Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes—A Review
Abstract
:1. Introduction
1.1. The Importance of PPNs
1.2. Conventional Methods to Control PPNs
1.3. New, Alternative Directions
1.4. Objectives
2. The Role of Soil Microbiome
2.1. The Importance of Soil Microbiome for a Functional Soil
2.2. The Effect of Spatial Heterogeneity within the Soil on the Abundance of PPNs
2.3. Soil Suppressivity
2.4. Soil Microbiome and Soil Suppressivity
3. MGW as an Organic Amendment
3.1. Introduction to Municipal Green Waste
3.2. Generation and General Composition of MGW
3.3. Handling and Further Use of MGW
4. The Significance of Compost Made of MGW (MGWC)
4.1. Composting MGW
4.2. Microorganisms in the Composting Process
4.3. The Impact of MGWC on Soil
4.4. The Impact of MGWC on Crops
4.5. Compost Microbiome
4.6. The Impact of MGWC on Microbial Life
4.7. The Background Mechanisms by Which MGWC May Enhance Microbial Life
5. MGWC, a Tool against PPNs
5.1. The Concept of Using Composted Materials against Pests and Pathogens
5.2. RNA Interference (RNAi)-Based Technology and BCAs
5.3. Compost and MGWC as an Environment for PPNs
5.4. The Role of Arbuscular Mycorrhiza Fungi (AMF) and Composted Materials in the Control of PPNs
5.5. Earthworms May Have an Indirect Control on PPNs
5.6. The Use and Efficacy of MGWC with or without BCAs against PPNs
5.6.1. The Impact of Composted Materials on Soil Suppressivity
5.6.2. Compost-Induced Suppressivity against PPNs
5.6.3. The Role of Microorganisms in PPN Control
5.6.4. Soil Suppressivity against PPNs Is Initiated and Supported by MGWC
5.6.5. The Efficacy of Compost-Induced Suppressivity
5.6.6. Establishing and Maintaining Suppressivity with or without BCAs
5.6.7. The Importance of Microbial Diversity in Suppressivity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Product Name | MGW (% v/v) | Total Green Waste (% v/v) | Major Other Ingredients |
---|---|---|---|
Agrohum | n/a | MSS, manure, straw | |
Agromass Kombi | n/a | MSS, straw | |
Alisca | 100 | ||
Berki | 100 | ||
BioMass Mikrokomplex Komló | n/a | Ashes from trees, MSS | |
BioMass Super ASA Organic | 27 | Organic waste of agricultural origin | |
BioMass Super Biofuna | n/a | MSS, sawdust | |
BioMass Super Bonycom | n/a | MSS, sawdust | |
BioMass Super Csabai | n/a | MSS, straw, hay | |
BioMass Super ÉRV | n/a | 50 | MSS |
BioMass Super FCsM | n/a | MSS, straw, hay | |
BioMass Super Kedvenc | n/a | 65 | MSS, straw, hay |
BioMass Super Komszol | n/a | MSS, straw, hay | |
Biomass Super Ökovíz | n/a | MSS, straw, hay | |
BioMass Super Sopvíz | n/a | 65 | MSS, straw, wood shavings |
BioMass Super Tápió | n/a | 60 | MSS, straw, wood shavings |
Biomass Super Vital A | n/a | MSS, paper sludge | |
BioMass Super Vital B | n/a | 35 | MSS, CPW, straw |
CITY | 100 | ||
Compostal | 100 | ||
CSVK Makói | 100 | ||
Depónia | 100 | ||
FINO FARM HUMUS Extra Humusz | 20 | 49.5 | |
Gyöngykomposzt | n/a | 80 | MSS |
Gyulai zöld | n/a | MSS | |
Haraszti | 31.7 | 40 | MSS, woodchips, sawdust |
Herculia | n/a | MSS, paper sludge, straw | |
Hírös Zöld | 100 | ||
Kerka | n/a | MSS, straw, wood shavings | |
Keszthelyi Zöld | n/a | organic waste | |
Kompvital | n/a | manure, grape marc | |
Kiskunhalasi | 100 | 66 | |
MiKomp | 100 | ||
Nyírségi Bioföld | n/a | Vegetable and fruit waste | |
Orosházi zöld | 100 | Garden shavings | |
Pannónia | 100 | ||
Pécsi zöld | 100 | ||
Pro | n/a | Grape marc, wine lees, wood shavings | |
ProfiKomposzt | 100 | ||
Pusztazámori | 100 | ||
R | 100 | ||
Recomp | n/a | MSS, peat | |
Regionális szennyvíziszap | n/a | 90 | MSS |
Remusz | 1 | 15 | MSS, beer sludge, straw |
Speciál | 100 | ||
STKH | 100 | ||
Szegedi | 100 | ||
Szelektív | 100 | ||
Szikszói | n/a | ||
Tisza | 100 | ||
Vertikál Adonyi | 100 | ||
Vertikál Bácskai | 24 | 25 | MSS, straw, wood shavings |
Vertikál Csongrádi | 30 | 35 | |
Vertikál Kalocsai | 100 | ||
Vertikál Körös térségi | 30 | 35 | |
Vertikál Polgárdi | 100 | ||
Vertikál Sárbogárdi | 100 | ||
Zala | 100 | Sawdust | |
Zöld Híd | 100 | ||
Zölderő | 100 |
References
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Mesa-Valle, C.M.; Garrido-Cardenas, J.A.; Cebrian-Carmona, J.; Talavera, M.; Manzano-Agugliaro, F. Global research on plant nematodes. Agronomy 2020, 10, 1148. [Google Scholar] [CrossRef]
- Rodiuc, N.; Vieira, P.; Banora, M.Y.; Engler, J.D. On the track of transfer cell formation by specialized plant-parasitic nematodes. Front. Plant Sci. 2014, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neher, D.A.; Powers, T.O. Nematodes. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherland, 2005; pp. 1–6. [Google Scholar]
- Hernandez Nopsa, J.F.; Thomas-Sharma, S.; Garrett, K.A. Climate change and plant disease. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 232–243. [Google Scholar]
- Chindo, P.S.; Khan, F.A.; Erinle, I.D. Reaction of three tomato cultivars to vascular diseases in presence of the root- knot nematode Meloidogyne incognita race 1. Crop Prot. 1991, 10, 62–64. [Google Scholar] [CrossRef]
- Marley, P.S.; Hillocks, R.J. Effect of root-knot nematodes (Meloidogyne spp.) on Fusarium wilt in pigeonpea (Cajanus cajan). Field Crops Res. 1996, 46, 15–20. [Google Scholar] [CrossRef]
- Watkins, P.R.; Huesing, J.E.; Margam, V.; Murdock, L.L.; Higgins, T.J.V. Insects, nematodes, and other pests. In Plant Biotechnology and Agriculture—Prospects for the 21st Century; Altman, A., Hasegawa, P.M., Eds.; Elsevier: Amsterdam, The Netherland, 2012; pp. 353–370. [Google Scholar]
- Singh, S.K.; Hodda, M.; Ash, G.J. Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bull. 2013, 43, 334–374. [Google Scholar] [CrossRef]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Hajihassani, A.; Davis, R.F.; Timper, P. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Dis. 2019, 103, 3161–3165. [Google Scholar] [CrossRef]
- Medina-Canales, M.G.; Terroba-Escalante, P.; Manzanilla-López, R.H.; Tovar-Soto, A. Assessment of three strategies for the management of Meloidogyne arenaria on carrot in Mexico using Pochonia chlamydosporia var. mexicana under greenhouse conditions. Biocontrol Sci. Technol. 2019, 29, 671–685. [Google Scholar] [CrossRef]
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Handford, C.E.; Elliott, C.T.; Campbell, K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr. Environ. Assess. Manag. 2015, 11, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Haydock, P.P.J.; Woods, S.R.; Grove, I.G.; Hare, M.C. Chemical control of nematodes. In Plant Nematology, 2nd ed.; Perry, R.N., Moens, M., Eds.; CAB International: Wallingford, UK, 2006; pp. 459–521. [Google Scholar]
- Adediran, J.A.; Adegbite, A.A.; Akinlosotu, T.A.; Agbaje, G.O.; Taiwo, L.B.; Owolade, O.F.; Oluwatosin, G.A. Evaluation of fallow and cover crops for nematode suppression in three agroecologies of south western Nigeria. Afr. J. Biotechnol. 2005, 4, 1034–1039. [Google Scholar]
- Phani, V.R.; Khan, M.R.; Dutta, T.K. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Giannakou, I.O.; Panopoulou, S. The use of fluensulfone for the control of root-knot nematodes in greenhouse cultivated crops: Efficacy and phytotoxicity effects. Cogent Food Agric. 2019, 5, 1. [Google Scholar] [CrossRef]
- Hussain, M.; Zouhar, M.; Ryšánek, P. Comparison between biological and chemical management of root knot nematode, Meloidogyne hapla. Pak. J. Zool. 2017, 49, 205–210. [Google Scholar] [CrossRef]
- Sikora, R.A.; Bridge, J.; Starr, J.L. Management practices: An overview of integrated nematode management technologies. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd ed.; Luc, M., Sikora, R.A., Bridge, J., Eds.; CAB International: Wallingford, UK, 2005; pp. 793–825. [Google Scholar]
- Lopes, E.A.; Dallemole-Giaretta, R.; dos Santos Neves, W.; Parreira, D.F.; Ferreira, P.A. Eco-friendly approaches to the management of plant-parasitic nematodes. In Plant Health under Biotic Stress. Volume 1: Organic Strategies; Ansari, R.A., Mahmood, I., Eds.; Springer: Singapore, 2019; pp. 167–186. [Google Scholar]
- Roux-Michollet, D.; Czarnes, S.; Adam, B.; Berry, D.; Commeaux, C.; Guillaumaud, N.; Le Roux, X.; Clays-Josserand, A. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol. Biochem. 2018, 40, 1836–1845. [Google Scholar] [CrossRef]
- Ferraz, S.; Freitas, L.G.; Lopes, E.A.; Dias-Arieira, C.R. Manejo Sustentável de Fitonematoides; Editora UFV: Viçosa, Brasil, 2010; 304p. [Google Scholar]
- Marbán-Mendoza, N.; Manzanilla-López, R.H. Chemical and non-chemical tactics to control plant-parasitic nematodes. In Practical Plant Nematology; Manzanilla-López, R.H., Marbán-Mendoza, N., Eds.; Biblioteca Basica de Agricultura: Montecillo, Mexico, 2012; pp. 729–759. [Google Scholar]
- Tihohod, D. Nematologia Agrícola Aplicada; FUNEP: Jaboticabal, Brasil, 1993; 372p. [Google Scholar]
- Knoetze, R. The effect of hot water treatment of rooted grapevine nursery stock on the survival of the root-knot nematode, Meloidogyne javanica (Nematoda: Heteroderidae). S. Afr. J. Enol. Vitic. 2020, 41, 1–5. [Google Scholar] [CrossRef]
- Katan, J.; Gamliel, A. Soilborne diseases, control by physical methods. In Encyclopedia of Agrophysics; Glinski, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 813–816. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- Ijoyah, M.O.; Koutatouka, M. Effect of soil solarization using plastic mulch in controlling root-knot nematode (Meloidogyne spp.) infestation and yield of lettuce at Anse Boileau, Seychelles. Afr. J. Biotechnol. 2009, 8, 6787–6790. [Google Scholar]
- Hou, X.-Y.; Wang, F.-X.; Han, J.-J.; Kang, S.-Z.; Feng, S.-Y. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. For. Meteorol. 2010, 150, 115–121. [Google Scholar] [CrossRef]
- Aminu-Taiwo, B.R.; Idowu, A.A.; Alamu, O.O.; Olaniyi, O.W.; Olufunmi, O.O. Influence of mulch materials on population of plant parasitic nematode, growth and yield of okra (Abelmoschus esculentus L. Moench). IOSR J. Agric. Vet. Sci. 2014, 7, 12–17. [Google Scholar]
- Rahman, L.; Whitelaw-Weckert, M.A.; Orchard, B. Consecutive applications of brassica green manures and seed meal enhances suppression of Meloidogyne javanica and increases yield of Vitis vinifera cv Semillon. Appl. Soil Ecol. 2011, 47, 195–203. [Google Scholar] [CrossRef]
- Stirling, G.R.; Wilson, E.J.; Stirling, A.M.; Pankhurst, C.E.; Moody, P.W.; Bell, M.J.; Halpin, N. Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in a sugarcane soil. Australas. Plant Pathol. 2005, 34, 203–211. [Google Scholar] [CrossRef]
- Ramezani, H. Management of root-knot nematode, Meloidogyne incognita with some organic amendments. Plant Prot. J. 2013, 6, 191–197. [Google Scholar]
- Forge, T.; Walters, T.; Koch, C. Use of composted dairy manure solids mulch for raspberry: Influences on soil nematode communities and N and P availability. Compost Sci. Util. 2014, 22, 230–241. [Google Scholar] [CrossRef]
- Stavi, I. On-site use of plant litter and yard waste as mulch in gardening and landscaping systems. Sustainability 2020, 12, 7521. [Google Scholar] [CrossRef]
- Renčo, M. Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 2013, 50, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Dury, J.; Schaller, N.; Garcia, F.; Reynaud, A.; Bergez, J.E. Models to support cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 2012, 32, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Abad, P.; Favery, B.; Rosso, M.N.; Castagnone-Sereno, P. Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Mol. Plant Pathol. 2003, 4, 217–224. [Google Scholar] [CrossRef]
- Fuller, V.L.; Lilley, C.J.; Urwin, P.E. Nematode resistance. New Phytol. 2008, 180, 27–44. [Google Scholar] [CrossRef]
- Tzortzakakis, E.A.; Vieira dos Santos, M.-C.; Conceição, I. An update on the occurrence of resistance-breaking populations of root-knot nematodes (Meloidogyne spp.) on resistant tomato in Greece with six new records from Crete. Hell. Plant Prot. J. 2016, 9, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Ntidi, K.N.; Fourie, H.; Mc Donald, A.H.; De Waele, D.; Mienie, C.M.S. Plant-parasitic nematodes associated with weeds in subsistence agriculture in South Africa. Nematology 2012, 14, 875–887. [Google Scholar] [CrossRef]
- Thomas, S.H.; Schroeder, J.; Murray, L.W. The role of weeds in nematode management. Weed Sci. 2005, 53, 923–928. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Calderón, F.J. Fallow effects on soil. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011; pp. 287–300. [Google Scholar] [CrossRef]
- Westerdahl, B.B. Evaluation of trap cropping for management of root-knot nematodes on annual crops. Acta Hortic. 2020, 1270, 141–146. [Google Scholar] [CrossRef]
- Cuadra, R.; Cruz, X.; Fajardo, J.L. Cultivos de ciclo corto Como plantas trampas Para el control del nematodo agallador. Nematropica 2000, 30, 241–246. [Google Scholar]
- Navarrete, M.; Djian-Caporalino, C.; Mateille, T.; Palloix, A.; Sage-Palloix, A.-M.; Lefèvre, A.; Fazari, A.; Marteu, N.; Tavoillot, J.; Dufils, A.; et al. A resistant pepper used as a trap cover crop in vegetable production strongly decreases root-knot nematode infestation in soil. Agron. Sustain. Dev. 2016, 36, 68. [Google Scholar] [CrossRef] [Green Version]
- Stirling, G.R. Biological Control of Plant Parasitic Nematodes. Progress, Problems and Prospects; CAB International: Wallingford, UK, 1991; 282p. [Google Scholar]
- Hernández-Fernández, M.; Cordero-Bueso, G.; Ruiz-Muñoz, M.; Cantoral, J.M. Culturable yeasts as biofertilizers and biopesticides for a sustainable agriculture: A comprehensive review. Plants 2021, 10, 822. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Lupatini, M.; Korthals, G.W.; de Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017, 7, 2064. [Google Scholar] [CrossRef] [Green Version]
- Topalović, O.; Hussain, M.; Heuer, H. Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front. Microbiol. 2020, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Topalović, O.; Heuer, H. Plant-nematode interactions assisted bymicrobes in the rhizosphere. Curr. Issues Mol. Biol. 2019, 30, 75–87. [Google Scholar] [CrossRef]
- Bent, E.; Loffredo, A.; McKenry, M.V.; Becker, J.O.; Borneman, J. Detection and investigation of soil biological activity against Meloidogyne incognita. J. Nematol. 2008, 40, 109–118. [Google Scholar]
- Wolters, V. Soil invertebrates—Effects on nutrient turnover and soil structure—A review. Z. Pflanzenernahr. Bodenkd. [J. Plant Nutr. Soil Sci.] 1991, 154, 389–402. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Katznelson, H.; Lochhead, A.G.; Timonin, M.I. Soil microorganisms and the rhizosphere. Bot. Rev. 1948, 14, 543–586. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, C.R.; Copeland, J.; Wang, P.W.; Guttman, D.S.; Kotanen, P.M.; Johnson, M.T.J. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. USA 2018, 115, E1157–E1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirak, E.L.; Pershina, E.V.; Dolnik, A.S.; Kutovaya, O.V.; Vasilenko, E.S.; Kogut, B.M.; Merzlyakova, Y.V.; Andronov, E.E. Taxonomic structure of microbial asso-ciation in differentsoils investigated by high-throughput sequencing of 16S-rRNAgene library. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2013, 3, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 119. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Semenov, A.M. In search of biological indicators for soil health and disease suppression. Appl. Soil Ecol. 2000, 15, 13–24. [Google Scholar] [CrossRef]
- Evans, K.; Webster, R.; Barker, A.; Russel, M.; Stafford, J.; Griffin, S. Mapping infestations of potato cyst nematodes and the potential for spatially varying application of nematicides. Precis. Agric. 2003, 4, 149–162. [Google Scholar] [CrossRef]
- Goswami, B.K.; Chatterjee, S.; Singh, N. Management strategies to rescue transplantable vegetables in and around yamuna river belt against heavy metals contamination and soil borne hidden enemies-a matter of great concern to human health. Plant Arch. 2017, 17, 735–741. [Google Scholar]
- Brodie, B.B. Vertical distribution of three nematode species in relation to certain soil properties. J. Nematol. 1976, 8, 243. [Google Scholar]
- Noe, J.P.; Barker, K.R. Relation of within-field spatial variation of plant-parasitic nematode population densities and edaphic factors. Phytopathology 1985, 75, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Howland, A.D.; Schreiner, R.P.; Zasada, I.A. Spatial distribution of plant-parasitic nematodes in semi-arid Vitis vinifera vineyards in Washington. J. Nematol. 2014, 46, 321–330. [Google Scholar] [PubMed]
- Kandel, S.L.; Smiley, R.W.; Garland-Campbell, K.; Elling, A.A.; Huggins, D.; Paulitz, T.C. Spatial distribution of root lesion nematodes (Pratylenchus spp.) in a long-term no-till cropping system and their relationship with soil and landscape properties. Eur. J. Plant Pathol. 2018, 150, 1011–1021. [Google Scholar] [CrossRef]
- Kawanobe, M.; Sugihara, S.; Miyamaru, N.; Yoshida, K.; Nonomura, E.; Oshiro, H.; Toyota, K. Distribution of root-lesion and stunt nematodes, and their relationship with soil properties and nematode fauna in sugarcane fields in Okinawa, Japan. Agronomy 2020, 10, 762. [Google Scholar] [CrossRef]
- Mondal, S.; Sarkar, P.; Singh, A.; Khan, M.R.; Mukherjee, A. Distribution and community structure of plant-parasitic nematodes and their relationship with some soil properties in betel vine-growing regions of West Bengal, India. Nematology 2019, 21, 581–595. [Google Scholar] [CrossRef]
- Krif, G.; Mokrini, F.; Aissami, A.E.; Laasli, S.-E.; Imren, M.; Özer, G.; Paulitz, T.; Lahlali, R.; Dababat, A.A. Diversity and management strategies of plant parasitic nematodes in Moroccan organic farming and their relationship with soil physico-chemical properties. Agriculture 2020, 10, 447. [Google Scholar] [CrossRef]
- Avendaño, F.; Pierce, F.J.; Schabenberger, O.; Melakeberhan, H. The spatial distribution of soybean cyst nematode in relation to soil texture and soil map unit. Agron. J. 2004, 96, 181–194. [Google Scholar]
- Hbirkou, C.; Welp, G.; Rehbein, K.; Hillnhütter, C.; Daub, M.; Oliver, M.A.; Pätzold, S. The effect of soil heterogeneity on the spatial distribution of Heterodera schachtii within sugar beet fields. Appl. Soil Ecol. 2011, 51, 25–34. [Google Scholar] [CrossRef]
- Holguin, C.M.; Gerard, P.; Mueller, J.D.; Khalilian, A.; Agudelo, P. Spatial distribution of reniform nematode in cotton as influenced by soil texture and crop rotations. Phytopathology 2015, 105, 674–683. [Google Scholar] [CrossRef]
- Ortiz, B.V.; Perry, C.; Goovaerts, P.; Vellidis, G.; Sullivan, D. Geostatistical modeling of the spatial variability and risk areas of southern root-knot nematodes in relation to soil properties. Geoderma 2010, 56, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Yavuzaslanoglu, E.; Elekcioglu, H.I.; Nicol, J.M.; Yorgancilar, O.; Hodson, D.; Yildirim, A.F.; Yorgancilar, A.; Bolat, N. Distribution, frequency and occurrence of cereal nematodes on the Central Anatolian Plateau in Turkey and their relationship with soil physicochemical properties. Nematology 2012, 14, 839–854. [Google Scholar] [CrossRef]
- Quist, C.W.; Gort, G.; Mooijman, P.; Brus, D.J.; van den Elsen, S.; Kostenko, O.; Vervoort, M.; Bakker, J.; van der Putten, W.H.; Helder, J. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol. Biochem. 2019, 136, 107542. [Google Scholar] [CrossRef]
- Archidona-Yuste, A.; Wiegand, T.; Castillo, P.; Navas-Cortes, J.A. Spatial structure and soil properties shape local community structure of plant-parasitic nematodes in cultivated olive trees in southern Spain. Agric. Ecosyst. Environ. 2020, 287, 106688. [Google Scholar] [CrossRef]
- Briones, M.J.I. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Signorini, M.; Borruso, L.; Randall, K.C.; Dumbrell, A.J.; Pii, Y.; Mimmo, T.; Cesco, S. Soil heterogeneity within a vineyard impacts the beta but not the alpha microbial agro-diversity. Appl. Soil Ecol. 2021, 166, 104088. [Google Scholar] [CrossRef]
- Curd, E.E.; Martiny, J.B.H.; Li, H.; Smith, T.B. Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere 2018, 9, e02079. [Google Scholar] [CrossRef]
- Cheeke, T.E.; Schütte, U.M.; Hemmerich, C.M.; Cruzan, M.B.; Rosenstiel, T.N.; Bever, J.D. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes. Mol. Ecol. 2015, 24, 2580–2593. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.; Lynch, D.; Fillmore, S.; Mills, A. Relationships between field management, soil health, and microbial community composition. Appl. Soil Ecol. 2019, 144, 12–21. [Google Scholar] [CrossRef]
- Kandasamy, S.; Weerasuriya, N.; Subramanian, G.; Thorn, R.G.; Patterson, G.; Ali, S.; Lazarovits, G. Disentangling the association of corn root mycobiome with plant productivity and the importance of soil physicochemical balance in shaping their relationship. Front. Sustain. Food Syst. 2021, 5, 617332. [Google Scholar] [CrossRef]
- Culman, S.W.; Young-Mathews, A.; Hollander, A.D.; Ferris, H.; Sánchez-Moreno, S.; O’Geen, A.; Jackson, L. Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landsc. Ecol. 2010, 25, 1333–1348. [Google Scholar] [CrossRef]
- Steel, H.; Ferris, H. Soil nematode assemblages indicate the potential for biological regulation of pest species. Acta Oecologica 2016, 73, 87–96. [Google Scholar] [CrossRef]
- Baker, K.; Cook, R.J. Biological Control of Plant Pathogens; WH Freeman and Company: New York, NY, USA, 1974; p. 433. [Google Scholar]
- De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 2020, 13, 100192. [Google Scholar] [CrossRef]
- Topalović, O.; Bredenbruch, S.; Schleker, A.S.S.; Heuer, H. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Front. Plant Sci. 2020, 11, 138. [Google Scholar] [CrossRef]
- Weller, D.M.; Raaijmakers, J.M.; McSpadden Gardener, B.B.; Thomashow, L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann. Rev. Phytopathol. 2002, 40, 309–348. [Google Scholar] [CrossRef] [Green Version]
- Schlatter, D.; Kinkel, L.; Thomashow, L.; Weller, D.; Paulitz, T. Disease suppressive soils: New insights from the soil microbiome. Phytopathology 2017, 107, 1284–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaijmakers, J.M.; Mazzola, M. Soil immune responses. Science 2016, 352, 1392–1393. [Google Scholar] [CrossRef]
- Postma, J.; Schilder, M.T.; Bloem, J.; van Leeuwen-Haagsma, W.K. Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol. Biochem. 2008, 40, 2394–2406. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.C.P.; de Medeiros, F.H.V.; Campos, V.P. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci. Technol. 2018, 28, 423–445. [Google Scholar] [CrossRef]
- Toyota, K.; Shirai, S. Growing interest in microbiome research unraveling disease suppressive soils against plant pathogens. Microbes Environ. 2018, 33, 345–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, R.; Kruijt, M.; De Bruijn, I.; Dekkers, E.; Van Der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Westphal, A.; Hallmann, J.; Heuer, H. Specific microbial attachment to root knot nematodes in suppressive soil. Appl. Environ. Microbiol. 2014, 80, 2679–2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrowolakis, A.; Westphal, A.; Sikora, R.A.; Ole Becker, J. Identification of root-knot nematode suppressive soils. Appl. Soil Ecol. 2002, 19, 51–56. [Google Scholar] [CrossRef]
- McSorley, R.; Wang, K.; Church, G. Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 2006, 36, 197–214. [Google Scholar]
- Elhady, A.; Giné, A.; Topalović, O.; Jacquiod, S.; Sørensen, S.J.; Sorribas, F.J.; Heuer, H. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS ONE 2017, 12, e0177145. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Hamid, M.I.; Tian, J.; Hu, J.; Zhang, X.; Chen, J.; Xiang, M.; Liu, X. Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. FEMS Microbiol. Ecol. 2018, 94, 1–11. [Google Scholar] [CrossRef]
- Giné, A.; Carrasquilla, M.; Martínez-Alonso, M.; Gaju, N.; Sorribas, F.J. Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Front. Plant Sci. 2016, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Siegel-Hertz, K.; Edel-Hermann, V.; Chapelle, E.; Terrat, S.; Raaijmakers, J.M.; Steinberg, C. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front. Microbiol. 2018, 9, 568. [Google Scholar] [CrossRef]
- Lutz, S.; Thuerig, B.; Oberhaensli, T.; Mayerhofer, J.; Fuchs, J.G.; Widmer, F.; Freimoser, F.M.; Ahrens, C.H. Harnessing the microbiomes of suppressive composts for plant protection: From metagenomes to beneficial microorganisms and reliable diagnostics. Front. Microbiol. 2020, 11, 1810. [Google Scholar] [CrossRef]
- Xiong, W.; Guo, S.; Jousset, A.; Zhao, Q.; Wu, H.; Li, R.; Kowalchuk, G.A.; Shen, Q. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol. Biochem. 2017, 114, 238–247. [Google Scholar] [CrossRef]
- Expósito, R.G.; de Bruijn, I.; Postma, J.; Raaijmakers, J.M. Current insights into the role of Rhizosphere bacteria in disease suppressive soils. Front. Microbiol. 2017, 8, 2529. [Google Scholar] [CrossRef]
- Mazzola, M. Assessment and management of soil microbial community structure for disease suppression. Ann. Rev. Phytopathol. 2004, 42, 35–59. [Google Scholar] [CrossRef] [PubMed]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Mazzola, M.; Freilich, S. Prospects for biological soilborne disease control: Application of indigenous versus synthetic microbiomes. Phytopathology 2017, 107, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoornweg, D.; Perinaz, B.-T. What a Waste: A Global Review of Solid Waste Management; Urban Development Series; Knowledge Papers no. 15; World Bank: Washington, DC, USA, 2012; 98p. [Google Scholar]
- Soobhany, N. Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. J. Environ. Chem. Eng. 2018, 6, 1979–1988. [Google Scholar] [CrossRef]
- Abad, V.; Avila, R.; Vicent, T.; Font, X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour. Technol. 2019, 283, 10–17. [Google Scholar] [CrossRef]
- Seruga, P. The municipal solid waste management system with anaerobic digestion. Energies 2021, 14, 2067. [Google Scholar] [CrossRef]
- Zaccheo, P.; Ricca, G.; Crippa, L. Organic matter characterization of composts from different feedstocks. Compost Sci. Util. 2002, 10, 29–38. [Google Scholar] [CrossRef]
- Brewer, L.J.; Sullivan, D.M. Maturity and stability evaluation of composted yard trimmings. Compost Sci. Util. 2003, 11, 96–112. [Google Scholar] [CrossRef]
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef]
- Azadi, S.; Karimi-Jashni, A.; Talebbeydokhti, N.; Khoshbakht, R.; Haghighi, A.B. Industrial composting of commingled municipal solid waste: A case study of Shiraz City, Iran. J. Environ. Treat. Tech. 2020, 8, 1292–1303. [Google Scholar] [CrossRef]
- Krause, P.; Oetjen-Dehne, R.; Dehne, I.; Dehnen, D.; Erchinger, H. Compulsory Implementation of Separate Collection of Bio-Waste; Umweltbundesamt: Dessau-Roßlau, Germany, 2014; p. 10. [Google Scholar]
- Eades, P.; Kusch-Brandt, S.; Heaven, S.; Banks, C.J. Estimating the generation of garden waste in England and the differences between rural and urban areas. Resources 2020, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Haigh, M.; Desai, M.; Cullis, M.; D’Aucourt, M.; Sansom, B.; Wilding, G.; Alun, E.; Garate, S.; Hatton, L.; Kilmartin, M.; et al. Composted municipal green waste enhances tree success in opencast coal land reclamation in Wales. Air Soil Water Res. 2019, 12, 117862211987783. [Google Scholar] [CrossRef] [Green Version]
- Boldrin, A.; Christensen, T.H. Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag. 2010, 30, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Petrikovszki, R.; Zalai, M.; Tóthné Bogdányi, F.; Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil weed seed bank of tomato. Plants 2020, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Schüch, A.; Morscheck, G.; Lemke, A.; Nelles, M. Bio-waste recycling in Germany—Further challenges. Procedia Environ. Sci. 2016, 35, 308–318. [Google Scholar] [CrossRef]
- Agdag, O.N. Comparison of old and new municipal solid waste management systems in Denizli, Turkey. J. Waste Manag. 2009, 29, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council; The European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan—For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 11 March 2020. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Municipal_waste_statistics (accessed on 10 June 2021).
- Oliveira, L.S.; Oliveira, D.S.; Bezerra, B.S.; Pereira, B.S.; Battistelle, R.A.G. Environmental analysis of organic waste treatment focusing on composting scenarios. J. Clean. Prod. 2017, 155, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Belyaeva, O.N.; Haynes, R.J. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresour. Technol. 2009, 100, 5203–5209. [Google Scholar] [CrossRef]
- Belyaeva, O.N.; Haynes, R.J. A comparison of the properties of manufactured soils produced from composting municipal green waste alone or with poultry manure or grease trap/septage waste. Biol. Fertil. Soils 2010, 46, 271–281. [Google Scholar] [CrossRef]
- Kabir, M.J.; Chowdhury, A.A.; Rasul, M.G. Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis. Energies 2015, 8, 7522–7541. [Google Scholar] [CrossRef] [Green Version]
- Oliver, G. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas emission. Waste Manag. Res. 2009, 27, 894–906. [Google Scholar]
- Fazekas, I.; Szabó, G.; Szabó, S.; Paládi, M.; Szabó, G.; Buday, T.; Túri, Z.; Kerényi, A. Biogas utilization and its environmental benefits in Hungary. Int. Rev. Appl. Sci. Eng. 2013, 4, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Slater, R.A.; Frederickson, J. Composting municipal waste in the UK: Some lessons from Europe. Resour. Conserv. Recycl. 2001, 32, 359–374. [Google Scholar] [CrossRef]
- Adams, J.D.W.; Zinnaro, M.; Frostick, L.E. Composting of green waste: Observations from windrow trials and bench-scale experiments. Environ. Technol. 2008, 29, 1149–1155. [Google Scholar] [CrossRef]
- Belyaeva, O.N.; Haynes, R.J. Use of inorganic wastes as immobilizing agents for soluble P in green waste-based composts. Environ. Sci. Pollut. Res. 2012, 19, 2138–2150. [Google Scholar] [CrossRef]
- Francou, C.; Lineres, M.; Derenne, S.; Le Villio-Poitrenaud, M.; Houot, S. Influence of green waste, biowaste and paper-cardboard initial ratios on organic matter transformations during composting. Bioresour. Technol. 2008, 99, 8926–8934. [Google Scholar] [CrossRef]
- Farrell, M.; Jones, D.L. Food waste composting: Its use as a peat replacement. Waste Manag. 2010, 30, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Sim, E.Y.; Wu, T.Y. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting. J. Sci. Food Agric. 2010, 90, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Lobl, F.; Stikova, A.; Stifter, M.; Vana, J. Technological aspects of use of crushed solid town wastes and course of ripening of commercial composts. Rostl. Vyrob. 1977, 23, 967–976. [Google Scholar]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Abawi, G.S.; Widmer, L. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl. Soil Ecol. 2000, 15, 37–47. [Google Scholar] [CrossRef]
- Postma, J.; Montanari, M.; van den Boogert, P.H.J.F. Microbial enrichment to enhance the disease suppressive activity of compost. Eur. J. Soil Biol. 2003, 39, 157–163. [Google Scholar] [CrossRef]
- Hlava, J. Soil fauna diversity relationship with NO3 content in grass filter strips within intensive aagriculture land. Pol. J. Ecol. 2015, 63, 273–279. [Google Scholar] [CrossRef]
- Huang, D.L.; Zeng, G.M.; Feng, C.L.; Hu, S.; Lai, C.; Zhao, M.H.; Su, F.F.; Tang, L.; Liu, H.L. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresor. Technol. 2010, 101, 4062–4067. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Baiswar, P.; Patel, D.P.; Munda, G.C.; Ghosh, P.K.; Ngachan, S.V.; Panwar, A.S.; Chandra, S. Compost quality prepared from locally available plant biomass and their effect on rice productivity under organic production system. J. Sustain. Agric. 2010, 34, 466–482. [Google Scholar] [CrossRef]
- Tognetti, C.; Mazzarino, M.J.; Laos, F. Compost of municipal organic waste: Effects of different management practices on degradability and nutrient release capacity, Soil Biol. Biochem. 2008, 40, 2290–2296. [Google Scholar] [CrossRef]
- Haynes, R.J.; Belyaeva, O.N.; Zhou, Y.-F. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag. 2015, 35, 48–54. [Google Scholar] [CrossRef]
- Sivapalan, A.; Morgan, W.C.; Franz, P.R. Monitoring populations of soil-microorganisms during a conversion from a conventional to a organic-system of vegetable growing. Biol. Agric. Hortic. 1993, 10, 9–27. [Google Scholar] [CrossRef]
- Allison, S.D.; LeBauer, D.S.; Ofrecio, M.R.; Reyes, R.; Ta, A.M.; Tran, T.M. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biol. Biochem. 2009, 41, 293–302. [Google Scholar] [CrossRef]
- McLean, M.A.; Migge-Kleian, S.; Parkinson, D. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biol. Invasions 2006, 8, 1257–1273. [Google Scholar] [CrossRef]
- Breznak, J.A.; Brune, A. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 1994, 39, 453–487. [Google Scholar] [CrossRef]
- D’Hose, T.; Cougnon, M.; De Vliegher, A.; Vandecasteele, B.; Viaene, N.; Cornelis, W.; Van Bockstaele, E.; Reheul, D. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application. Appl. Soil Ecol. 2014, 75, 189–198. [Google Scholar] [CrossRef]
- Nair, A.; Ngouajio, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 143–233. [Google Scholar] [CrossRef]
- Soobhany, N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. J. Clean. Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- Somerville, P.D.; Farrel, C.; May, P.B.; Livesley, S.J. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 2020, 706, 135736. [Google Scholar] [CrossRef]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -Omics approaches: A perspective for the environment, food quality and human safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef]
- Ros, M.; Klammer, S.; Knapp, B.; Aichberger, K.; Insam, H. Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag. 2006, 22, 209–218. [Google Scholar] [CrossRef]
- Przemieniecki, S.W.; Zapałowska, A.; Skwiercz, A.; Damszel, M.; Telesiński, A.; Sierota, Z.; Gorczyca, A. An evaluation of selected chemical, biochemical, and biological parameters of soil enriched with vermicompost. Environ. Sci. Pollut. Res. Int. 2021, 28, 8117–8127. [Google Scholar] [CrossRef]
- Pot, S.; De Tender, C.; Ommeslag, S.; Delcour, I.; Ceusters, J.; Gorrens, E.; Debode, J.; Vandecasteele, B.; Vancampenhout, K. Understanding the shift in the microbiome of composts that are optimized for a better fit-for-purpose in growing media. Front. Microbiol. 2021, 12, 643679. [Google Scholar] [CrossRef]
- Borrero, C.; Trillas, M.I.; Ordovás, J.; Tello, J.C.; Avilés, M. Predictive factors for the suppression of Fusarium wilt of tomato in plants growth media. Phytopathology 2004, 94, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Haynes, R.J.; Zhou, Y.-F. Comparison of the chemical, physical and microbial properties of composts produced by conventional composting or vermicomposting using the same feedstocks. Environ. Sci. Pollut. Res. 2016, 23, 10763–10772. [Google Scholar] [CrossRef]
- Gomez-Brandon, M.; Lazcano, C.; Dominguez, J. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 2008, 70, 436–444. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Boehm, M.J. Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annu. Rev. Phytopathol. 1999, 37, 427–446. [Google Scholar] [CrossRef]
- Sharon, E.; Bar-Eyal, M.; Chet, I.; Herrera-Estrella, A.; Kleifeld, O.; Spiegel, Y. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 2001, 91, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Kluepfel, D.A.; Nyczepir, A.P.; Lawrence, J.E.; Wechter, W.P.; Leverentz, B. Biological control of the phytoparasitic nematode Mesocriconema xenoplax on peach trees. J. Nematol. 2002, 34, 120–123. [Google Scholar]
- Mekete, T.; Hallmann, J.; Kiewnick, S.; Sikora, R. Endophytic bacteria from Ethiopian coffee plants and their potential to antagonize Meloidogyne incognita. Nematology 2009, 11, 117–127. [Google Scholar]
- Kouki, S.; Saidi, N.A.; Rajeb, B.; Brahmi, M.; Bellila, A.; Fumio, M.; Hefiène, A.; Jedidi, N.; Downer, J.; Ouzari, H. Control of fusarium wilt of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Appl. Environ. Soil Sci. 2012, 2012, 239639. [Google Scholar] [CrossRef]
- El Khaldi, R.; Daami-Remadi, M.; Hamada, W.; Somai, L.; Cherif, M. The potential of Serratia marcescens: An indigenous strain isolated from date palm compost as biocontrol agent of Rhizoctonia solani on potato. J. Plant Pathol. Microbiol. 2015, 3, 006. [Google Scholar] [CrossRef] [Green Version]
- Malandraki, I.; Tjamos, S.E.; Pantelides, I.S.; Paplomatas, E.J. Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biol. Control 2008, 44, 180–187. [Google Scholar] [CrossRef]
- Daami-Remadi, M.; Dkhili, I.; Jabnoun-Khiareddine, H.; El Mahjoub, M. Biological control of potato leak with antagonistic fungi isolated from compost teas and solarized and non-solarized soils. Pest Technol. 2012, 6, 32–40. [Google Scholar]
- Daragó, Á.; Szabó, M.; Hrács, K.; Takács, A.; Nagy, P. In vitro investigations on the biological control of Xiphinema index with Trichoderma species. Helminthologia 2013, 50, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Dickson, D.W. Biological control of nematodes by fungal antagonists. In Nematology Advances and Perspectives, Vol. 2, Nematode Management and Utilization; Chen, Z.X., Chen, S.Y., Dickson, D.W., Eds.; CABI Publishing, CAB International: Wallingford, UK, 2004; pp. 979–1039. [Google Scholar]
- Kumar, N.; Singh, R.K.; Singh, K.P. Occurrence and colonization of nematophagous fungi in different substrates, agricultural soils and root galls. Arch. Phytopathol. Plant Prot. 2011, 44, 1182–1195. [Google Scholar] [CrossRef]
- Kiontke, K.; Fitch, H.A.D. Nematodes. Curr. Biol. 2013, 23, R862–R864. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, G.H.; Zou, C.G.; Ji, X.; Liu, T.; Zhao, P.J.; Liang, L.M.; Xu, J.P.; An, Z.Q.; Zheng, X.; et al. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat. Commun. 2014, 5, 5776. [Google Scholar] [CrossRef]
- Liang, L.M.; Zou, C.G.; Xu, J.; Zhang, K.Q. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2019, 374, 20180317. [Google Scholar] [CrossRef] [PubMed]
- Bordallo, J.J.; Lopez-Llorca, L.V.; Jansson, H.-B.; Salinas, J.; Persmark, L.; Asensio, L. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol. 2002, 154, 491–499. [Google Scholar] [CrossRef]
- Szabó, M.; Csepregi, K.; Gálber, M.; Virányi, F.; Fekete, C. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18–5 and chi18–12 genes in nematode egg-parasitism. Biol. Control 2012, 63, 121–128. [Google Scholar] [CrossRef]
- Cumagun, C.J.R.; Moosavi, M.R. Significance of biocontrol agents of phytonematodes. In Biocontrol Agents of Phytonematodes; Askary, T.H., Martinelli, P.R.P., Eds.; CABI Publishing, CAB International: Wallingford, UK, 2015; pp. 50–78. [Google Scholar]
- Maheshwari, D.K.; Shukla, S.; Aeron, A.; Kumar, T.; Jha, C.K.; Patel, D.; Saraf, M.; Wahla, V. Rhizobacteria for management of nematode disease in plants. In Bacteria in Agrobiology: Disease Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 379–404. [Google Scholar] [CrossRef]
- Khan, Z.; Kim, S.G.; Jeon, Y.H.; Khan, H.U.; Son, S.H.; Kim, Y.H. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour. Technol. 2008, 99, 3016–3023. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M.; Askary, T.H. Fungal and bacterial nematicides in integrated nematode management strategies. Egypt. J. Biol. Pest Control 2018, 28, 74. [Google Scholar] [CrossRef]
- Ansari, R.A.; Mahmood, I.; Rizvi, R.; Sumbul, A. Siderophores: Augmentation of soil health and crop productivity. In Probiotics in Agroecosystem; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 291–312. [Google Scholar]
- Hallmann, J.; Davies, K.G.; Sikora, R. Biological control using microbial pathogens, endophytes and antagonists. In Root-Knot Nematodes; Hallmann, J., Davies, K.G., Sikora, R., Eds.; CABI Publishing, CAB International: Wallingford, UK, 2009; pp. 380–411. [Google Scholar] [CrossRef]
- Ansari, R.A.; Rizvi, R.; Sumbul, A.; Mahmood, I. Current vogue in sustainable crop production. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 455–472. [Google Scholar]
- Wislocki, P.G.; Grosso, L.S.; Dybas, R.A. Environmental aspects of abamectin use in crop protection. In Ivermectin and Abamectin; Campbell, W.C., Ed.; Springer International Publishing: New York, NY, USA, 1989; pp. 182–200. [Google Scholar]
- Aktuganov, G.; Melentjev, A.; Galimzianova, N.; Khalikova, E.; Korpela, T.; Susi, P. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and β-1,3-glucanase production. Can. J. Microbiol. 2008, 54, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kharbanda, P.D.; Mirza, M. Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of pythium disease of cucumber in a hydroponic system. Acta Hortic. 2004, 635, 59–66. [Google Scholar] [CrossRef]
- Tian, B.; Yang, J.; Zhang, K.Q. Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 2007, 61, 197–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Y.; Shao, Z.; Cai, M.; Zheng, L.; Li, G.; Huang, D.; Cheng, W.; Thomashow, L.S.; Weller, D.M.; Yu, Z.; et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita. Front. Microbiol. 2018, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.H.; Chung, R.S.; Tsai, Y.H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population: Original article. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Usman, A.; Siddiqui, M.A. Integrated approaches of phytonematodes management by organic soil amendments and ploughing. Pak. J. Nematol. 2013, 31, 157–163. [Google Scholar]
- Akhtar, M.; Malik, A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresour. Technol. 2000, 74, 35–47. [Google Scholar] [CrossRef]
- Dutta, T.K.; Khan, M.R.; Phani, V. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Curr. Plant Biol. 2019, 17, 17–32. [Google Scholar] [CrossRef]
- Oka, Y. Mechanisms of nematode suppression by organic soil amendments—A review. Appl. Soil Ecol. 2010, 44, 101–115. [Google Scholar] [CrossRef]
- Hale, L.; Curtis, D.; Azeem, M.; Montgomery, J.; Crowley, D.E.; McGiffen, M.E. Influence of compost and biochar on soil biological properties under turfgrass supplied deficit irrigation. Appl. Soil Ecol. 2021, 168, 104134. [Google Scholar] [CrossRef]
- Azeem, M.; Hale, L.; Montgomery, J.; Crowley, D.; McGiffen, M.E., Jr. Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils. PLoS ONE 2020, 15, e0242209. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Li, Y.; Zhang, C.; Miao, Y.; Liu, M.; Zhuang, W.; Shao, Y.; Zhang, W.; Fu, S. Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation. Soil Ecol. Lett. 2021, 3, 145–155. [Google Scholar] [CrossRef]
- Kurzemann, F.R.; Plieger, U.; Probst, M.; Spiegel, H.; Sandén, T.; Ros, M.; Insam, H. Long-term fertilization affects soil microbiota, improves yield and benefits soil. Agronomy 2020, 10, 1664. [Google Scholar] [CrossRef]
- Hong, S.H.; Anees, M.; Kim, K.Y. Biocontrol of Meloidogyne incognita inciting disease in tomato by using a mixed compost inoculated with Paenibacillus ehimensis RS820. Biocontrol Sci Technol. 2013, 23, 1024–1039. [Google Scholar] [CrossRef]
- Achmon, Y.; Claypool, J.T.; Fernández-Bayo, J.D.; Hernandez, K.; McCurry, D.G.; Harrold, D.R.; Su, J.; Simmons, B.A.; Singer, S.W.; Dahlquist-Willard, R.M.; et al. Structural changes in bacterial and fungal soil microbiome components during biosolarization as related to volatile fatty acid accumulation. Appl. Soil Ecol. 2020, 153, 103602. [Google Scholar] [CrossRef]
- Liang, B.; Ma, C.; Fan, L.; Wang, Y.; Yuan, Y. Compost amendment alters soil fungal community structure of a replanted apple orchard. Arch. Agron. Soil Sci. 2021, 67, 739–752. [Google Scholar] [CrossRef]
- Ntalli, N.; Adamski, Z.; Doula, M.; Monokrousos, N. Nematicidal amendments and soil remediation. Plants 2020, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Ikwunagu, E.A.; Ononuju, C.C.; Orikara, C.C. Nematicidal effects of dfferent biochar sources on root-knot nematode (Meloidogyne spp.) egg hatchability and control on mungbean (Vigna radiata (L.) Wilczek). Int. J. Entomol. Nematol. Res. 2019, 4, 1–14. [Google Scholar]
- Avato, P.; D’Addabbo, T.; Leonetti, P.; Argentieri, M.P. Nematicidal potential of Brassicaceae. Phytochem. Rev. 2013, 12, 791–802. [Google Scholar] [CrossRef]
- Kokalis-Burelle, N.; Rosskopf, E.N.; Iriarte, F. Evaluation of spk, a novel combination of organic compounds for root-knot nematode control in tomato. J. Nematol. 2009, 41, 300–397. [Google Scholar]
- D’Addabbo, T.; Migunova, V.D.; Renčo, M.; Sasanelli, N. Suppressiveness of soil amendments with pelleted plant materials on the root-knot nematode Meloidogyne incognita. Helminthologia 2020, 57, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Alori, E.T.; Babalola, O.O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, V.; Chandra, K. Agriculturally important microorganisms as biofertilizers: Commercialization and regulatory requirements in Asia. In Agriculturally Important Microorganisms: Commercialization and Regulatory Requirements in Asia; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; Springer: Singapore, 2016; pp. 133–145. [Google Scholar]
- Kokalis-Burelle, N.; Vavrina, C.S.; Reddy, M.S.; Kloepper, J.W. Amendment of muskmelon transplant media with plant growth-promoting rhizobacteria: Effects on seedling quality, disease, and nematode resistance. Hortechnology 2003, 13, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Tall, S.; Meyling, N.V. Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microb. Ecol. 2018, 76, 1002–1008. [Google Scholar] [CrossRef]
- Neher, D.A.; Weicht, T.R.; Bates, S.T.; Leff, J.W.; Fierer, N. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE 2013, 8, e79512. [Google Scholar] [CrossRef] [Green Version]
- Sant, D.; Casanova, E.; Segarra, G.; Avilés, M.; Reis, M.; Trillas, M.I. Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biol. Control 2010, 53, 291–296. [Google Scholar] [CrossRef]
- Trillas, M.I.; Casanova, E.; Cotxarrera, L.; Ordovás, J.; Borrero, C.; Avilés, M. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol. Control 2006, 39, 32–38. [Google Scholar] [CrossRef]
- Leggett, M.; Leland, J.; Kellar, K.; Epp, B. Formulation of microbial control agents—An industrial perspective. Can. J. Plant Pathol. 2011, 33, 101–107. [Google Scholar] [CrossRef]
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H.; Al Jabr, A.M. Mycoinsecticides: Potential and future perspective. Recent Pat. Food Nutr. Agric. 2014, 6, 45–53. [Google Scholar] [CrossRef]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 32–45. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í., Jr.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef]
- Kergunteuil, A.; Bakhtiari, M.; Formenti, L.; Xiao, Z.; Defossez, E.; Rasmann, S. Biological control beneath the feet: A review of crop protection against insect root herbivores. Insects 2016, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd-Elgawad, M.M.M.; Askary, T.H. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egypt. J. Biol. Pest Control 2020, 30, 17. [Google Scholar] [CrossRef]
- Joos, L.; Herren, G.L.; Couvreur, M.; Binnemans, I.; Oni, F.E.; Höfte, M.; Debode, J.; Bert, W.; Steel, H. Compost is a carrier medium for Trichoderma harzianum. BioControl 2020, 63, 737–749. [Google Scholar] [CrossRef]
- Herren, G.L.; Binnemans, I.; Joos, L.; Viaene, N.; Ehlers, R.-U.; Vandecasteele, B.; Bert, W.; Steel, H. Compost as a carrier medium for entomopathogenic nematodes—The influence of compost maturity on their virulence and survival. Biol. Control 2018, 125, 29–38. [Google Scholar] [CrossRef]
- Ding, S.W. RNA silencing. Curr. Opin. Biotechnol. 2000, 11, 152–156. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Baulcombe, D. Viruses and gene silencing in plants. Arch. Virol. Suppl. 1999, 15, 189–201. [Google Scholar]
- Leonetti, P.; Stuttmann, J.; Pantaleo, V. Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol. J. 2021, 18, 194. [Google Scholar] [CrossRef]
- Ahlquist, P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 2002, 296, 1270–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himber, C.; Dunoyer, P.; Moissiard, G.; Ritzenthaler, C.; Voinnet, O. Transitivity-dependent and -independent cell to-cell movement of RNA silencing. EMBO J. 2003, 22, 4523–4533. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, A.; Carrington, J.C. Antiviral roles of plant ARGONAUTES. Curr. Opin. Plant Biol. 2015, 27, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantaleo, V.; Szittya, G.; Burgyan, J. Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J. Virol. 2007, 81, 3797–3806. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Du, P.; Wang, X.; Yu, Y.Q.; Qiu, Y.H.; Li, W.; Gal-On, A.; Zhou, C.; Li, Y.; Ding, S.W. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2014, 111, 14613–14618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonetti, P.; Ghasemzadeh, A.; Consiglio, A.; Gursinsky, T.; Behrens, S.; Pantaleo, V. Endogenous activated small interfering RNAs in virus-infected Brassicaceae crops show a common host gene-silencing pattern affecting photosynthesis and stress response. New Phytol. 2021, 229, 1650–1664. [Google Scholar] [CrossRef]
- Raja, P.; Sanville, B.C.; Buchmann, R.C.; Bisaro, D.M. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 2008, 82, 8997–9007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Weiberg, A.; Lin, F.-M.; Thomma, B.P.H.J.; Huang, H.-D.; Jin, H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Todd, T.C.; Lee, J.; Trick, H.N. Biotechnological application of functional genomics towards plant-parasitic nematode control. Plant Biotechnol. J. 2011, 9, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Gheysen, G.; Vanholme, B. RNAi from plants to nematodes. Trends Biotechnol. 2007, 25, 89–92. [Google Scholar] [CrossRef]
- Rosso, M.N.; Jones, J.T.; Abad, P. RNAi and functional genomics in plant parasitic nematodes. Annu. Rev. Phytopathol. 2009, 47, 207–232. [Google Scholar] [CrossRef]
- Basso, M.F.; Lourenço-Tessutti, I.T.; Mendes, R.A.G.; Pinto, C.E.M.; Bournaud, C.; Gillet, F.X.; Togawa, R.C.; de Macedo, L.L.P.; de Almeida Engler, J.; Grossi-de-Sa, M.F. MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Sci. Rep. 2020, 24, 6991. [Google Scholar] [CrossRef]
- Blyuss, K.B.; Fatehi, F.; Tsygankova, V.A.; Biliavska, L.O.; Iutynska, G.O.; Yemets, A.I.; Blume, Y.B. RNAi-based biocontrol of wheat nematodes using natural poly-component biostimulants. Front. Plant Sci. 2019, 17, 483. [Google Scholar] [CrossRef] [PubMed]
- Tsygankova, V.A.; Andrusevich, Y.V.; Galkin, A.P.; Biliavska, L.O.; Galagan, T.O.; Yemets, A.I.; Iutynska, G.A.; Blume, B.Y. RNAi-mediated resistance against plant parasitic nematodes of wheat plants obtained in vitro using bioregulators of microbiological origin. Curr. Chem. Biol. 2019, 13, 73–89. [Google Scholar] [CrossRef]
- Gualtieri, C.; Leonetti, P.; Macovei, A. Plant miRNA cross-kingdom transfer targeting parasitic and mutualistic organisms as a tool to advance modern agriculture. Front. Plant Sci. 2020, 23, 930. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; He, B.; Kogel, K.H.; Jin, H. Cross-kingdom RNA trafficking and environmental RNAi-nature’s blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 2018, 14, 58–64. [Google Scholar] [CrossRef]
- Renčo, M.; Sasanelli, N.; D’Addabbo, T.; Papajová, I. Soil nematode community changes associated with compost amendments. Nematology 2010, 12, 681–692. [Google Scholar] [CrossRef]
- Renčo, M.; Sasanelli, N.; Šalamún, P. The effect of two compost soil amendments, based on municipal green and penicillin production wastes, on plant parasitic nematodes. Helminthologia 2009, 46, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.; Mahmood, I. Potentiality of phytochemicals in nematode control: A review. Bioresour. Technol. 1994, 48, 189–201. [Google Scholar] [CrossRef]
- Dama, L.B. Effect of naturally occurring napthoquinones on root-knot nematode Meioidogyne javanica. Indian Phytopath. 2002, 55, 67–69. [Google Scholar]
- Dama, L.B. In vitro nematicidal activity of Juglone against Meloidogyne incognita race 2 infesting pomegranate. J. Life Sci. Biomed. 2019, 9, 164–169. [Google Scholar]
- Jakusovszky, R.; Petrikovszki, R.; Kiss, L.V.; Bogdányi, F.T.; Tóth, F.; Nagy, P.I. Ecotoxicological studies with aqueous extracts of walnut leaf litter on plant parasitic nematodes and on other test organisms. [Dióavar-kivonatok ökotoxikológiai vizsgálata növénykártevő fonálférgeken és más tesztszervezeteken]. Növényvédelem 2019, 80, 272–281. [Google Scholar]
- Steel, H.; Moens, T.; Vandecasteele, B.; Hendrickx, F.; De Neve, S.; Neher, D.A.; Bert, W. Factors influencing the nematode community during composting and nematode-based criteria for compost maturity. Ecol. Indic. 2018, 85, 409–421. [Google Scholar] [CrossRef]
- Thoden, T.C.; Korthals, G.W.; Termorshuizen, A.J. Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology 2011, 13, 133–153. [Google Scholar] [CrossRef]
- Battini, F.; Grønlund, M.; Agnolucci, M.; Giovannetti, M.; Jakobsen, I. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci. Rep. 2017, 7, 4686. [Google Scholar] [CrossRef]
- Wang, X.-X.; Hoffland, E.; Feng, G.; Kuyper, T.W. Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. J. Appl. Ecol. 2020, 57, 2203–2211. [Google Scholar] [CrossRef]
- Johnson, N.C.; Graham, J.H. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 2013, 363, 411–419. [Google Scholar] [CrossRef]
- Schouteden, N.; De Waele, D.; Panis, B.; Vos, C.M. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Front. Microbiol. 2015, 6, 1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poveda, K.; Steffan-Dewenter, I.; Scheu, S.; Tscharntke, T. Plant-mediated interactions between below- and aboveground processes: Decomposition, herbivory, parasitism, and pollination. In Ecological Communities: Plant Mediation in Indirect Interaction Webs; Ohgushi, T., Craig, T., Price, P., Eds.; Academic Press: Cambridge, MA, USA, 2007; pp. 147–163. [Google Scholar] [CrossRef]
- Cahill, J.F., Jr.; Elle, E.; Smith, G.R.; Shore, B.H. Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 2008, 89, 1791–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, C.; Schouteden, N.; van Tuinen, D.; Chatagnier, O.; Elsen, A.; De Waele, D.; Panis, B.; Gianinazzi-Pearson, V. Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol. Biochem. 2013, 60, 45–54. [Google Scholar] [CrossRef]
- Ferreira, B.S.; Santana, M.V.; Macedo, R.S.; Silva, J.O.; Carneiro, M.A.C.; Rocha, M.R. Co-occurrence patterns between plant-parasitic nematodes and arbuscular mycorrhizal fungi are driven by environmental factors. Agric. Ecosyst. Environ. 2018, 265, 5–61. [Google Scholar] [CrossRef]
- Benedetti, T.; Antoniolli, Z.I.; Sordi, E.; Carvalho, I.R.; Bortoluzzi, E.C. Use of the Glomus etunicatum as biocontrol agent of the soybean cyst nematode. Res. Soc. Dev. 2021, 10, e7310615132. [Google Scholar] [CrossRef]
- Amerany, F.E.; Rhazi, M.; Wahbi, S.; Taourirte, M.; Meddich, A. The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci. Hortic. 2020, 261, 109015. [Google Scholar] [CrossRef]
- Cavagnaro, T.R. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol. Biochem. 2014, 78, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Jan, B.; Ali, A.; Wahid, F.; Shah, S.; Khan, A.; Khan, F. Effect of arbuscular mycorrhiza fungal inoculation with compost on yield and phosphorous uptake of berseem in alkaline calcareous soil. Am. J. Plant Sci. 2014, 5, 1359–1369. [Google Scholar] [CrossRef] [Green Version]
- Galal, N.M.; Morsyand, E.M.; Massoud, O.N. Evaluation of some microbial biocontrol agents and compost against root-knot nematode (Meloidogyne javanica). N. Egypt. J. Microbiol. 2012, 32, 11–27. [Google Scholar]
- Rizvi, R.; Mahmood, I.; Ansari, S. Interaction between plant symbionts, bio-organic waste and antagonistic fungi in the management of Meloidogyne incognita infecting chickpea. J. Saudi Soc. Agric. Sci. 2018, 17, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Wurst, S. Effects of earthworms on above- and belowground herbivores. Appl. Soil Ecol. 2010, 45, 123–130. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, M.; Jiang, L.; Chen, X.; Griffiths, B.S.; Li, H.; Hu, F. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl. Soil Ecol. 2016, 105, 177–186. [Google Scholar] [CrossRef]
- Gudeta, K.; Julka, J.M.; Kumar, A.; Bhagat, A.; Kumari, A. Vermiwash: An agent of disease and pest control in soil, a review. Heliyon 2021, 7, e06434. [Google Scholar] [CrossRef]
- Tao, J.; Chen, X.; Liu, M.; Hu, F.; Griffiths, B.; Li, H. Earthworms change the abundance and community structure of nematodes and protozoa in a maize residue amended rice–wheat rotation agro-ecosystem. Soil Biol. Biochem. 2009, 41, 898–904. [Google Scholar] [CrossRef]
- Demetrio, W.C.; Dionísió, J.A.; Maceda, A. Negative effects of earthworms on soil nematodes are dependent on earthworm density, ecological category and experimental conditions. Pedobiologia 2019, 76, 150568. [Google Scholar] [CrossRef]
- Marull, J.; Pinochet, J.; Rodrıguez-Kabana, R. Agricultural and municipal compost residues for control of root-knot nematodes in tomato and pepper. Compost Sci. Util. 1997, 5, 6–15. [Google Scholar] [CrossRef]
- Nelson, E.B.; Hoitink, H.A.J. The role of microorganisms in the suppression of Rhizoctonia solani in composted hardwood bark container media. Phytopathology 1983, 88, 148–155. [Google Scholar]
- Kuter, G.A.; Nelson, E.B.; Hoitink, H.A.J.; Madden, L.V. Fungal populations in container media amended with composted hardwood bark suppressive and conducive to Rhizoctonia damping-off. Phytopathology 1983, 73, 1450–1456. [Google Scholar] [CrossRef] [Green Version]
- Dionne, A.; Tweddell, R.J.; Antoun, H.; Avis, T.J. Effect of non-aerated compost teas on damping-off pathogens of tomato. Can. J. Plant Pathol. 2012, 34, 51–57. [Google Scholar] [CrossRef]
- Alfano, G.; Lustrato, G.; Lima, G.; Vitullo, D.; Ranalli, G. Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. Biol. Control 2011, 58, 199–207. [Google Scholar] [CrossRef]
- Chen, J.; Abawi, G.S.; Zuckerman, B.M. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J. Nematol. 2000, 32, 70–77. [Google Scholar]
- McSorley, R.; Gallaher, R.N. Effect of yard waste compost on plant–parasitic nematode densities in vegetable crops. J. Nematol. 1995, 27, 545–549. [Google Scholar] [PubMed]
- McSorley, R. Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J. Nematol. 2011, 43, 69–81. [Google Scholar]
- Moosavi, M.R.; Zare, R. Fungi as biological control agents of plant-parasitic nematodes. In Plant Defence: Biological Control; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2020; Volume 22, pp. 67–107. [Google Scholar] [CrossRef]
- Saxena, G. Biological control of root-knot and cyst nematodes using nematophagous fungi. In Root Biology; Giri, B., Prasad, R., Varma, A., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 52, pp. 221–237. [Google Scholar] [CrossRef]
- Westphal, A.; Becker, J.O. Components of soil suppressiveness against Heterodera schachtii. Soil Biol. Biochem. 2001, 33, 9–16. [Google Scholar] [CrossRef]
- Calvet, C.; Pinochet, J.; Hernández-Dorrego, A. Field microplot performance of the peach almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhizae 2001, 10, 295–300. [Google Scholar] [CrossRef]
- Zakaria, H.M.; Kassab, A.S.; Shamseldean, M.M.; Oraby, M.M.; El-Mourshedy, M.M.F. Controlling the root-knot nematode, Meloidogyne incognita in cucumber plants using some soil bioagents and some amendments under simulated field conditions. Ann. Agric. Sci. 2013, 58, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Devi, G.; Bora, L.C. Effect of some biocontrol agents against root-knot nematode (Meloidogyne incognita race2). Int. J. Environ. Agric. Biotechnol. 2018, 3, 1748–1755. [Google Scholar] [CrossRef]
- Devi, G. Nematophagous fungi: Metarhizium anisopliae. J. Environ. Agric. Biotechnol. 2018, 3, 2110–2113. [Google Scholar] [CrossRef]
- Leoni, C.; Piancone, E.; Sasanelli, N.; Bruno, G.L.; Manzari, C.; Pesole, G.; Ceci, L.R.; Volpicella, M. Plant health and rhizosphere microbiome: Effects of the bionematicide Aphanocladium album in tomato plants infested by Meloidogyne javanica. Microorganisms 2020, 8, 1922. [Google Scholar] [CrossRef]
- Kumar, K.K.; Dara, S.K. Fungal and bacterial endophytes as microbial control agents for plant-parasitic nematodes. Int. J. Environ. Res. Public Health 2021, 18, 4269. [Google Scholar] [CrossRef]
- Spiegel, Y.; Chet, I. Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integr. Pest Manag. Rev. 1998, 3, 169–175. [Google Scholar] [CrossRef]
- Spiegel, Y.; Sharon, E.; Chet, I. Mechanisms and improved biocontrol of the root-knot nematodes by Trichoderma spp. Acta Hortic. 2005, 698, 225–228. [Google Scholar] [CrossRef]
- Sahebani, N.; Hadavi, N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem. 2008, 40, 2016–2020. [Google Scholar] [CrossRef]
- Khan, M.R.; Ahmad, I.; Ahamad, F. Effect of pure culture and culture filtrates of Trichoderma species on root-knot nematode, Meloidogyne incognita infesting tomato. Indian Phytopathol. 2018, 71, 265–274. [Google Scholar] [CrossRef]
- Leonetti, P.; Zonno, M.C.; Molinari, S.; Altomare, C. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant Cell Rep. 2017, 36, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Williams, K.L.; Nevalainen, H.K.M. Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol 2006, 51, 643–658. [Google Scholar] [CrossRef]
- Kiewnick, S.; Sikora, R.A. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol. Control 2006, 38, 179–187. [Google Scholar] [CrossRef]
- Kiewnick, S.; Sikora, R.A. Evaluation of Paecilomyces lilacinus strain 251 for the biological control of the northern root-knot nematode Meloidogyne hapla Chitwood. Nematology 2006, 8, 69–78. [Google Scholar] [CrossRef]
- Youssef, M.M.A.; Eissa, M.F.M. Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J. Biotechnol. Pharm. Res. 2014, 5, 1–6. [Google Scholar]
- Topalović, O.; Elhady, A.; Hallmann, J.; Richert-Pöggeler, K.R.; Heuer, H. Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Sci. Rep. 2019, 9, 11477. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M. Plant-parasitic nematodes and their biocontrol agents: Current status and future vistas. In Management of Phytonematodes: Recent Advances and Future Challenges; Ansari, R., Rizvi, R., Mahmood, I., Eds.; Springer: Singapore, 2020; pp. 171–203. [Google Scholar]
- Mhatre, P.H.; Karthik, C.; Kadirvelu, K.; Divya, K.L.; Venkatasalam, E.P.; Srinivasan, S.; Ramkumar, G.; Saranya, C.; Shanmuganathan, R. Plant Growth Promoting Rhizobacteria (PGPR): A potential alternative tool for Nematodes bio-control. Biocatal. Agric. Biotechnol. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Abuzar, S.; Haseeb, A. Plant growth and plant parasitic nematodes in response to soil amendments with Plant Growth Promoting Rhizobacteria and inorganic fertilizer in pigeon pea, Cajanus cajan L. World Appl. Sci. J. 2010, 8, 411–413. [Google Scholar]
- Khanna, K.; Jamwal, V.L.; Kohli, S.K.; Gandhi, S.G.; Ohri, P.; Bhardwaj, R.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P. Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 2019, 436, 325–345. [Google Scholar] [CrossRef]
- Khanna, K.; Sharma, A.; Ohri, P.; Bhardwaj, R.; Abd Allah, E.F.; Hashem, A.; Ahmad, P. Impact of plant growth promoting Rhizobacteria in the orchestration of Lycopersicon esculentum Mill. resistance to plant parasitic nematodes: A metabolomic approach to evaluate defense responses under field conditions. Biomolecules 2019, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; Jackson, T.A. Progress in the commercialization of bionematicides. BioControl 2013, 5, 715–722. [Google Scholar] [CrossRef]
- Chandrashekara, C.; Kumar, R.; Bhatt, J.C.; Chandrashekara, K. Suppressive soils in plant disease management. In Eco-Friendly Innovative Approaches in Plant Disease Management; Singh, V.K., Singh, Y., Singh, A., Eds.; International Book Distributors and Publisher: New Delhi, India, 2012; pp. 241–256. [Google Scholar]
- Renčo, M.; Kováčik, P. Assessment of the nematicidal potential of vermicompost, vermicompost tea, and urea application on the potato-cyst nematodes Globodera rostochiensis and Globodera pallida. J. Plant Protect. Res. 2015, 55, 187–192. [Google Scholar] [CrossRef]
- Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—A review. Crit. Rev. Plant Sci. 2004, 23, 453–479. [Google Scholar] [CrossRef]
- St. Martin, C.C.G.; Ramsubhag, A. Potential of compost for suppressing plant diseases. In Sustainable Crop Disease Management Using Natural Products; Ganesan, S., Vadivel, K., Jayaraman, J., Eds.; CABI Publishing, CAB International: Wallingford, UK, 2015; pp. 345–388. [Google Scholar]
- Bonanomi, G.; Lorito, M.; Vinae, F.; Woo, S. Organic amendments, beneficial microbes, and soil microbiota: Toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 2018, 56, 1–20. [Google Scholar] [CrossRef]
- De Corato, U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chem. Biol. Technol. Agric. 2020, 7, 17. [Google Scholar]
- Ghini, R.; Boechat Morandi, M.A. Biotic and abiotic factors associated with soil suppressiveness to Rhizoctonia solani. Sci. Agric. 2006, 63, 153–160. [Google Scholar] [CrossRef]
- Zhou, D.; Feng, H.; Schuelke, T.; De Santiago, A.; Zhang, Q.; Zhang, J.; Luo, C.; Wei, L. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection. Microb. Ecol. 2019, 78, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Köberl, M.; Rybakova, D.; Müller, H.; Grosch, R.; Smalla, K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 2017, 93, 5. [Google Scholar] [CrossRef]
Method | Feature | Advantages | Main Concerns | References |
---|---|---|---|---|
Chemical methods | ||||
Nematicides | Contact or systemic chemical compounds. | Fast and efficient; high return on high-yielding crops. | Not profitable for low-value crops; needs repeated usage and trained staff; toxic; enters the human food chain. | [11,12,15,16,17,18,19] |
Fumigants | Granular or liquid formulations. | More effective than non-fumigant nematicides; long time inactivation. | Phytotoxic; needs coverage. | [15,20] |
Non-chemical methods | ||||
Heat | Soil treatment with steam, hot water or solarisation or plant treatment with hot water. | Inactivates nematodes, reduces the number of other pests, diseases and weeds. | High costs; special equipment; harmful to beneficials; releases phytotoxic compounds; possibility of heat damage. | [21,22,23,24,25,26] |
Soil cover | The even soil surface is irrigated to soil capacity and covered with a plastic foil. | Efficient to a soil depth of 20 cm; supports crop development and increases yield. | Climatic conditions have a huge impact on efficiency; high costs; contamination by used foils. | [21,27,28,29,30,31] |
Plant residues | Organic material is spread on the surface or incorporated into the soil. | Reduces erosion; provides nutrients; recycling. | Uneven efficiency of various plant materials; high costs of spreading high-bulk materials; additional work. | [31,32,33,34,35,36,37] |
Crop rotation | Using non-host plants in the sequence of plants. | Effective. | Many host plants; farmers specialise in only a small number of crops. | [38,39,40] |
Resistant or tolerant varieties | A result of crop selection and breeding. | Effective for a limited time. | Promotes the emergence of more aggressive and tolerant PPNs. | [41] |
Fallow or improved fallow | The field is left empty for 1–2 years, or only leguminous crops are planted. | Reduces the number of PPNs. | Needs weed management; the area becomes prone to water and wind soil erosion. | [16,42,43,44] |
Trap plant | Sensitive plants attract PPNs, and these plants are removed before the nematode lifecycle ends. | Inhibits larval development. | Needs labour, time and money. | [45,46,47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóthné Bogdányi, F.; Boziné Pullai, K.; Doshi, P.; Erdős, E.; Gilián, L.D.; Lajos, K.; Leonetti, P.; Nagy, P.I.; Pantaleo, V.; Petrikovszki, R.; et al. Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes—A Review. Microorganisms 2021, 9, 2130. https://doi.org/10.3390/microorganisms9102130
Tóthné Bogdányi F, Boziné Pullai K, Doshi P, Erdős E, Gilián LD, Lajos K, Leonetti P, Nagy PI, Pantaleo V, Petrikovszki R, et al. Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes—A Review. Microorganisms. 2021; 9(10):2130. https://doi.org/10.3390/microorganisms9102130
Chicago/Turabian StyleTóthné Bogdányi, Franciska, Krisztina Boziné Pullai, Pratik Doshi, Eszter Erdős, Lilla Diána Gilián, Károly Lajos, Paola Leonetti, Péter István Nagy, Vitantonio Pantaleo, Renáta Petrikovszki, and et al. 2021. "Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes—A Review" Microorganisms 9, no. 10: 2130. https://doi.org/10.3390/microorganisms9102130
APA StyleTóthné Bogdányi, F., Boziné Pullai, K., Doshi, P., Erdős, E., Gilián, L. D., Lajos, K., Leonetti, P., Nagy, P. I., Pantaleo, V., Petrikovszki, R., Sera, B., Seres, A., Simon, B., & Tóth, F. (2021). Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes—A Review. Microorganisms, 9(10), 2130. https://doi.org/10.3390/microorganisms9102130