Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Culture Media and Organisms
2.3. Conversion of Fatty Acids to Alcohols in the Presence of Glucose
2.4. Kinetic Experiments of Carboxylic Acid Product Formation
2.5. Effect of Liquid–Gas Phase Ratio on Carboxylic Acid Reduction
2.6. Effect of Initial pH on Carboxylic Acid Reduction
2.7. Inhibitory Effects of C2–C6 Alcohols on End Product Formation
2.8. Effect of Glucose and Fatty Acid Ratio on End Product Formation
2.9. Nuclear Magnetic Resonance (NMR) Experiment
2.10. Enzyme Assays
2.11. Analytical Methods
3. Results and Discussion
3.1. Fatty Acid Conversion to Alcohols
3.2. Kinetic Experiments
3.3. Influence of Initial pH and Partial Pressure of Hydrogen
3.4. Effect of the Ratio of Glucose and Fatty Acid Concentration on Alcohol Formation
3.5. Inhibitory Impact of the Alcohols on End Product Formation from Glucose
3.6. 13C NMR Studies
3.7. Enzymatic Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, D.T. Applied Acetone-Butanol Fermentation. In Clostridia: Biotechnology and Medical Applications; Bahl, H., Durre, P., Eds.; CRC Press: Weinheim, Germany, 2001; pp. 125–168. [Google Scholar]
- Krouwel, P.G.; Groot, W.J.; Kossen, N.W.F. Continuos IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor. Biotechnol. Bioeng. 1983, 25, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.R.; Atiyeh, H.K.; Tanner, R.S.; Torres, J.R.; Saxena, J.; Wilkins, M.R.; Huhnke, R.L. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresour. Technol. 2015, 190, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Richter, H.; Molitor, B.; Diender, M.; Sousa, D.Z. A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction. Front. Microbiol. 2016, 7, 1173. [Google Scholar] [CrossRef] [Green Version]
- Amiri, H.; Karimi, K. Biobutanol Production. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts; Hosseini, M., Ed.; Elsevier: New York, NY, USA, 2019; pp. 109–133. [Google Scholar]
- Dürre, P. Fermentative butanol production: Bulk chemical and biofuel. Ann. N. Y. Acad. Sci. 2008, 1125, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M. Industrial production of acetone and butanol by fermentation—100 years later. FEMS Microbiol. Lett. 2016, 363, fnw134. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.G.; Jang, Y.S.; Cho, C.; Lee, J.; Binkley, R.; Lee, S.Y. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 2016, 363, fnw001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Liu, H.; Gan, Y.R. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol. Adv. 2010, 28, 651–657. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, D.; Lu, J.; Dürre, P.; Dong, W.; Yan, W.; Zhang, W.; Ma, J.; Jiang, M.; Xin, F. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnol. Biofuels 2018, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Scully, S.M.; Orlygsson, J. Recent advances in second generation ethanol production by thermophilic bacteria. Energies 2015, 8, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.P.; Eley, K.L.; Martin, S.; Tuffin, M.I.; Burton, S.G.; Cowan, D.A. Thermophilic ethanologenesis: Future prospects for second-generation bioethanol production. Trends Biotechnol. 2009, 27, 398–405. [Google Scholar] [CrossRef]
- Cripps, R.E.; Eley, K.; Leak, D.J.; Rudd, B.; Taylor, M.; Todd, M.; Boakes, S.; Martin, S.; Atkinson, T. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 2009, 11, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Yao, S. Thermophilic, lignocellulolytic bacteria for ethanol production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Hollaus, F.; Sleytr, U. On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch. Mikrobiol. 1972, 86, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.E.; Jain, M.K.; Lee, C.; Zeikus, J.G. Taxonomic Distinction of Saccharolytic Thermophilic Anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; Reclassification of Thermoanaerobium bro. Int. J. Syst. Bacteriol. 1993, 43, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Onyenwoke, R.U.; Kevbrin, V.V.; Lysenko, A.M.; Wiegel, J. Thermoanaerobacter pseudethanolicus sp. nov., a thermophilic heterotrophic anaerobe from Yellowstone National Park. Int. J. Syst. Evol. Microbiol. 2007, 57, 2191–2193. [Google Scholar] [CrossRef] [Green Version]
- Mathupala, S.P.; Zeikus, J.G. Improved purification and biochemical characterization of extracellular amylopullulanase from Thermoanaerobacter ethanolicus 39E. Appl. Microbiol. Biotechnol. 1993, 39, 487–493. [Google Scholar] [CrossRef]
- Mathupala, S.P.; Lowe, S.E.; Podkovyrov, S.M.; Zeikus, J.G. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J. Biol. Chem. 1993, 268, 16332–16344. [Google Scholar] [CrossRef]
- Podkovyrov, S.M.; Burdette, D.; Zeikus, J.G. Analysis of the catalytic center of Cyclomaltodextrinase from Thermoanaerobacter ethanolicus 39E. FEBS Lett. 1993, 317, 259–262. [Google Scholar] [CrossRef] [Green Version]
- DiScenza, D.J.; Levine, M. Sensitive and selective detection of alcohols via fluorescence modulation. Supramol. Chem. 2016, 28, 881–891. [Google Scholar] [CrossRef]
- Saha, B.C.; Zeikus, J.G. Characterization of thermostable cyclodextrinase from Clostridium thermohydrosulfuricum 39E. Appl. Environ. Microbiol. 1990, 56, 2941–2943. [Google Scholar] [CrossRef] [Green Version]
- Lamed, R.J.; Zeikus, J.G. Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem. J. 1981, 195, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdette, D.; Zeikus, J.G. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2° Adh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioes. Biochem. J. 1994, 302, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Mikkelsen, M.J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J. Mol. Microbiol. Biotechnol. 2010, 19, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shao, X.; Olson, D.G.; Murphy, S.J.L.; Tian, L.; Lynd, L.R. Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation. J. Ind. Microbiol. Biotechnol. 2017, 44, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Scully, S.M.; Örlygsson, J. Thermostable Thermoanaerobacter alcohol dehydrogenases and their use in organic synthesis. In Physiological and Biotechnological Aspects of Extremophiles; Salwan, R., Sharma, V., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 183–193. [Google Scholar]
- Burdette, D.S.; Jung, S.-H.; Shen, G.-J.; Hollingsworth, R.I.; Zeikus, J.G. Physiological Function of Alcohol Dehydrogenases and Long-Chain (C30) Fatty Acids in Alcohol Tolerance of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 2002, 68, 1914–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdette, D.S.; Vieille, C.; Zeikus, J.G. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem. J. 1996, 316, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Nealon, C.M.; Musa, M.M.; Patel, J.M.; Phillips, R.S. Controlling Substrate Specificity and Stereospecificity of Alcohol Dehydrogenases. ACS Catal. 2015, 5, 2100–2114. [Google Scholar] [CrossRef]
- Musa, M.M.; Phillips, R.S. Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols. Catal. Sci. Technol. 2011, 1, 1311–1323. [Google Scholar] [CrossRef]
- Hummel, W. New alcohol dehydrogenases for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 1997, 58, 145–184. [Google Scholar]
- Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 2003, 14, 2659–2681. [Google Scholar] [CrossRef]
- Scully, S.M.; Orlygsson, J. Thermostable Alcohol Dehydrogenases from Thermoanaerobacter species and their use in organic synthesis. In Physiological and Biotechnological Aspects of Extremophiles; Salwan, R., Sharma, V., Eds.; Elsevier: New York, NY, USA, 2019. [Google Scholar]
- Bryant, F.O.; Wiegel, J.; Ljungdahl, L.G. Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 1988, 54, 460–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitschler, L.; Kuntz, M.; Langschied, F.; Basen, M. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols. Appl. Microbiol. Biotechnol. 2018, 102, 8465–8476. [Google Scholar] [CrossRef] [PubMed]
- Scully, S.M.; Brown, A.; Ross, A.B.; Orlygsson, J. Biotransformation of organic acids to their corresponding alcohols by Thermoanaerobacter pseudoethanolicus. Anaerobe 2019, 57, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Scully, S.M.; Orlygsson, J. Branched-chain amino acid catabolism of Thermoanaerobacter strain AK85 and the influence of culture conditions on branched-chain alcohol formation. Amino Acids 2019, 51, 1039–1054. [Google Scholar] [CrossRef] [PubMed]
- Scully, S.M. Amino Acid and Related Catabolism of Thermoanaerobacter species. Ph.D. Thesis, University of Iceland, Reykjavík, Iceland, 2019. [Google Scholar]
- Magano, J.; Dunetz, J.R. Large-scale carbonyl reductions in the pharmaceutical industry. Org. Process Res. Dev. 2012, 16, 1156–1184. [Google Scholar] [CrossRef]
- Venkitasubramanian, P.; Daniels, L.; Rosazza, J.P.N. Biocatalytic Reduction of Carboxylic Acids: Mechanism and Applications. In Biocatalysis in the Pharmaceutical and Biotechnology Industries; Patel, R.N., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 425–440. [Google Scholar]
- Napora-Wijata, K.; Strohmeier, G.A.; Winkler, M. Biocatalytic reduction of carboxylic acids. Biotechnol. J. 2014, 9, 822–843. [Google Scholar] [CrossRef]
- Finnigan, W.; Gough, B.; Adams, J.P.; Littlechild, J.A.; Harmer, N.J.; Thomas, A.; Cromar, H.; Snajdrova, R. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. ChemCatChem 2016, 9, 1005–1017. [Google Scholar] [CrossRef] [Green Version]
- White, H.; Strobl, G.; Feicht, R.; Simon, H. Carboxylic acid reductase: A new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur. J. Biochem. 1989, 184, 89–96. [Google Scholar] [CrossRef]
- Isom, C.E.; Nanny, M.A.; Tanner, R.S. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei”. J. Ind. Microbiol. Biotechnol. 2015, 42, 29–38. [Google Scholar] [CrossRef]
- Perez, J.M.; Richter, H.; Loftus, S.E.; Angenent, L.T. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnol. Bioeng. 2013, 110, 1066–1077. [Google Scholar] [CrossRef]
- Huber, C.; Skopan, H.; Feicht, R.; White, H.; Simon, H. Pterin cofactor, substrate specificity, and observations on the kinetics of the reversible tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum—Preparative reductions of a series of carboxylates to alcohols. Arch. Microbiol. 1995, 164, 110–118. [Google Scholar] [CrossRef]
- Scully, S.M.; Orlygsson, J. Branched-chain amino acid catabolism of Thermoanaerobacter pseudoethanolicus reveals potential route to branched-chain alcohol formation. Extremophiles 2020, 24, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Fardeau, M.; Faudon, C.; Cayol, J. Effect of thiosulphate as electron acceptor on glucose and xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp. isolated from oil field water. Res. Microbiol. 1996, 147, 159–165. [Google Scholar] [CrossRef]
- Chades, T.; Scully, S.M.; Ingvadottir, E.M.; Orlygsson, J. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic Clostridia. Front. Microbiol. 2018, 9, 1931. [Google Scholar] [CrossRef]
- Hungate, R.E. A roll tube method for cultivation of strict anaerobes. In Methods in Microbiology; Norris, J.R., Ribbons, Eds.; Academic Press: New York, NY, USA, 1969; pp. 117–132. [Google Scholar]
- Miller, T.L.; Wolin, M.J. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 1974, 27, 985–987. [Google Scholar] [CrossRef]
- Fibla, J.; Gonzhlez-Duarte, R. Colorimetric assay to determine alcohol dehydrogenase activity. J. Biochem. Biophys. Methods 1993, 26, 87–93. [Google Scholar] [CrossRef]
- Orlygsson, J.; Baldursson, S.R.B. Phylogenetic and physiological studies of four hydrogen-producing thermoanareobes. Icelandic Agric. Sci. 2007, 20, 93–105. [Google Scholar]
- Copeland, R.A. Methods for Protein Analysis; Chapman & Hall: New York, NY, USA, 1994. [Google Scholar]
- Akhtar, M.K.; Turner, N.J.; Jones, P.R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 2013, 110, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Atiyeh, H.K.; Stevenson, B.S.; Tanner, R.S.; Wilkins, M.R.; Huhnke, R.L. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour. Technol. 2014, 152, 337–346. [Google Scholar] [CrossRef]
- Osburn, O.L. The Production of Butyl and Isopropyl Alcohols by Fermentative Processes. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1934. [Google Scholar]
- Scully, S.M.; Orlygsson, J. Biotransformation of carboxylic acids to alcohols: Characterization of Thermoanaerobacter strain AK152 and 1-propanol production via propionate reduction. Microorganisms 2020, 8, 945. [Google Scholar] [CrossRef]
- Jessen, J.E.J.; Orlygsson, J. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. J. Biomed. Biotechnol. 2012, 1869–1882. [Google Scholar] [CrossRef]
- Brynjarsdottir, H.; Wawiernia, B.; Orlygsson, J. Ethanol production from sugars and complex biomass by Thermoanaerobacter AK5: The effect of electron-scavenging systems on end-product formation. Energy Fuels 2012, 26, 4568–4574. [Google Scholar] [CrossRef]
- Lamed, R.J.; Keinan, E.; Zeikus, J.G. Potential applications of an alcohol-aldehyde/ketone oxidoreductase from thermophilic bacteria. Enzyme Microb. Technol. 1981, 3, 144–148. [Google Scholar] [CrossRef]
- Zeikus, J.G.; Lamed, R.J. Preparation of a Novel NADP Linked Alcohol-Aldehyde/Ketone Oxidoreductase from Thermophilic Anaerobic Bacteria for Analytical and Commercial Use. US Patent 4352885, 5 October 1982. [Google Scholar]
- Ismaiel, A.A.; Zhu, C.X.; Colby, G.D.; Chen, J.S. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J. Bacteriol. 1993, 175, 5097–5105. [Google Scholar] [CrossRef] [Green Version]
- Domańska, U.; Królikowski, M. Extraction of butan-1-ol from water with ionic liquids at T=308.15 K. J. Chem. Thermodyn. 2012, 53, 108–113. [Google Scholar] [CrossRef]
- Mariano, A.P.; Qureshi, N.; Maciel Filho, R.; Ezeji, T.C. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. J. Chem. Technol. Biotechnol. 2012, 87, 334–340. [Google Scholar] [CrossRef]
- Xin, F.; Liu, J.; He, M.; Wu, B.; Ni, Y.; Dong, W.; Zhang, W.; Hu, G.; Jiang, M. High biobutanol production integrated with in situ extraction in the presence of Tween 80 by Clostridium acetobutylicum. Process Biochem. 2018, 67, 113–117. [Google Scholar] [CrossRef]
- Qin, Z.; Duns, G.J.; Pan, T.; Xin, F. Consolidated processing of biobutanol production from food wastes by solventogenic Clostridium sp. strain HN4. Bioresour. Technol. 2018, 264, 148–153. [Google Scholar] [CrossRef]
- Huffer, S.; Clark, M.E.; Ning, J.C.; Blanch, H.W.; Clark, D.S. Role of Alcohols in Growth, Lipid Composition, and Membrane Fluidity of Yeasts, Bacteria, and Archaea. Appl. Environ. Microbiol. 2011, 77, 6400–6408. [Google Scholar] [CrossRef] [Green Version]
- Bajapi, R.K.; Iannotti, E.L. Product Inhibition. In Handbook on Anaerobic Fermentations; Erickson, L.E., Fung, D.Y.C., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1988; pp. 207–241. [Google Scholar]
- Rani, K.S.; Swamy, M.V.; Seenayya, G. Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum. Biotechnol. Lett. 1997, 19, 819–823. [Google Scholar] [CrossRef]
- Ezeji, T.; Milne, C.; Price, N.D.; Blaschek, H.P. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Environ. Microbiol. 2010, 85, 1697–1712. [Google Scholar] [CrossRef] [PubMed]
- Bryant, F.O.; Wiegel, J.; Ljungdahl, L.G. Comparison of alcohol dehydrogenase from wild-type and mutant strain, JW200 Fe 4, of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 1992, 37, 490–495. [Google Scholar] [CrossRef]
Organism(s) | Substrate | Alcohol Titer (mM) | %c | References |
---|---|---|---|---|
Alkalibaculum bacchi strain CP15 | Syngas + 1-propionate | 6.7 (1-PrOH) | 36.8 | [57] |
Alkalibaculum bacchi strain CP15+ Cl. propinicum | Syngas + 1-propionate | 16.6 (1-PrOH) | 83.4 | [57] |
Alkalibaculum bacchi strain CP15 | Syngas + 1-butyrate | 6.7 (1-BuOH | 38.6 | [57] |
Alkalibaculum bacchi strain CP15+ Cl. propinicum | Syngas + 1-butyrate | 11.0 (1-BuOH) | 74.7 | [57] |
Alkalibaculum bacchi strain CP15 | Syngas + 1-hexanoate | 7.9 (1-Hexanol) | 63.6 | [57] |
Alkalibaculum bacchi strain CP15+ Cl. propinicum | Syngas + 1-hexanoate | 9.8 (1-Hexanol) | 90.7 | [57] |
“Clostridium ragsdalei” | CO + propionate (15 mM) | 7.5 mM (1-PrOH) | 30% | [46] |
“Clostridium ragsdalei” | CO + propionate (30 mM | 29 mM | 97% | [45] |
C. ljungdahlii ERI-2 | CO + propionate (15 mM) | 10.4 mM (1-PrOH) | 69.4 | [46] |
Clostridium butylicum | Glucose (36 mmol) | 22 mM (1-BuOH | n/a | [58] |
Clostridium butylicum | Glucose (36 mmol) + 1-butyrate (15 mmol) | 26 mM (1-BuOH) | 26.7 a | [58] |
T. pseudoethanolicus | Glu + 1-propionate | 6.62 (1-PrOH) | 33.0 | [37] |
T. pseudoethanolicus | Glu + 1-butyrate | 9.14 (1-BuOH) | 55.6 | [37] |
T. pseudoethanolicus | Glu + 1-hexanoate | 6.69 (1-Hexanol) | 33.5 | [37] |
Thermoanaerobacter strain AK152 | Glu + 1-propionate (pH 6.7) | 11.5 (1-PrOH) | 57.3 | [59] |
Thermoanaerobacter strain X514 | Glu + 1-propionate | 25 mM (1-PrOH | 50 | [36] |
Thermoanaerobacter strain X514 | Glu + 1-butryate | <2 mM (1-BuOH) | <4 | [36] |
Thermoanaerobacter strain X514 | Glu + 1-hexanoate | 8 mM | 16 | [36] |
T. brockii subsp. finnii | Glu + 1-propionate | 21 mM (1-PrOH) | 42 | [36] |
T. brockii subsp. finnii | Glu + 1-butryate | <5 mM | <10 | [36] |
T. brockii subsp. finnii | Glu + 1-hexanoate | <5 mM | <10 | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scully, S.M.; Brown, A.E.; Mueller-Hilger, Y.; Ross, A.B.; Örlygsson, J. Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus. Microorganisms 2021, 9, 162. https://doi.org/10.3390/microorganisms9010162
Scully SM, Brown AE, Mueller-Hilger Y, Ross AB, Örlygsson J. Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus. Microorganisms. 2021; 9(1):162. https://doi.org/10.3390/microorganisms9010162
Chicago/Turabian StyleScully, Sean Michael, Aaron E. Brown, Yannick Mueller-Hilger, Andrew B. Ross, and Jóhann Örlygsson. 2021. "Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus" Microorganisms 9, no. 1: 162. https://doi.org/10.3390/microorganisms9010162
APA StyleScully, S. M., Brown, A. E., Mueller-Hilger, Y., Ross, A. B., & Örlygsson, J. (2021). Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus. Microorganisms, 9(1), 162. https://doi.org/10.3390/microorganisms9010162