and UA presence | Gal, Man, Fuc, GlcA, Glc, GlcNAc, Ara, GalNAc, | ||
Antarctic sponges | Colwellia sp. GW185 | CRB, 28%; PRT, 2.08%; UA, 6.09% | Glc, Man, Gal, GalN, GlcA, GalA (1:1:0.7:0.7:0.3:0.04) | [71] |
Antarctic sponges | Shewanella sp. CAL606 | CRB, 26%; PRT, 3%; UA, 6.07% | Glc, Gal, Man, GalN, GlcA, GalA (1:1:0.9:0.6:0.3:0.1) | |
Antarctic sponges | Winogradskyella sp. CAL396 | CRB, 21%; PRT, 8.8%; SUL, 3.2% | Man, Ara, GalA, GlcA, Gal, Glc, GlcN (1:0.9:0.4:0.3:0.2:0.2:0.01) | |
Antarctic sponges | Winogradskyella sp. CAL384 | CRB, 15%; PRT, 2.4%; UA, 11.9% | Glc, Man, GalA, Ara, Gal, GlcN, GlcA (1:0.5:0.3:0.25:0.1:0.1:0.1) | |
Arctic_Biotic sources | ||||
Brown alga | Polaribacter sp. SM1127 | ND | GlcNAc, Man, GlcA, Gal, Fuc, Glc, Rha | [15] |
Origin | Taxonomic Affiliation | Target | Reference |
---|---|---|---|
Antarctic_Abiotic sources | |||
Soils (Cape Hallett, Edmonson Point, Kay Island, Cape Russell, Lake Hoare, Harrow Peaks, Crater Circe, Battleship Promontory, Mount, McGee, Mount Rittmann, Mount Melbourne) | Arthrobacter, Planococcus, Pseudomonas | L. innocua, P fragi, B. thermosphacta, S. aureus, L. monocytogenes | [74] |
Soils (Deception Island, Shetland Islands, Galindez Island, Argentine Islands) | Arthrobacter, Sporosarcina, Bacillus, Pseudomonas, Burkholderia, Rhodococcus, Janthinobacterium | E. coli, P. Aeruginosa, A. johnsonii | [101] |
Soils (Penguin rookeries Larsemann Hills) | Enterococcus, Psychrobacter, Bacillus | Candida albicans | [85] |
Soils (Fildes Peninsula, King George Island) | Janthinobacterium sp. SMN 33.6 | S. marcescens, E. coli, A. baumannii, P. aeruginosa | [89] |
Soils | Streptomyces griseus | B. subtilis, S. aureus | [102] |
Soils | Streptomyces | B. subtlis, C. michiganensis, B. cepcia, B. pyrrocinia, B. gladioli, E. amylowora, E. coli | [103] |
Soils | Streptomyces INACH3013 | S. aureus | [104] |
Soil (Deception Island) | Gordonia terrae, Leifsonia Terrabacter | Salmonella paratyphi A, Salmonella typhimurium | [105] |
Soils (Barrientos Island) | Brevibacterium, Janibacter, Kocuria, Demetria, Gordonia, Lapillicoccus, Micromonospora, Nocardioides sp., Rhodococcus sp. | C. albicans, S. aureus, P. aeruginosa | [106] |
Soils (Terranova Bay) | Pseudomonas | Burkholderia cepacia complex | [46] |
Soils (Casey Station, Wilkes Land) | Nocardioides | S. aureus, X. oryza | [179] |
Soils (King George Island) | Pedobacter, Pseudomonas | E. coli, Salmonella spp., K. pneumoniae, E. cloacae, V. parahaemolyticus, B. cereus | [109] |
Soils (King George Island) | Sporosarcina, Bacillus | S. aureus, C. albicans | [38] |
Sediments (Deception Island, Martel Bay, King George Island, Punta Hannah | Pseudomonas, Bacillus, Marinobacter, Sulfitobacter, Flavobacterium, Tsukamurella, Cyclobacterium, Cellulophaga, Arthrobacter, Streptomyces, Pseudoalteromonas | E. coli, M. luteus, S. aureus, B. subtilis, C. albicans | [110] |
Freshwater, (Schirmacher Oasis) | Janthinobacterium sp. Ant5-2 Flavobacterium sp. Ant342 | Virulent Mycobacterium smegmatis, Avirulent Mycobacterium tuberculosis | [107] |
Freshwater lake, Skarvsnes region | Lysobacter oligotrophicus | E. coli, L. enzymogenes, R. appendicifer, S. cerevisiae | [157] |
Seawater (Stations Mergellina Santa Maria, Novella, Tiburtina, Road Bay, Gerlache Inlet, Evans Cove, Inexpressible Island, Cape Hallet, Tethys Bay) | Arthrobacter, Janibacter thuringensis, Rhodococcus fascians, Nesterenkonia, Pseudoalteromonas | P. aeruginosa, S. aureus, Salmonella enterica, C. albicans | [76] |
Seawater (Antarctic Peninsula, South Shetland Islands) | Halomonas titanicae | E. coli, S. aureus | [100] |
Seawater | Pseudoalteromonas haloplanktis TAC125 | Burkholderia cepacia complex | [72] |
Seawater | Pseudoalteromonas haloplanktis TAC125 | S. epidermidis | [113] |
Seawater (King George Island) | Pseudomonas fragi | Antibiofilm Flavobacterium psychrophilum | [114] |
Seawater | Bacillus | Antifungal Paecilomyces variotii, Colletotrichum gloeosporioides, Fusarium oxysporum, Trichoderma viride, Rhizoctonia solani Kühn, Alternaria longipes, Sclerotinia sclerrotioru | [108] |
Seawater, French Antarctic station Dumont d’ Urville, Terre Adélie | Pseudoalteromonas haloplanktis TAC125 | Burkholderia cepacia complex | [112] |
Soils, water | Pseudoalteromonas sp. S8-8, S8-38, TAB23, TAE56, TAE79, TAE80, TAC125 | Burkholderia cepacia complex | [194] |
Arctic_Abiotic sources | |||
Sediments | Paracoccus sp. Arc7-R13 | B. subtilis, S. aureus, P. aeruginosa, E. coli | [115] |
Seawater (Chuckchi Sea) | Pseudomonas aeruginosa | S. aureus, C. albicans | [117] |
Kongsfjorden (Svalbard Islands) | Salinibacterium spp. C3W3, C2W9 | P.damselae subsp. piscicida | [118] |
Seawater, sea ice | Arthrobacter, Psychrobacter, Pseudoalteromonas, Vibrio | V. anguillarum, S. aureus | [120] |
Glacial melt water, sea convergence (Ny-Alesund) | Yersinia aldovae, Carnobacterium maltaromaticum | Candida albicans | [85] |
Permafrost, saline spring sediments, and cryptoendoliths | Paenibacillus sp. GHS.8.NWYW.5 Pseudomonas sp. ALPS.10.MNAAK.13 | S. aureus, L. monocytogenes, S. enterica, E. coli, A. baumanii, E. faecium, E. faecalis | [121] |
Antarctic_Biotic sources | |||
Sponge Isodictya setifera | Pseudomonas aeruginosa | [122] | |
Benthic microbial mat (Larsemann Hills, Bølingen Islands, Vestfold Hills, Rauer Islands, the McMurdo Dry Valleys) | Nostoc CCC537 | M. tuberculosis, S. aureus, Salmonella typhi, P. aeruginosa, E coli, E. aerogenes | [123] |
Benthic microbial mat (Larsemann Hills, Vestfold Hills, McMurdo Dry Valleys) | Psychrobacter, Shewanella, Arthrobacter, Janthinobacterium, Flavobacterium, Hymenobacter, Microbacterium, Micrococcus, Bacillus, Brevundimonas, Mesorhizobium, Pseudomonas, Hydrogenophaga, Marinobacter | S. aureus, Enterococcus faecium, E. coli Cryptococcus neoformans, Aspergillus fumigatus, C. albicans | [124] |
Benthic microbial mat (Larsemann Hills, Bølingen Islands, Vestfold Hills, Rauer Islands, the McMurdo Dry Valleys) | Leptolyngbya antartica, Phormidium priestleyi, Phormidium murrayi, Nostoc | S. aureus Antifungal A. fumigatus, C. neoformans | [125] |
Sponges Haliclonissa verrucosa, Anoxycalyx joubini, Lissodendoryx nobilis | Pseudoalteromonas haloplanktis TB41, Psychrobacter sp. TB67, TB47, Arthrobacter sp. TB23 | Burkholderia cepacia complex | [72,111] |
Antarctic sponges | Pseudoalteromonas sp. TB13, TB25, TB41, TB51, TB64 | Burkholderia cepacia complex | [194] |
Antarctic sponges | Shewanella sp. TB4 | Burkholderia cepacia complex | [195] |
Antarctic sponges | Pseudoalteromonas sp. AC163 | Burkholderia cepacia complex | [193] |
Origin | Taxonomic Affiliation | Chemical elucidation | Reference |
---|---|---|---|
Antarctic_Abiotic sources | |||
Seawater (Dumont d’Urville) | MoraxellaTAI44 | Lipases | [153] |
Seawater (Dumont d’Urville) | AIteromonas haloplanctis A23 | α-Amylase | [147,148,149,150] |
Seawater (Dumont d’Urville) | Bacillus sp. TA39 | Subtilisin | [151] |
Seawater (Dumont d’Urville) | Bacillus sp. TA41 | Subtilisin | [152] |
Seawater (Dumont d’Urville) | Psychrobacter immobilis BI0 | Lipases | [155,156] |
Freshwater lake | Lysobacter oligotrophicus | Esterase, Amylase, Protease | [157] |
Freshwater lake (Lake Yukidori Ike, Lake Hotoke Ike, Lake Skallen Oike) | Flavobacterium, Pseudomonas, Arthrobacter, Psychrobacter, Cryobacterium, Hymenobacter, Polaromonas | Protease (metalloproteases) | [160] |
P. cryohalolentis strain ANH4-1 | Protease (serine protease) | ||
Seawater, freshwater, soils, sediments, remains of organic matter | Pseudomonas, Pseudoalteromonas | Protease | [133] |
Seawater (King George Island) | Pseudoalteromonas sp. strain P96-47 | Protease (metalloproteases) | [161] |
Sea ice | Colwellia sp. NJ341 | Protease (serine protease) | [163] |
Sea ice | Marinomonas sp. NJ522 | Superoxide dismutase | [165] |
Antarctic soils (King George Island) | Sporosarcina aquimarina, Algoriphagus antarcticus | Protease | [159] |
Soils | Bacillus sp. JSP1 | Protease | [162] |
Soils (Casey Station, Wilkes Land) | Nocardioides A-1 | Protease, Amylase, Lipase, RNAse, Phosphatases, Ureases, Cellulase | [179] |
Soils (King George Island) | Bacillus, Sporosarcina, Paenibacillus, Rummeliibacillus | Proteases, Amylase, Cellulase, Esterase, Lipase, Chitinase, Gelatinase | [38] |
Sediments and soils (Deception Island, Galindez Island) | Arthrobacter, Rhodococcus, Bacillus, Sporosarcina, Pseudomonas, Janthinobacterium, Burkholderia | Poly-enzymatic activity (Ureases, polygalacturonases, β-glucosidases, phytases, ribonucleases, polygalacturonase) | [164] |
Not specified (Terre Adelie, Deep sea samples) | Pseudomonas, Psychrobacter, Flavobacterium, Rhodococcus, Arthrobacter, Sporosarcina, Planococcus, Kocuria | Poly-enzymatic activity (Proteases, Lipases, Amylases, Cellulases and Xylanases) | [166] |
Deep-sea sediments (Southern Okinawa Trough) | Halomonas, Psychrobacter | Poly-enzymatic activity (Amylases, Proteases, Lipases, Dnases | [172] |
Sediments | Pseudoalteromonas, Shewanella, Colwellia, Planococcus, | Proteases, thermokinesis | [178] |
Water, soils (Potter Cove) | Pseudoalteromona, Pseudomonas, Flavobacterium, Olleya, Psychrobacter, Psychromonas, Colwellia, Shewanella, Polaribacter, Planococcus, Kocuria, Hydrrogenophaga, Arthrobacter, Salinibacterium, Planomicrobium, Lacinutrix, Cellulophaga, | Poly-enzymatic activity (Proteases, Pectinases, Cellulases, Xylanases, Amylases, Agarases) | [135] |
Air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, rocks | Pseudomonas, Psychrobacter, Arthrobacte, Bacillus, Carnobacterium | Poly-enzymatic activity (Amylase, Lipase, Gelatinase, Caseinase, Protease, Ligninase, Xylanase, Cellulase) | [174] |
Soils, marine and lake sediment, sea water (South Shetland Islands) | Arthrobacter, Brevibacterium, Curtobacterium, Janibacter, Knoellia, Rhodococcus, Streptomyces, Thermoleophilum | Protease, Gelatinase, Cellulase | [175] |
Antarctic brines (Boulder Clay Lake) | Pseudomonas, Psychrobacter, Shewanella, Gelidibacter, Staphylococcus, Carnobacterium, Rhodobacter, Leifsonia, Devosia, Sporosarcina, Marinobacter, Cryobacterium, Rothia, Rhodoglobus | Oxidase, Catalase, Amylase, Lipase/Esterase, Gelatinase, Chitinase, DNase, Haemolytic activity | [66] |
Arctic_Abiotic sources | |||
Sediments (Kongsfjorden), sediments, soils sample from Ny-Ålesund, Svalbard) | Brevundimonas, Paracoccus, Roseovarius, Sphingomonas, Sphingopyxis, Sulfitobacter, Acinetobacter, Colwellia, Enhydrobacter, Marinobacter, Marinomonas, Marinobacterium, Oceanisphaer, Photobacterium, Pseudomonas, Pseudoalteromonas, Psychrobacter, Shewaella, Flavibacterium, Lacinutrix, Maribacter, Winogradskyella, Zoobellia, Cyclobacterium, Arthrobacter, Rhodococcus, Salinibacterium, Planococcus | Amilase, Lipase | [134] |
Sand of a freshwater pond (Ny-Alesund Arctic) | Arthrobacter psychrolactophilus Sp 31.3 | Poly-enzymatic activity (Proteases, Lipases, Amylases, Cellulases and Xylanases) | [166] |
Sediments, Freshwater (Wijdefjorden and Woodfjorden, Spitsbergen) | Pseudomonas, Pseudoalteromonas | Urease, Protease | [181] |
Sediments, seawater (Lofoten area, NorthernNorway) | Arthrobacter, Clavibacter, Filibacter, Leifsonia, Planococcus, Rhodococcus, Streptomyce, Flavobacterium, Gelidibacter, Marinobacter, Nesterenkonia, Nocardiopsis, Micrococcus, Planococcus, Plantibacter, Pseudoalteromonas, Pseudomonas, Psychromonas, Psychrobacillus, Halomonas, Marinomonas, Microbacterium, Rhodobacter, Roseobacter, Roseovarius, Serratia, Shewanella, Sporosarcina, Salinibacterium, Thalassospira, Streptomyces, Sanguibacter, Tomitella, Staphilococcus, Achromobacter, Acinetobacter, Brevundimonas, Bizonia, Hoeflea, Oceanisphaera, Moritella, Photobacterium, Polaribacter, Promiconospora, Gemmobacter, Celeribacter, Tropicibacter, Serratia, Pseudoruegeria, Sphingopyxis, Thalasospira, Stenotrophomonas, Sulfitobacter, Vibrio | Esterase/Lipase, DNase, Protease, Amylase, Chitinase, Xylanase | [13] |
Sea ice (Spitzbergen, Arctic Ocean) | Marinomonas, Colwellia, Psychromonas, Psychrobacter, Shewanella, Pseudomonas, Pseudoaltheromonas, Gelidibacter, Planomicrobium, Planococcus, Carnobacterium, Agreia, Arthrobacter, Rhodococcus, Brachybacterium | Protease, Lipase, α-Amylase, β-galactosidase | [182] |
Antarctic_Biotic sources | |||
Algae, bryophyte and microbial mat | Pseudomonas, Psychrobacter, Arthrobacter, Bacillus, Carnobacterium, Thermoleophilum minutum | Poly-enzimatic activity (Amylase, Lipase, Gelatinase, Caseinase, Protease, Ligninase, Xylanase, Cellulase) | [174] |
Oligochaete Grania sp. | Flavobacterium, Pseudomonas, Salinibacterium, Psychrobacter | Proteases, Esterases, Amylases, Cellulases, Agarases | [184] |
Antarctic_Biotic sources | |||
Green alga Pyramimonas Gelidicola culture | Pseudomonas pelagia | Polyester hydrolases | [185,186] |
Arctic_Biotic sources | |||
Various microbiota (marine animals, algae) | Arthrobacter, Clavibacter, Filibacter, Leifsonia, Planococcus, Rhodococcus, Streptomyce, Flavobacterium, Gelidibacter, Marinobacter, Nesterenkonia, Nocardiopsis, Micrococcus, Planococcus, Plantibacter, Pseudoalteromonas, Pseudomonas, Psychrobacter, Psychromonas, Psychrobacillus, Halomonas, Marinomonas, Microbacterium, Rhodobacter, Roseobacter, Roseovarius, Serratia, Shewanella, Sporosarcina, Salinibacterium, Thalassospira, Streptomyces, Sanguibacter, Tomitella, Staphilococcus, Achromobacter, Acinetobacter, Brevundimonas, Bizonia, Hoeflea, Oceanisphaera, Moritella, Photobacterium, Polaribacter, Promiconospora, Gemmobacter, Celeribacter, Tropicibacter, Serratia, Pseudoruegeria, Sphingopyxis, Thalasospira, Stenotrophomonas, Sulfitobacter, Vibrio | Esterase/Lipase, DNase, Protease, Amylase, Chitinase, Xylanase | [13] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, C.; Lo Giudice, A. The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms 2020, 8, 1422. https://doi.org/10.3390/microorganisms8091422
Rizzo C, Lo Giudice A. The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms. 2020; 8(9):1422. https://doi.org/10.3390/microorganisms8091422
Chicago/Turabian StyleRizzo, Carmen, and Angelina Lo Giudice. 2020. "The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules" Microorganisms 8, no. 9: 1422. https://doi.org/10.3390/microorganisms8091422
APA StyleRizzo, C., & Lo Giudice, A. (2020). The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms, 8(9), 1422. https://doi.org/10.3390/microorganisms8091422