Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Construction of Filtration Apparatus
2.3. Collection and Management of Water
2.4. Preparation and Inoculation of E. coli TVS353
2.5. Physicochemical and Atmospheric Data Collection
2.6. Application of Irrigation Water
2.7. Collection of Samples
2.7.1. Water
2.7.2. Soil and Crop Leaves
2.8. Isolation and Enumeration of E. coli TVS 353
2.9. Reduction of PMMoV in Irrigation Water
2.10. Data Analysis
3. Results
3.1. Effects of ZVI–Sand Filtration on Water Quality
3.2. Reduction of E. coli in Irrigation Water and Transfer to Crop Leaves
3.3. Prolonged Effects of ZVI–Sand Filtration on Bacterial Survival
3.4. Effects of ZVI–Sand Filtered Irrigation Water Application on Soil Quality
3.5. Reduction of PMMoV in Irrigation Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Murphy, H.M.; Prioleau, M.D.; Borchardt, M.A.; Hynds, P.D. Review: Epidemiological evidence of groundwater contribu-tion to global enteric disease, 1948–2015. Hydrogeol. J. 2017, 25, 981–1001. [Google Scholar] [CrossRef]
- Ritter, L.; Solomon, K.; Sibley, P.; Hall, K.; Keen, P.; Mattu, G.; Linton, B. Sources, pathways, and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton inquiry. J. Toxicol. Environ. Health 2002, 65, 1–142. [Google Scholar]
- Solaiman, S.; Allard, S.M.; Callahan, M.T.; Jiang, C.; Handy, E.; East, C.; Haymaker, J.; Bui, A.; Craddock, H.; Murray, R.; et al. Longitudinal Assessment of the Dynamics of Escherichia coli, Total Coliforms, Enterococcus spp., and Aeromonas spp., in Alternative Irrigation Water Sources: A CONSERVE Study. Appl. Environ. Microbiol. 2020, 86, e00342-20. [Google Scholar] [CrossRef] [PubMed]
- Truitt, L.N.; Vazquez, K.M.; Pfuntner, R.C.; Rideout, S.L.; Havelaar, A.H.; Strawn, L.K. Microbial quality of agricultural water used in produce preharvest production on the Eastern shore of Virginia. J. Food Prot. 2018, 81, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Uyttendaele, M. Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. Int. J. Food Microbiol. 2014, 171, 21–31. [Google Scholar] [CrossRef]
- Shaheen, M.N.F.; Elmahdy, E.M.; Chawla-Sarkar, M. Quantitative PCR-based identification of enteric viruses contaminating fresh produce and surface water used for irrigation in Egypt. Environ. Sci. Pollut. Res. 2019, 26, 21619–21628. [Google Scholar] [CrossRef]
- Dantas, M.S.; De Oliveira, J.C.; Pinto, C.C.; Oliveira, S.C. Impact of fecal contamination on surface water quality in the São Francisco River hydrographic basin in Minas Gerais, Brazil. J. Water Health 2019, 18, 48–59. [Google Scholar] [CrossRef] [PubMed]
- De Giglio, O.; Caggiano, G.; Bagordo, F.; Barbuti, G.; Brigida, S.; Lugoli, F.; Grassi, T.; La Rosa, G.; Lucentini, L.; Uricchio, V.F.; et al. Enteric viruses and fecal bacteria indicators to assess groundwater quality and suitability for irrigation. Int. J. Environ. Res. Public Health 2017, 14, 558. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, S.; Shindo, J.; Sherchand, J.B.; Haramoto, E. Virological Quality of Irrigation Water Sources and Pepper Mild Mottle Virus and Tobacco Mosaic Virus as Index of Pathogenic Virus Contamination Level. Food Environ. Virol. 2018, 10, 107–120. [Google Scholar] [CrossRef]
- Tandukar, S.; Sherchan, S.P.; Haramoto, E. Reduction of Human Enteric and Indicator Viruses at a Wastewater Treatment Plant in Southern Louisiana, USA. Food Environ. Virol. 2020, 12, 260–263. [Google Scholar] [CrossRef]
- Kitajima, M.; Sassi, H.P.; Torrey, J.R. Pepper mild mottle virus as a water quality indicator. NPJ Clean Water 2018, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Hamza, H.; Rizk, N.M.; Gad, M.A.; Hamza, I.A. Pepper mild mottle virus in wastewater in Egypt: A potential indicator of wastewater pollution and the efficacy of the treatment process. Arch. Virol. 2019, 164, 2707–2713. [Google Scholar] [CrossRef] [PubMed]
- Symonds, E.M.; Rosario, K.; Breitbart, M. Pepper mild mottle virus: Agricultural menace turned effective tool for microbial water quality monitoring and assessing (waste)water treatment technologies. PLoS Pathog. 2019, 15, e1007639. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618–632. [Google Scholar] [CrossRef]
- Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.-A.; Chanéac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.-Y. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008, 42, 6730–6735. [Google Scholar] [CrossRef]
- Chaithawiwat, K.; Vangnai, A.; McEvoy, J.M.; Pruess, B.; Krajangpan, S.; Khan, E. Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. Sci. Total Environ. 2016, 565, 857–862. [Google Scholar] [CrossRef]
- Diao, M.; Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009, 43, 5243–5251. [Google Scholar] [CrossRef]
- Ingram, D.; Callahan, M.; Ferguson, S.; Hoover, D.; Shelton, D.; Millner, P.; Camp, M.; Patel, J.; Kniel, K.; Sharma, M. Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2012, 112, 551–560. [Google Scholar] [CrossRef]
- Marik, C.M.; Anderson-Coughlin, B.; Gartley, S.; Craighead, S.; Bradshaw, R.; Kulkarni, P.; Sharma, M.; Kniel, K.E. The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation. Environ. Res. 2019, 173, 33–39. [Google Scholar] [CrossRef]
- Shi, C.; Wei, J.; Jin, Y.; Kniel, K.E.; Chiu, P.C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 2012, 84, 72–78. [Google Scholar] [CrossRef]
- Chopyk, J.; Nasko, D.J.; Allard, S.; Bui, A.; Treangen, T.; Pop, M.; Mongodin, E.F.; Sapkota, A.R. Comparative metagenomic analysis of microbial taxonomic and functional variations in untreated surface and reclaimed waters used in irrigation applications. Water Res. 2020, 169, 115250. [Google Scholar] [CrossRef]
- Kim, S.; Bradshaw, R.; Kulkarni, P.; Allard, S.; Chiu, P.C.; Sapkota, A.R.; Newell, M.J.; Handy, E.T.; East, C.L.; Kniel, K.E.; et al. Zero-Valent Iron-Sand Filtration Reduces Escherichia coli in Surface Water and Leafy Green Growing Environments. Front. Sustain. Food Syst. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Haymaker, J.; Sharma, M.; Parveen, S.; Hashem, F.; May, E.B.; Handy, E.T.; White, C.; East, C.; Bradshaw, R.; Micallef, S.A.; et al. Prevalence of Shiga-toxigenic and atypical enteropathogenic Escherichia coli in untreated surface water and reclaimed water in the Mid-Atlantic U.S. Environ. Res. 2019, 172, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Callejas, A.; Lopez-Velasco, G.; Camacho, A.B.; Artés, F.; Artés-Hernández, F.; Suslow, T.V. Survival and distribution of Escherichia coli on diverse fresh-cut baby leafy greens under preharvest through postharvest conditions. Int. J. Food Microbiol. 2011, 151, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Weller, D.; Kovac, J.; Roof, S.; Kent, D.J.; Tokman, J.I.; Kowalcyk, B.; Oryang, D.; Ivanek, R.; Aceituno, A.; Sroka, C.; et al. Survival of Escherichia coli on Lettuce under Field Conditions Encountered in the Northeastern United States. J. Food Prot. 2017, 80, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Reynnells, R.; Ingram, D.T.; Roberts, C.; Stonebraker, R.; Handy, E.T.; Felton, G.; Vinyard, B.T.; Millner, P.D.; Sharma, M. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council Microbial Detection Methods in Finished Compost and Regrowth Potential of Salmonella spp. and Esherichia coli O157:H7 in Finished Compost. Foodborne Pathog. Dis. 2014, 11, 555–567. [Google Scholar] [CrossRef]
- Zhang, T.; Breitbart, M.; Lee, W.H.; Run, J.Q.; Wei, C.L.; Soh, S.W.; Hibberd, M.L.; Liu, E.T.; Rohwer, F.; Ruan, Y. RNA community in human feces: Prevalence of plant pathogenic viruses. PLoS Biol. 2005, 4, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Haramoto, E.; Kitajima, M.; Kishida, N.; Konno, Y.; Katayama, H.; Asami, M.; Akiba, M. Occurrence of Pepper Mild Mottle Virus in Drinking Water Sources in Japan. Appl. Environ. Microbiol. 2013, 79, 7413–7418. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, B.; Wilrich, C.; Wilrich, P.-T. Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values. J. Appl. Microbiol. 2010, 109, 1660–1667. [Google Scholar] [CrossRef]
- Anderson, K.L.; Whitlock, J.E.; Harwood, V.J. Persistence and Differential Survival of Fecal Indicator Bacteria in Subtropical Waters and Sediments. Appl. Environ. Microbiol. 2005, 71, 3041–3048. [Google Scholar] [CrossRef] [Green Version]
- Cheng, I.; Muftikian, R.; Fernando, Q.; Korte, N. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 1997, 35, 2689–2695. [Google Scholar] [CrossRef]
- Ryu, A.; Jeong, S.-W.; Jang, A.; Choi, H. Reduction of highly concentrated nitrate using nanoscale zero-valent iron: Effects of aggregation and catalyst on reactivity. Appl. Catal. B Environ. 2011, 105, 128–135. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhang, T.C. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and ni-trate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Res. 2005, 39, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Ueyama, T.; Mingliang, F.; Leddy, M. Online assessment of sand filter performance for bacterial removal in a full-scale drinking water treatment plant. Chemosphere 2019, 229, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Huang, Y.; Liu, Z. Bacterial indicator reduction in dairy manure using hybrid zero-valent iron (h-ZVI) system. Environ. Sci. Pollut. Res. 2019, 26, 10790–10799. [Google Scholar] [CrossRef]
- Kato, R.; Asami, T.; Utagawa, E.; Furumai, H.; Katayama, H. Pepper mild mottle virus as a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid sand filtration, ozonation, and biological activated carbon treatments in Japan. Water Res. 2018, 132, 61–70. [Google Scholar] [CrossRef]
- Aronino, R.; Dlugy, C.; Arkhangelsky, E.; Shandalov, S.; Oron, G.; Brenner, A.; Gitis, V. Removal of viruses from surface water and secondary effluents by sand filtration. Water Res. 2009, 43, 87–96. [Google Scholar] [CrossRef]
- Shearer, A.E.H.; Kniel, K.E. Enhanced Removal of Norovirus Surrogates, Murine Norovirus and Tulane Virus, from Aqueous Systems by Zero-Valent Iron. J. Food Prot. 2018, 81, 1432–1438. [Google Scholar] [CrossRef]
- Canh, V.D.; Furumai, H.; Katayama, H. Removal of pepper mild mottle virus by full-scale microfiltration and slow sand filtration plants. NPJ Clean Water 2019, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wetter, C.; Conti, M.; Altschuh, D.; Tabillion, R.; van Regenmortel, M.H.V. Pepper mild mottle virus, a tobamovirus infecting pepper cultivars in Sicily. Phytopathology 1984, 74, 405–410. [Google Scholar] [CrossRef]
- Goodridge, L.; Goodridge, C.; Wu, J.; Griffiths, M.; Pawliszyn, J. Isoelectric Point Determination of Norovirus Virus-like Particles by Capillary Isoelectric Focusing with Whole Column Imaging Detection. Anal. Chem. 2004, 76, 48–52. [Google Scholar] [CrossRef] [PubMed]
Irrigation Event | Water | Leaf | Soil | ||||||
---|---|---|---|---|---|---|---|---|---|
Concentration b | Reduction | Transfer c | Reduction | Transfer c | |||||
Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered | Filtered | Reduction | |||
1 | 11.41 | 7.65 | 3.76 | 10.99 | 7.38 | 3.61 | 7.83 | 5.63 | 2.19 |
2 | 13.70 | 10.92 | 2.78 | --- a | --- | --- | 10.56 | 5.91 | 4.66 |
3 | 12.39 | 7.61 | 4.78 | --- | --- | --- | 9.82 | 5.95 | 3.87 |
4 | 12.16 | 8.74 | 3.42 | --- | --- | --- | 10.75 | 5.33 | 5.42 |
5 | 14.02 | 9.47 | 4.55 | 11.70 | 4.24 | 7.46 | 13.32 | 7.16 | 6.16 |
6 | 12.86 | 9.12 | 3.74 | 8.94 | 5.95 | 2.99 | 11.79 | 5.35 | 6.43 |
Average | 13.13 | 9.89 | 3.54 | 11.04 | 6.53 | 4.51 | 11.85 | 6.12 | 5.73 |
Irrigation Event | Decay Rate (r) by Water Type 1 | Difference 2 | |
---|---|---|---|
Unfiltered | Filtered | Between Rates | |
1 | −0.56 | −2.04 | 1.48 |
2 | −0.64 | −3.13 | 0.49 |
3 | −0.94 | −2.02 | 1.08 |
4 | −0.46 | −0.63 | 0.17 |
5 | −0.22 | −0.49 | 0.28 |
6 | −0.05 | −0.66 | 0.60 |
Average | −0.48 | −1.49 | 1.02 |
Soil Parameter (Units) | Water Type | Minimum | Mean | Maximum | p-Value |
---|---|---|---|---|---|
Moisture Content (%) | Unfiltered | 1.4 | 11.6 | 20.4 | 0.887 |
Filtered | 1.4 | 12.0 | 18.3 | ||
pH | Unfiltered | 5.6 | 6.2 | 6.9 | 0.138 |
Filtered | 5.8 | 6.3 | 6.7 | ||
Boron (ppm) | Unfiltered | 0.30 | 0.48 | 0.75 | 0.750 |
Filtered | 0.32 | 0.49 | 0.95 | ||
Calcium (ppm) | Unfiltered | 719.26 | 1086.51 | 1570.29 | 0.821 |
Filtered | 732.45 | 1056.06 | 1414.68 | ||
Copper (ppm) | Unfiltered | 1.69 | 2.35 | 3.39 | 0.338 |
Filtered | 3.09 | 3.84 | 5.01 | ||
Iron (ppm) | Unfiltered | 114.23 | 134.76 | 152.97 | 0.513 |
Filtered | 104.54 | 122.12 | 150.59 | ||
Magnesium (ppm) | Unfiltered | 146.65 | 199.55 | 291.77 | 0.779 |
Filtered | 157.20 | 216.08 | 333.20 | ||
Manganese (ppm) | Unfiltered | 35.49 | 41.21 | 47.61 | 0.495 |
Filtered | 40.76 | 44.48 | 50.55 | ||
Phosphorous (ppm) | Unfiltered | 53.50 | 110.59 | 176.76 | 0.952 |
Filtered | 90.25 | 153.76 | 341.11 | ||
Potassium (ppm) | Unfiltered | 221.80 | 319.74 | 430.97 | 0.500 |
Filtered | 212.81 | 330.47 | 626.40 | ||
Sulfur (ppm) | Unfiltered | 17.02 | 47.02 | 134.27 | 0.841 |
Filtered | 21.70 | 54.98 | 163.39 | ||
Zinc (ppm) | Unfiltered | 2.90 | 5.71 | 10.10 | 0.493 |
Filtered | 4.20 | 7.41 | 11.74 | ||
Carbon:Nitrogen Ratio | Unfiltered | 8.80 | 10.59 | 11.80 | 0.936 |
Filtered | 8.40 | 10.57 | 13.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson-Coughlin, B.L.; Litt, P.K.; Kim, S.; Craighead, S.; Kelly, A.J.; Chiu, P.; Sharma, M.; Kniel, K.E. Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities. Microorganisms 2021, 9, 2009. https://doi.org/10.3390/microorganisms9102009
Anderson-Coughlin BL, Litt PK, Kim S, Craighead S, Kelly AJ, Chiu P, Sharma M, Kniel KE. Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities. Microorganisms. 2021; 9(10):2009. https://doi.org/10.3390/microorganisms9102009
Chicago/Turabian StyleAnderson-Coughlin, Brienna L., Pushpinder K. Litt, Seongyun Kim, Shani Craighead, Alyssa J. Kelly, Pei Chiu, Manan Sharma, and Kalmia E. Kniel. 2021. "Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities" Microorganisms 9, no. 10: 2009. https://doi.org/10.3390/microorganisms9102009
APA StyleAnderson-Coughlin, B. L., Litt, P. K., Kim, S., Craighead, S., Kelly, A. J., Chiu, P., Sharma, M., & Kniel, K. E. (2021). Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities. Microorganisms, 9(10), 2009. https://doi.org/10.3390/microorganisms9102009