Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Deposit in Public Culture Collections
2.2. Phylogenetic Analysis
2.3. Genome Sequencing, Assembly and Annotation
2.4. Morphological, Physiological and Metabolic Features
2.5. Susceptibility to Antibiotics
2.6. Chemotaxonomic Analyses
2.7. Polyhydroxyalcanoates (PHAs) Production and Characterization
3. Results and Discussion
3.1. Phylogenetic Affiliation of Strains HW T2.11T and HW T5.17T
3.2. Morphological and Biochemical Characteristics of Strains HW T2.11T and HW T5.17T
3.3. PHAs Characterization
3.4. Genome Analysis of Strains HW T2.11T and HW T5.17T
3.4.1. General Genome Features
3.4.2. Overall Genome Relatedness Indices (OGRI)
3.4.3. Central Metabolism and Energetic Pathways
3.4.4. Enzymes Involved in Cellulose Hydrolysis
3.4.5. PHA Production Pathway
4. Conclusions
4.1. Description of Acidisoma silvae sp. nov.
4.2. Description of Acidisoma cellulosilytica sp. nov.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANI | Average Nucleotide Identity |
CDS | Coding DNA Sequences |
CFA | Cyclopropane fatty acids |
CMC | Carboxymethylcellulose |
dDDH | Digital DNA-DNA hybridization |
DNA | Deoxyribonucleic acid |
DMSO | Dimethyl sulfoxide |
DSMZ | Deutsche Sammlung von Mikroorganismen und Zellkulturen |
FTIR | Fourier Transform Infrared |
GGDC | Genome-to-genome distance calculator |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MaGe | Microbial Genome Annotation and Analysis Platform |
MMN | Mobility-Mannitol-Nitrate |
NMR | Nuclear Magnetic Resonance |
NCBI | National Center for Biotechnological Information |
OGRI | Overall Genome Relatedness Indices |
OrthoANI | Orthologous Average Nucleotide Identity |
PCI | Phenol Chloroform Isoamyl Alcohol |
PHAs | Polyhydroxyalcanoates |
PHB | Polyhydroxybutyrate |
PGAP | Prokaryotic genome annotation pipeline |
RC | Red Congo |
rRNA | Ribosomal ribonucleic acid |
SEM | Scanning Electron Microscopy |
TCA | Tricarboxylic Acid cycle |
TEM | Transmission Electron Microscopy |
TSA | Tryptic Soy Agar |
TSB | Tryptic Soy Broth |
UBOCC | UBO Culture Collection |
References
- Augusto, L.; De Schrijver, A.; Vesterdal, L.; Smolander, A.; Prescott, C.; Ranger, J. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 2015, 90, 444–466. [Google Scholar] [CrossRef]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 2016, 92, fiw179. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.R.; Hiscox, J.; Savoury, M.; Boddy, L.; Weightman, A.J. Highly competitive fungi manipulate bacterial communities in decomposing beech wood (Fagus sylvatica). FEMS Microbiol. Ecol. 2019, 95, fiy225. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, S.; Hoppe, B.; Stengel, E.; Noll, L.; Moll, J.; Bässler, C.; Dahl, A.; Buscot, F.; Hofrichter, M.; Kellner, H. Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS ONE 2019, 14, e0212120. [Google Scholar] [CrossRef]
- Viotti, C.; Bach, C.; Maillard, F.; Ziegler-Devin, I.; Mieszkin, S.; Buée, M. Sapwood and heartwood affect differentially bacterial and fungal community structure and successional dynamics during Quercus petraea decomposition. Environ. Microbiol. 2021. [Google Scholar] [CrossRef]
- A’Bear, A.D.; Jones, T.H.; Kandeler, E.; Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 2014, 70, 151–158. [Google Scholar] [CrossRef]
- Weedon, J.T.; Cornwell, W.K.; Cornelissen, J.H.C.; Zanne, A.E.; Wirth, C.; Coomes, D.A. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? Ecol. Lett. 2009, 12, 45–56. [Google Scholar] [CrossRef]
- Blanchette, R.A. Degradation of the lignocellulose complex in wood. Can. J. Bot. 1995, 73, 999–1010. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, Y.; Gelhaye, E.; Dumarçay, S.; Gérardin, P.; Harvengt, L.; Buée, M. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology. J. Microbiol. Methods 2013, 92, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Zrůstová, P.; Tláskal, V.; Davidová, A.; Merhautová, V.; Vrška, T. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 2016, 23, 109–122. [Google Scholar] [CrossRef]
- Noll, L.; Leonhardt, S.; Arnstadt, T.; Hoppe, B.; Poll, C.; Matzner, E.; Hofrichter, M.; Kellner, H. Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. For. Ecol. Manag. 2016, 378, 181–192. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Zühlke, D.; Becher, D.; Riedel, K.; Baldrian, P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 2016, 6, 25279. [Google Scholar] [CrossRef] [PubMed]
- Hervé, V.; Le Roux, X.; Uroz, S.; Gelhaye, E.; Frey-Klett, P. Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environ. Microbiol. 2014, 16, 2238–2252. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.M.; Sinkko, H.; Rajala, T.; Al-Soud, W.A.; Sørensen, S.J.; Tamminen, M.V.; Timonen, S. Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol. Ecol. 2016, 92, fiw087. [Google Scholar] [CrossRef] [Green Version]
- Uroz, S.; Buee, M.; Deveau, A.; Mieszkin, S.; Martin, F. Ecology of the forest microbiome: Highlights of temperate and boreal ecosystems. Soil Biol. Biochem. 2016, 103, 471–488. [Google Scholar] [CrossRef]
- Mieszkin, S.; Richet, P.; Bach, C.; Lambrot, C.; Augusto, L.; Buée, M.; Uroz, S. Oak decaying wood harbors taxonomically and functionally different bacterial communities in sapwood and heartwood. Soil Biol. Biochem. 2021, 155, 108160. [Google Scholar] [CrossRef]
- Prewitt, L.; Kang, Y.; Kakumanu, M.L.; Williams, M. Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microb. Ecol. 2014, 68, 212–221. [Google Scholar] [CrossRef]
- Hoppe, B.; Krüger, D.; Kahl, T.; Arnstadt, T.; Buscot, F.; Bauhus, J.; Wubet, T. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci. Rep. 2015, 5, 9456. [Google Scholar] [CrossRef] [Green Version]
- Moll, J.; Kellner, H.; Leonhardt, S.; Stengel, E.; Dahl, A.; Bässler, C.; Buscot, F.; Hofrichter, M.; Hoppe, B. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ. Microbiol. 2018, 20, 3744–3756. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.; Woodward, S. Temporal changes in functional diversity of culturable populations in Sitka spruce stumps. For. Pathol. 2007, 37, 217–235. [Google Scholar] [CrossRef]
- Valášková, V.; De Boer, W.; Gunnewiek, P.J.K.; Pospisek, M.; Baldrian, P. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 2009, 3, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorob’ev, A.V.; de Boer, W.; Folman, L.B.; Bodelier, P.L.; Doronina, N.V.; Suzina, N.E.; Trotsenko, Y.A.; Dedysh, S.N. Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int. J. Syst. Evol. Microbiol. 2009, 59, 2538–2545. [Google Scholar] [CrossRef] [Green Version]
- Tláskal, V.; Brabcová, V.; Větrovský, T.; Jomura, M.; López-Mondéjar, R.; Oliveira Monteiro, L.M.; Saraiva, J.P.; Human, Z.R.; Cajthaml, T.; Nunes da Rocha, U.; et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. Msystems 2021, 6, e01078-20. [Google Scholar] [CrossRef]
- Belova, S.E.; Pankratov, T.A.; Detkova, E.N.; Kaparullina, E.N.; Dedysh, S.N. Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands. Int. J. Syst. Evol. Microbiol. 2009, 59, 2283–2290. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Pankratov, T.A.; Belova, S.E.; Kulichevskaya, I.S.; Liesack, W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl. Environ. Microbiol. 2006, 72, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- García-Moyano, A.; Gonzíáles-Toril, E.; Aguilera, A.; Amils, R. Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain). Syst. Appl. Microbiol. 2007, 30, 601–614. [Google Scholar] [CrossRef]
- Delavat, F.; Lett, M.C.; Lièvremont, D. Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches. Biol. Direct. 2012, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Delavat, F.; Lett, M.C.; Lièvremont, D. Yeast and bacterial diversity along a transect in an acidic, As–Fe rich environment revealed by cultural approaches. Sci. Total Environ. 2013, 463, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Davis-Belmar, C.S.; Pinto, E.; Demergasso, C.; Rautenbach, G. Proteo and Actinobacteria diversity at a sulfide, salt and acid-rich lake in the north of Chile. Adv. Mater. Res. 2013, 825, 37–41. [Google Scholar] [CrossRef]
- Sun, H.; Terhonen, E.; Kasanen, R.; Asiegbu, F.O. Diversity and community structure of primary wood-inhabiting bacteria in boreal forest. Geomicrobiol. J. 2014, 31, 315–324. [Google Scholar] [CrossRef]
- Lladó, S.; Žifčáková, L.; Větrovský, T.; Eichlerová, I.; Baldrian, P. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol. Fertil. Soils 2016, 52, 251–260. [Google Scholar] [CrossRef]
- Alain, K.; Marteinsson, V.T.; Miroshnichenko, M.; Bonch-Osmolovskaya, E.; Prieur, D.; Birrien, J.-L. Marinitoga piezophila, sp. nov., a rod-shaped thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 2002, 52, 1331–1339. [Google Scholar]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Charbonnier, F.; Forterre, P.; Erauso, G.; Prieur, D. Purification of plasmids from thermophilic and hyperthermophilic archaebacteria. In Archaea: A Laboratory Manual; Robb, F.T., Place, A.R., DasSarma, S., Schreier, H.J., Fleischmann, E.M., Eds.; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 1995; pp. 87–90. [Google Scholar]
- Allioux, M.; Yvenou, S.; Slobodkina, G.; Slobodkin, A.; Shao, Z.; Jebbar, M.; Alain, K. Genomic characterization and environmental distribution of a thermophilic anaerobe Dissulfurirhabdus thermomarina SH388T involved in disproportionation of sulfur compounds in shallow sea hydrothermal vents. Microorganisms 2020, 8, 1132. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [Green Version]
- Tindall, B.J. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 1990, 13, 128–130. [Google Scholar] [CrossRef]
- Tindall, B.J. Lipid composition of Halobacterium lacus profundi. FEMS Microbiol. Lett. 1990, 66, 199–202. [Google Scholar] [CrossRef]
- Kuykendall, L.D.; Roy, M.A.; O’Neill, J.J.; Devine, T.E. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bact. 1988, 38, 358–361. [Google Scholar] [CrossRef] [Green Version]
- Wecker, P.; Moppert, X.; Simon-Colin, C.; Costa, B.; Berteaux-Lecellier, V. Discovery of a mcl-PHA with unexpected biotechnical properties: The marine environment of French Polynesia as a source for PHA-producing bacteria. Amb Express. 2015, 5, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Colin, C.; Raguénès, G.; Crassous, P.; Moppert, X.; Guezennec, J.G. A novel mcl-PHA produced on coprah oil by Pseudomonas guezennei biovar. tikehau, isolated from a “kopara” mat of French Polynesia. Int. J. Biol. Macromol. 2008, 43, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Dubey, G.P.; Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 2011, 144, 590–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pande, S.; Shitut, S.; Freund, L.; Westermann, M.; Bertels, F.; Colesie, C.; Bischofs, I.B.; Kost, C. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 2015, 6, 6238. [Google Scholar] [CrossRef] [Green Version]
- Pospíšil, J.; Vítovská, D.; Kofroňová, O.; Muchová, K.; Šanderová, H.; Hubálek, M.; Šiková, M.; Modrák, M.; Benada, O.; Barák, I.; et al. Bacterial nanotubes as a manifestation of cell death. Nat. Commun. 2020, 11, 4963. [Google Scholar] [CrossRef] [PubMed]
- Kadouri, D.; Jurkevitch, E.; Okon, Y.; Castro-Sowinski, S. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 2005, 31, 55–67. [Google Scholar] [CrossRef]
- Castro-Sowinski, S.; Burdman, S.; Matan, O.; Okon, Y. Natural functions of bacterial polyhydroxyalkanoates. In Plastics from Bacteria; Springer: Berlin/Heidelberg, Germany, 2010; pp. 39–61. [Google Scholar]
- López, N.I.; Pettinari, M.J.; Nikel, P.I.; Méndez, B.S. Polyhydroxyalkanoates: Much more than biodegradable plastics. Adv. Appl. Microbiol. 2015, 93, 73–106. [Google Scholar]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 1987, 37, 463–464. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.; Stouthamer, A.H. Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J. Bacteriol. 1967, 9, 574–576. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hamid, A.M.; Attwood, M.M.; Guest, J.R. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 2001, 147, 1483–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.Y.; Cronan, J.E. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 1999, 33, 249–259. [Google Scholar] [CrossRef]
- Tsuge, T.; Hyakutake, M.; Mizuno, K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015, 99, 6231–6240. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Str. HW T2.11T | Str. HW T5.17T | A. tundrae (WM1T) | A. sibiricum (TPB606T) |
---|---|---|---|---|
Colony color | White, cream, pearly | White, ivory, pearly | White, ivory (*) | White, cream, pinkish (*) |
Oxidase | − | − | + | + |
Cell size (µm) | 0.4–1.0 × 0.8–3.7 | 0.6–1.0 × 0.9–3.0 | 0.8–1.5 × 1.9–4.1 (*) | 0.7–1.2 × 1.4–3.1 (*) |
Cell shape | coccobacilli | coccobacilli | Coccobacilli | coccobacilli |
Motility | + | − | − | − |
Temperature range (optimum) (°C) | 8–25 (20) | 14–25 (20) | 2–30 (15–22) (*) | 2–30 (20–25) (*) |
pH growth range (optimum) (°C) | 2.0–6.5 (3.0–4.0) | 3.0–5.5 (4.0–5.0) | 3.0–7.5 (4.5–5.7) (*) | 3.7–7.6 (5.0–6.5) (*) |
NaCl tolerance (optimum) (%, w/v) | 0.0–2.5 (0.5) | 0.0–2.5 (0.5) | <1.5 (*) | <2.5 (*) |
Carbon source utilization | ||||
Glucose | − | + | + | + |
Lactose | − | + | + | + |
Mannose | + | − | + | + |
Trehalose | + | + | + | + |
Ethanol | − | + | − | − |
Pyruvate | − | − | + | + |
Lactate | − | − | − | + |
Asparagine | V | V | + | + |
Alanine | − (†) | + (†) | − (*) | −(*) |
Proline | − (†) | − (†) | + (*) | + (*) |
Histidine | − (†) | − (†) | + (*) | + (*) |
Cellobiose | − (†) | + (†) | − (*) | V (*) |
Carboxymethylcellulose | + | + | – | − |
Xylan | − (†) | − (†) | + (*) | + (*) |
Tween 80 | − (†) | + (†) | − (*) | − (*) |
Enzymatic activities | ||||
Urease | + | − | − | + |
Arginine dihydrolase | + | + | − (*) | − (*) |
Nitrate reductase | + | − | − | − |
Fatty Acids | Strain HWT2-11T | Strain HWT5-17T | A. tundrae (WM1T) | A. sibiricum (TPB606T) |
---|---|---|---|---|
C10: 0 | - | - | 0.1 | - |
C12:0 | - | - | 0.2 | - |
C14: 0 | - | - | 0.2 | 0.7 |
Unknown 14.959 | 2.1 | 2.1 | 3.1 | 1.4 |
Summed feature 2 * | 1.0 | 0.9 | 1.9 | 2.0 |
Summed feature 3 † | 0.5 | 0.4 | - | 1.7 |
C16: 0 N alcohol | - | - | 0.4 | - |
C16: 1ω5c | - | - | - | 0.2 |
C16: 0 | 6.3 | 6.6 | 4.7 | 21.3 |
C16: 0 2-OH | 1.1 | 1.9 | - | 0.5 |
C16: 0 3-OH | 0.5 | 0.5 | 0.2 | 1.2 |
Cyclo C17: 0 | - | - | - | 1.2 |
C17: 0 3-OH | - | - | 0.4 | - |
C17: 0 | - | 0.3 | - | - |
C18: 1ω9c | - | - | 2.4 | 0.7 |
C18: 1ω7c | 16.3 | 7.4 | 11.1 | 13.8 |
C18: 1ω5c | - | 0.7 | 0.4 | - |
C18: 0 | 2.9 | 3.9 | 6.0 | 2.9 |
11-Methyl C18: 1ω7c | 0.9 | 1.2 | 1.2 | 0.8 |
C18: 1 2-OH | 5.9 | 8.8 | - | 0.8 |
C18: 0 3-OH | 7.6 | 8.0 | 10.7 | 5.6 |
Cyclo C19: 0ω8c | 53.9 | 55.8 | 55.4 | 44.4 |
C20: 2 ω6,9c | 1.0 | 1.4 | 1.4 | 1.1 |
Genomic Features | HW T2.11T | HW T5.17T |
---|---|---|
Number of contigs | 82 | 59 |
Genome size (bp) | 5,444,225 | 6,010,181 |
Longest contig (bp) | 974,443 | 922,216 |
N50 | 540,961 | 572,597 |
N75 | 112,774 | 177,353 |
L50 | 4 | 4 |
L75 | 9 | 9 |
GC content (%) | 62.50 | 62.32 |
CDS | 5501 | 6045 |
RNAs | 48 | 58 |
tRNAs | 45 | 52 |
16S-23S-5S rRNAs | 1-1-1 | 2-2-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieszkin, S.; Pouder, E.; Uroz, S.; Simon-Colin, C.; Alain, K. Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate. Microorganisms 2021, 9, 2053. https://doi.org/10.3390/microorganisms9102053
Mieszkin S, Pouder E, Uroz S, Simon-Colin C, Alain K. Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate. Microorganisms. 2021; 9(10):2053. https://doi.org/10.3390/microorganisms9102053
Chicago/Turabian StyleMieszkin, Sophie, Eva Pouder, Stéphane Uroz, Christelle Simon-Colin, and Karine Alain. 2021. "Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate" Microorganisms 9, no. 10: 2053. https://doi.org/10.3390/microorganisms9102053
APA StyleMieszkin, S., Pouder, E., Uroz, S., Simon-Colin, C., & Alain, K. (2021). Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate. Microorganisms, 9(10), 2053. https://doi.org/10.3390/microorganisms9102053