Francisella and Antibodies
Abstract
:1. Introduction
2. Interactions of Hosts with Francisella in Nature Leave Significant Antibody Traces
3. Humoral Immune Response to Francisella Infection and Vaccination
4. Role of Antibodies during Innate and Adaptive Phases of Immune Responses
4.1. Francisella and Serum Resistance: The Roles of Complement and Antibodies
4.2. Initiation of Immune Responses
4.3. Adaptive Immune Response: Antibody Functions
4.4. Protective Value of Anti-F. tularensis Antibodies
4.5. Secondary Immune Response: B Cells and Antibodies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elkins, K.L.; Cowley, S.C.; Bosio, C.M. Innate and adaptive immunity to Francisella. Ann. N. Y. Acad. Sci. 2007, 1105, 284–324. [Google Scholar] [CrossRef] [PubMed]
- Meunier, E.; Wallet, P.; Dreier, R.F.; Costanzo, S.; Anton, L.; Rühl, S.; Dussurgey, S.; Dick, M.; Kistner, A.; Rigard, M.; et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 2015, 16, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Wallet, P.; Lagrange, B.; Henry, T. Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium. Curr. Top. Microbiol. Immunol. 2016, 397, 229–256. [Google Scholar]
- Krocova, Z.; Macela, A.; Kubelkova, K. Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System. Front. Cell Infect. Microbiol. 2017, 7, 446. [Google Scholar] [CrossRef]
- Lagrange, B.; Benaoudia, S.; Wallet, P.; Magnotti, F.; Provost, A.; Michal, F.; Martin, A.; Di Lorenzo, F.; Py, B.; Molinaro, A.; et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat. Commun. 2018, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Kubelkova, K.; Macela, A. Innate Immune Recognition: An Issue More Complex than Expected [Internet]. Front. Cell Infect. Microbiol. 2019, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Kinkead, L.C.; Allen, L.-A.H. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol. Rev. 2016, 273, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Kinkead, L.C.; Fayram, D.C.; Allen, L.H. Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J. Leukoc. Biol. 2017, 102, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Pulavendran, S.; Prasanthi, M.; Ramachandran, A.; Grant, R.; Snider, T.A.; Chow, V.T.K.; Malayer, J.R.; Teluguakula, N. Production of Neutrophil Extracellular Traps Contributes to the Pathogenesis of Francisella tularemia. Front. Immunol. 2020, 11, 679. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.; Hassan, M.A.; Okan, N.A.; Sheffer, M.; Camejo, A.; Saeij, J.P.; Kasper, D.L. Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19. mBio 2016, 7, e02243. [Google Scholar] [CrossRef] [Green Version]
- Steiner, D.J.; Furuya, Y.; Jordan, M.B.; Metzger, D.W. Protective Role for Macrophages in Respiratory Francisella tularensis Infection. Infect. Immun. 2017, 85, e00064-17. [Google Scholar] [CrossRef] [Green Version]
- Steiner, D.J.; Furuya, Y.; Metzger, D.W. Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect. Immun. 2018, 86, e00787-17. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.K.; Elkins, K.I. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci. Rep. 2020, 10, 12023. [Google Scholar] [CrossRef]
- Fabrik, I.; Härtlova, A.; Rehulka, P.; Stulik, J. Serving the new masters—Dendritic cells as hosts for stealth intracellular bacteria. Cell. Microbiol. 2013, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Fabrik, I.; Link, M.; Putzova, D.; Plzakova, L.; Lubovska, Z.; Philimonenko, V.; Pavkova, I.; Rehulka, P.; Krocova, Z.; Hozak, P.; et al. The early dendritic cell signaling induced by virulent Francisella tularensis strain occurs in phases and involves the activation of extracellular signal-regulated kinases (ERKs) and p38 in the later stage. Mol. Cell. Proteom. MCP 2018, 17, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, N.L.J.; Zajd, C.M.; Lennartz, M.R.; Gosselin, E.J. Fcγ receptors and toll-like receptor 9 synergize to drive immune complex-induced dendritic cell maturation. Cell. Immunol. 2019, 345, 103962. [Google Scholar] [CrossRef]
- De Pascalis, R.; Rossi, A.P.; Mittereder, L.; Takeda, K.; Akue, A.; Kurtz, S.L.; Elkins, K.L. Production of IFN-γ by splenic dendritic cells during innate immune responses against Francisella tularensis LVS depends on MyD88, but not TLR2, TLR4, or TLR9. PLoS ONE 2020, 15, e0237034. [Google Scholar] [CrossRef] [PubMed]
- Krocova, Z.; Härtlova, A.; Souckova, D.; Zivna, L.; Kroca, M.; Rudolf, E.; Macela, A.; Stulik, J. Interaction of B cells with intracellular pathogen Francisella tularensis. Microb. Pathog. 2008, 45, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Plzakova, L.; Kubelkova, K.; Krocova, Z.; Zarybnicka, L.; Sinkorova, Z.; Macela, A. B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb. Pathog. 2014, 75, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Plzakova, L.; Krocova, Z.; Kubelkova, K.; Macela, A. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS ONE 2015, 10, e0132571. [Google Scholar] [CrossRef] [Green Version]
- García-Gil, A.; Lopez-Bailon, L.U.; Ortiz-Navarrete, V. Beyond the antibody: B cells as a target for bacterial infection. J. Leukoc. Biol. 2019, 105, 905–913. [Google Scholar] [CrossRef]
- Kelava., I.; Marecic, V.; Fucak, P.; Ivek, E.; Kolaric, D.; Ozanic, M.; Mihelcic, M.; Santic, M. Optimisation of External Factors for the Growth of Francisella novicida within Dictyostelium discoideum. BioMed Res. Int. 2020, 2020, 6826983. [Google Scholar] [CrossRef]
- Zellner, B.; Huntley, J.F. Ticks and Tularemia: Do We Know What We Don’t Know? Front. Cell. Infect. Microbiol. 2019, 9, 146. [Google Scholar] [CrossRef]
- Abdellahoum, Z.; Maurin, M.; Bitam, I. Tularemia as a Mosquito-Borne Disease. Microorganisms 2020, 9, 26. [Google Scholar] [CrossRef]
- Lewisch, E.; Menanteau-Ledouble, S.; Tichy, A.; El-Matbouli, M. Susceptibility of common carp and sunfish to a strain of Francisella noatunensis subsp. orientalis in a challenge experiment. Dis. Aquat. Organ. 2016, 121, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mörner, T. The ecology of tularaemia. Rev. Sci. Tech. Int. Off. Epizoot. 1992, 11, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Hopla, C.E. The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 1974, 18, 25–53. [Google Scholar] [PubMed]
- Mörner, T.; Mattsson, R. Experimental infection of five species of raptors and of hooded crows with Francisella tularensis biovar palaearctica. J. Wildl. Dis. 1988, 24, 15–21. [Google Scholar] [CrossRef] [Green Version]
- McKeever, S.; Schubert, J.H.; Moody, M.D.; Gorman, G.W.; Chapman, J.F. Natural occurrence of tularemia in marsupials, carnivores, lagomorphs, and large rodents in southwestern Georgia and northwestern Florida. J. Infect. Dis. 1958, 103, 120–126. [Google Scholar] [CrossRef]
- Mätz-Rensing, K.; Floto, A.; Schrod, A.; Becker, T.; Finke, E.J.; Seibold, E.; Splettstoesser, W.D.; Kaup, F.J. Epizootic of tularemia in an outdoor housed group of cynomolgus monkeys (Macaca fascicularis). Vet. Pathol. 2007, 44, 327–334. [Google Scholar]
- Yeni, D.K.; Büyük, F.; Ashraf, A.; Shah, M.S.U.D. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiol. 2021, 66, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cowley, S.C.; Elkins, K.L. Immunity to francisella. Front. Microbiol. 2011, 2, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bártová, E.; Kučerová, H.L.; Žákovská, A.; Budíková, M.; Nejezchlebová, H. Coxiella burnetii and Francisella tularensis in wild small mammals from the Czech Republic. Ticks Tick Borne Dis. 2020, 11, 101350. [Google Scholar] [CrossRef]
- Hestvik, G.; Uhlhorn, H.; Koene, M.; Åkerström, S.; Malmsten, A.; Dahl, F.; Åhlén, P.-A.; Dalin, A.-M.; Gavier-Widén, D. Francisella tularensis in Swedish predators and scavengers. Epidemiol. Infect. 2019, 147, e293. [Google Scholar] [CrossRef] [Green Version]
- Al Dahouk, S.; Nöckler, K.; Tomaso, H.; Splettstoesser, W.D.; Jungersen, G.; Riber, U.; Petry, T.; Hoffmann, D.; Scholz, H.C.; Hensel, A.; et al. Seroprevalence of brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from north-eastern Germany. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.; Barduhn, A.; Tappe, D.; Rauch, J.; Heuner, K.; Hierhammer, D.; Vom Berge, K.; Riehm, J.M.; Hanczaruk, M.; Böhm, S.; et al. Outbreak of Tularemia in a Group of Hunters in Germany in 2018-Kinetics of Antibody and Cytokine Responses. Microorganisms 2020, 8, 1645. [Google Scholar] [CrossRef]
- Otto, P.; Chaignat, V.; Klimpel, D.; Diller, R.; Melzer, F.; Müller, W.; Tomaso, H. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector Borne Zoonotic Dis. 2014, 14, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gürcan, S.; Otkun, M.T.; Otkun, M.; Arikan, O.K.; Ozer, B. An outbreak of tularemia in Western Black Sea region of Turkey. Yonsei Med. J. 2004, 45, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Gürcan, S.; Eskiocak, M.; Varol, G.; Uzun, C.; Tatman-Otkun, M.; Sakru, N.; Karadenizli, A.; Karagöl, C.; Otkun, M. Tularemia re-emerging in European part of Turkey after 60 years. Jpn. J. Infect. Dis. 2006, 59, 391–393. [Google Scholar]
- Hemati, M.; Khalili, M.; Rohani, M.; Sadeghi, B.; Esmaeili, S.; Ghasemi, A.; Mahmoudi, A.; Gyuranecz, M.; Mostafavi, E. A serological and molecular study on Francisella tularensis in rodents from Hamadan province, Western Iran. Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101379. [Google Scholar] [CrossRef]
- Hotta, A.; Tanabayashi, K.; Yamamoto, Y.; Fujita, O.; Uda, A.; Mizoguchi, T.; Yamada, A. Seroprevalence of tularemia in wild bears and hares in Japan. Zoonoses Public Health 2012, 59, 89–95. [Google Scholar] [CrossRef]
- Sharma, N.; Hotta, A.; Yamamoto, Y.; Uda, A.; Fujita, O.; Mizoguchi, T.; Shindo, J.; Park, C.-H.; Kudo, N.; Hatai, H.; et al. Serosurveillance for Francisella tularensis among wild animals in Japan using a newly developed competitive enzyme-linked immunosorbent assay. Vector Borne Zoonotic Dis. 2014, 14, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Gromov, A.I.; Timofeeva, N.S.; Trukhmanov, M.M.; Veide, A.A.; Golovina, T.I.; Dobroliubova, R.P.; Lazarev, O.P.; Merzliakov, A.P.; Rafailov, M.G.; Timofeeva, A.A.; et al. [On the establishment of a natural focus of tularemia on Sakhalin]. Zh. Mikrobiol. Epidemiol. Immunobiol. 1969, 46, 125–127. [Google Scholar]
- Egorov, I.E.; Mironchuk, Y.V.; Maramovich, A.S.; Chesnokova, M.V.; Botvinkin, A.D.; Makeev, S.M.; Ochirov, I.D.; Vershinin, E.A.; Tugutov, L.D.; Cherniavskiĭ, V.F.; et al. [Zoonotic infections in the central and southern ulusy of the Republic of Sakha]. Zh. Mikrobiol. Epidemiol. Immunobiol. 1997, 2, 38–43. [Google Scholar]
- Podobedova, Y.S.; Demidova, T.N.; Kormilitsyna, M.I.; Meshcheriakova, I.S. [Natural foci of tularemia on the Wrangel island]. Med. Parazitol. 2006, 4, 32–34. [Google Scholar]
- Dobrokhotov, B.P.; Mnatsakanian, A.G.; Meshcheriakova, I.S.; Rudnev, M.M. [Exploration of natural foci of tularemia and plague in Armenia using the serological examination of bird droppings and excrements of predatory mammals]. Zh. Mikrobiol. Epidemiol. Immunobiol. 1978, 2, 111–115. [Google Scholar]
- Ditchfield, J.; Meads, E.B.; Julian, R.J. Tularemia of muskrats in Eastern Ontario. Can. J. Public Health 1960, 51, 474–478. [Google Scholar]
- Hoff, G.l.; Yuill, T.M.; Iversen, J.O.; Hanson, R.P. Selected microbial agents in snowshoe hares and other vertebrates of Alberta. J. Wildl. Dis. 1970, 6, 472–478. [Google Scholar] [CrossRef]
- Akerman, M.B.; Embil, J.A. Antibodies to Francisella tularensis in the snowshoe hare (Lepus americanus struthopus) populations of Nova Scotia and Prince Edward Island and in the moose (Alces alces americana Clinton) population of Nova Scotia. Can. J. Microbiol. 1982, 28, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G.; Campbell, G.D.; Dallaire, A.; McBurney, S. Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: A review. Can. Vet. J. Rev. Vét. Can. 2009, 50, 1251–1256. [Google Scholar]
- Gabriele-Rivet, V.; Ogden, N.; Massé, A.; Antonation, K.; Corbett, C.; Dibernardo, A.; Lindsay, L.R.; Leighton, P.A.; Arsenault, J. Eco-epizootiologic study of Francisella tularensis, the agent of tularemia, in Québec wildlife. J. Wildl. Dis. 2016, 52, 217–229. [Google Scholar] [CrossRef]
- Kwit, N.A.; Middaugh, N.A.; VinHatton, E.S.; Melman, S.D.; Onischuk, L.; Aragon, A.S.; Nelson, C.A.; Mead, P.S.; Ettestad, P.J. Francisella tularensis infection in dogs: 88 cases (2014–2016). J. Am. Vet. Med. Assoc. 2020, 256, 220–225. [Google Scholar] [CrossRef]
- Petersen, J.M.; Schriefer, M.E.; Carter, L.G.; Zhou, Y.; Sealy, T.; Bawiec, D.; Yockey, B.; Urich, S.; Zeidner, N.S.; Avashia, S.; et al. Laboratory analysis of tularemia in wild-trapped, commercially traded prairie dogs, Texas, 2002. Emerg. Infect. Dis. 2004, 10, 419–425. [Google Scholar] [CrossRef]
- Hansen, C.M.; Vogler, A.J.; Keim, P.; Wagner, D.M.; Hueffer, K. Tularemia in Alaska, 1938–2010. Acta Vet. Scand. 2011, 53, 61. [Google Scholar] [CrossRef] [Green Version]
- Beest, J.T.; Cushing, A.; McClean, M.; Hsu, W.; Bildfell, R. Disease Surveillance of California Ground Squirrels (Spermophilus beecheyi) in a Drive-through Zoo in Oregon, USA. J. Wildl. Dis. 2017, 53, 667–670. [Google Scholar] [CrossRef] [Green Version]
- Berrada, Z.L.; Goethert, H.K.; Telford, S.R. Raccoons and skunks as sentinels for enzootic tularemia. Emerg. Infect. Dis. 2006, 12, 1019–1021. [Google Scholar]
- Feldman, K.A.; Stiles-Enos, D.; Julian, K.; Matyas, B.T.; Telford, S.R., III; Chu, M.C.; Petersen, L.R.; Hayes, E.B. Tularemia on Martha’s Vineyard: Seroprevalence and occupational risk. Emerg. Infect. Dis. 2003, 9, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Siret, V.; Barataud, D.; Prat, M.; Vaillant, V.; Ansart, S.; Le Coustumier, A.; Vaissaire, J.; Raffi, F.; Garré, M.; Capek, I. An outbreak of airborne tularaemia in France, August 2004. Eurosurveillance 2006, 11, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Leblebicioglu., H.; Esen, S.; Turan, D.; Tanyeri, Y.; Karadenizli, A.; Ziyagil, F.; Goral, G. Outbreak of tularemia: A case-control study and environmental investigation in Turkey. Int. J. Infect. Dis. 2008, 12, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Grunow, R.; Kalaveshi, A.; Kühn, A.; Mulliqi-Osmani, G.; Ramadani, N. Surveillance of tularaemia in Kosovo, 2001 to 2010. Eurosurveillance 2012, 17, 20217. [Google Scholar] [CrossRef]
- Raghavan, R.K.; Harrington, J.; Anderson, G.A.; Hutchinson, J.M.; Debey, B.M. Environmental, climatic, and residential neighborhood determinants of feline tularemia. Vector Borne Zoonotic Dis. 2013, 13, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Akhvlediani., N.; Burjanadze, I.; Baliashvili, D.; Tushishvili, T.; Broladze, M.; Navdarashvili, A.; Dolbadze, S.; Chitadze, N.; Topuridze, M.; Imnadze, P.; et al. Tularemia transmission to humans: A multifaceted surveillance approach. Epidemiol. Infect. 2018, 146, 2139–2145. [Google Scholar] [CrossRef] [Green Version]
- Maurin, M. Francisella tularensis, Tularemia and Serological Diagnosis. Front. Cell. Infect. Microbiol. 2020, 10, 512090. [Google Scholar] [CrossRef]
- Viljanen, M.K.; Nurmi, T.; Salminen, A. Enzyme-linked immunosorbent assay (ELISA) with bacterial sonicate antigen for IgM, IgA, and IgG antibodies to Francisella tularensis: Comparison with bacterial agglutination test and ELISA with lipopolysaccharide antigen. J. Infect. Dis. 1983, 148, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Koskela, P.; Salminen, A. Humoral immunity against Francisella tularensis after natural infection. J. Clin. Microbiol. 1985, 22, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Rastawicki, W.; Rokosz-Chudziak, N.; Wolaniuk, N. [Serum immunoglobulin IgG subclass distribution of antibody responses to Francisella tularensis in patients with tularemia]. Med. Dosw. Mikrobiol. 2014, 66, 11–15. [Google Scholar]
- Koskela, P.; Herva, E. Cell-mediated and humoral immunity induced by a live Francisella tularensis vaccine. Infect. Immun. 1982, 36, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Ericsson, M.; Sandström, G.; Sjöstedt, A.; Tärnvik, A. Persistence of cell-mediated immunity and decline of humoral immunity to the intracellular bacterium Francisella tularensis 25 years after natural infection. J. Infect. Dis. 1994, 170, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Sandström, G.; Tärnvik, A.; Wolf-Watz, H.; Löfgren, S. Antigen from Francisella tularensis: Nonidentity between determinants participating in cell-mediated and humoral reactions. Infect. Immun. 1984, 45, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Okan, N.A.; Kasper, D.L. The atypical lipopolysaccharide of Francisella. Carbohydr. Res. 2013, 378, 79–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.D.; Faron, M.; Rasmussen, J.A.; Fletcher, J.R. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front. Cell. Infect. Microbiol. 2014, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Rahhal, R.M.; Vanden Bush, T.J.; McLendon, M.K.; Apicella, M.A.; Bishop, G.A. Differential effects of Francisella tularensis lipopolysaccharide on B lymphocytes. J. Leukoc. Biol. 2007, 82, 813–820. [Google Scholar] [CrossRef]
- Fulton, K.M.; Zhao, X.; Petit, M.D.; Kilmury, S.L.; Wolfraim, L.A.; House, R.V.; Sjostedt, A.; Twine, S.M. Immunoproteomic analysis of the human antibody response to natural tularemia infection with Type A or Type B strains or LVS vaccination. Int. J. Med. Microbiol. IJMM 2011, 301, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Gaur, R.; Alam, S.I.; Kamboj, D.V. Immunoproteomic Analysis of Antibody Response of Rabbit Host Against Heat-Killed Francisella tularensis Live Vaccine Strain. Curr. Microbiol. 2017, 74, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Saslaw, S.; Eigelsbach, H.T.; Wilson, H.E.; Prior, J.A.; Carhart, S. Tularemia vaccine study. I. Intracutaneous challenge. Arch. Intern. Med. 1961, 107, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Saslaw, S.; Carhart, S. Studies with tularemia vaccines in volunteers. III. Serologic aspects following intracutaneous or respiratory challenge in both vaccinated and nonvaccinated volunteers. Am. J. Med. Sci. 1961, 241, 689–699. [Google Scholar] [CrossRef]
- Havlasová, J.; Hernychová, L.; Halada, P.; Pellantová, V.; Krejsek, J.; Stulík, J.; Macela, A.; Jungblut, P.R.; Larsson, P.; Forsman, M. Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2002, 2, 857–867. [Google Scholar] [CrossRef]
- Twine, S.M.; Petit, M.D.; Shen, H.; Mykytczuk, N.C.; Kelly, J.F.; Conlan, J.W. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem. Biophys. Res. Commun. 2006, 346, 999–1008. [Google Scholar] [CrossRef]
- Havlasová, J.; Hernychová, L.; Brychta, M.; Hubálek, M.; Lenco, J.; Larsson, P.; Lundqvist, M.; Forsman, M.; Kročová, Z.; Stulík, J.; et al. Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 2005, 5, 2090–2103. [Google Scholar] [CrossRef]
- Pasetti, M.F.; Cuberos, L.; Horn, T.L.; Shearer, J.D.; Matthews, S.J.; House, R.V.; Sztein, M.B. An improved Francisella tularensis live vaccine strain (LVS) is well tolerated and highly immunogenic when administered to rabbits in escalating doses using various immunization routes. Vaccine 2008, 26, 1773–1785. [Google Scholar] [CrossRef] [Green Version]
- Nutter, J.E. Effect of vaccine, route, and schedule on antibody response of rabbits to Pasteurella tularensis. Appl. Microbiol. 1969, 17, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Tulis, J.J.; Eigelsbach, H.T.; Kerpsack, R.W. Host-parasite relationship in monkeys administered live tularemia vaccine. Am. J. Pathol. 1970, 58, 329–336. [Google Scholar]
- Stinson, E.; Smith, L.P.; Cole, K.S.; Barry, E.M.; Reed, D.S. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model. Pathog. Dis. 2016, 74, ftw079. [Google Scholar] [CrossRef] [Green Version]
- Sunagar, R.; Kumar, S.; Namjoshi, P.; Rosa, S.J.; Hazlett, K.R.O.; Gosselin, E.J. Evaluation of an outbred mouse model for Francisella tularensis vaccine development and testing. PLoS ONE 2018, 13, e0207587. [Google Scholar] [CrossRef] [PubMed]
- Mara-Koosham, G.; Hutt, J.A.; Lyons, C.R.; Wu, T.H. Antibodies contribute to effective vaccination against respiratory infection by type A Francisella tularensis strains. Infect. Immun. 2011, 79, 1770–1778. [Google Scholar] [CrossRef] [Green Version]
- Avrameas, S. Natural autoantibodies: From “horror autotoxicus” to “gnothi seauton”. Immunol. Today 1991, 12, 154–159. [Google Scholar] [PubMed]
- Coutinho, A.; Kazatchkine, M.D.; Avrameas, S. Natural autoantibodies. Curr. Opin. Immunol. 1995, 7, 812–818. [Google Scholar] [CrossRef]
- Ménoret, A.; Chandawarkar, R.Y.; Srivastava, P.K. Natural autoantibodies against heat-shock proteins hsp70 and gp96: Implications for immunotherapy using heat-shock proteins. Immunology 2000, 101, 364–370. [Google Scholar] [CrossRef]
- Dragon-Durey, M.A.; Blanc, C.; Marinozzi, M.C.; van Schaarenburg, R.A.; Trouw, L.A. Autoantibodies against complement components and functional consequences. Mol. Immunol. 2013, 56, 213–221. [Google Scholar] [CrossRef]
- Sauerborn, M.; van de Vosse, E.; Delawi, D.; van Dissel, J.T.; Brinks, V.; Schellekens, H. Natural antibodies against bone morphogenic proteins and interferons in healthy donors and in patients with infections linked to type-1 cytokine responses. J. Interferon Cytokine Res. 2011, 31, 661–669. [Google Scholar] [CrossRef]
- Huflejt, M.E.; Vuskovic, M.; Vasiliu, D.; Xu, H.; Obukhova, P.; Shilova, N.; Tuzikov, A.; Galanina, O.; Arun, B.; Lu, K.; et al. Anti-carbohydrate antibodies of normal sera: Findings, surprises and challenges. Mol. Immunol. 2009, 46, 3037–3049. [Google Scholar] [CrossRef]
- Shilova, N.; Huflejt, M.E.; Vuskovic, M.; Obukhova, P.; Navakouski, M.; Khasbiullina, N.; Pazynina, G.; Galanina, O.; Bazhenov, A.; Bovin, N. Natural Antibodies Against Sialoglycans. Top. Curr. Chem. 2015, 366, 169–181. [Google Scholar]
- Prieto, J.M.B.; Felippe, M.J.B. Development, phenotype, and function of non-conventional B cells. Comp. Immunol. Microbiol. Infect. Dis. 2017, 54, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.L.; Baumgarth, N. B-1 cell responses to infections. Curr. Opin. Immunol. 2019, 57, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tung, J.W.; Ghosn, E.E.; Herzenberg, L.A.; Herzenberg, L.A. Division and differentiation of natural antibody-producing cells in mouse spleen. Proc. Natl. Acad. Sci. USA 2007, 104, 4542–4546. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ghosn, E.E.; Cole, L.E.; Obukhanych, T.V.; Sadate-Ngatchou, P.; Vogel, S.N.; Herzenberg, L.A.; Herzenberg, L.A. Antigen-specific antibody responses in B-1a and their relationship to natural immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 5382–5387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Ghosn, E.E.; Cole, L.E.; Obukhanych, T.V.; Sadate-Ngatchou, P.; Vogel, S.N.; Herzenberg, L.A.; Herzenberg, L.A. Antigen-specific memory in B-1a and its relationship to natural immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 5388–5393. [Google Scholar] [CrossRef] [Green Version]
- Kubelkova, K.; Hudcovic, T.; Kozakova, H.; Pejchal, J.; Macela, A. Early infection-induced natural antibody response. Sci. Rep. 2021, 11, 1541. [Google Scholar] [CrossRef]
- Madar, M.; Bencurova, E.; Mlynarcik, P.; Almeida, A.M.; Soares, R.; Bhide, K.; Pulzova, L.; Kovac, A.; Coelho, A.V.; Bhide, M. Exploitation of complement regulatory proteins by Borrelia and Francisella. Mol. Biosyst. 2015, 11, 1684–1695. [Google Scholar] [CrossRef]
- Cowley, S.C.; Gray, C.J.; Nano, F.E. Isolation and characterization of Francisella novicida mutants defective in lipopolysaccharide biosynthesis. FEMS Microbiol. Lett. 2000, 182, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ryder, C.; Mandal, M.; Ahmed, F.; Azadi, P.; Snyder, D.S.; Pechous, R.D.; Zahrt, T.; Inzana, T.J. Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS. Microbiology 2007, 153 Pt 9, 3141–3153. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.M.; Titball, R.W.; Oyston, P.C.F.; Griffin, K.; Waters, E.; Hitchen, P.G.; Michell, S.L.; Grice, I.D.; Wilson, J.C.; Prior, J.L. The Immunologically Distinct O Antigens from Francisella tularensis Subspecies tularensis and Francisella novicida Are both Virulence Determinants and Protective Antigens. Infect. Immun. 2007, 75, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mdluli, K.E.; Anthony, L.S.; Baron, G.S.; McDonald, M.K.; Myltseva, S.V.; Nano, F.E. Serum-sensitive mutation of Francisella novicida: Association with an ABC transporter gene. Microbiology 1994, 140 Pt 12, 3309–3318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Nasr, A.; Klimpel, G.R. Subversion of complement activation at the bacterial surface promotes serum resistance and opsonophagocytosis of Francisella tularensis. J. Leukoc. Biol. 2008, 84, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Parente, R.; Clark, S.J.; Inforzato, A.; Day, A.J. Complement factor H in host defense and immune evasion. Cell. Mol. Life Sci. 2017, 74, 1605–1624. [Google Scholar] [CrossRef]
- Kreizinger, Z.; Bhide, M.; Bencurova, E.; Dolinska, S.; Gyuranecz, M. Complement sensitivity and factor H binding of European Francisella tularensis ssp. holarctica strains in selected animal species. Acta Vet. Hung. 2015, 63, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Clay, C.D.; Soni, S.; Gunn, J.S.; Schlesinger, L.S. Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen. J. Immunol. 2008, 181, 5568–5578. [Google Scholar] [CrossRef] [Green Version]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. The complement system and innate immunity. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2020. [Google Scholar]
- Kubagawa, H.; Oka, S.; Kubagawa, Y.; Torii, I.; Takayama, E.; Kang, D.-W.; Gartland, G.L.; Bertoli, L.F.; Mori, H.; Takatsu, H.; et al. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 2009, 206, 2779–2793. [Google Scholar] [CrossRef] [Green Version]
- Honjo, K.; Kubagawa, Y.; Jones, D.M.; Dizon, B.; Zhu, Z.; Ohno, H.; Izui, S.; Kearney, J.F.; Kubagawa, H. Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcμR). Proc. Natl. Acad. Sci. USA 2012, 109, 15882–15887. [Google Scholar] [CrossRef] [Green Version]
- Lang, K.S.; Lang, P.A.; Meryk, A.; Pandyra, A.A.; Boucher, L.-M.; Pozdeev, V.I.; Tusche, M.W.; Göthert, J.R.; Haight, J.; Wakeham, A.; et al. Involvement of Toso in activation of monocytes, macrophages, and granulocytes. Proc. Natl. Acad. Sci. USA 2013, 110, 2593–2598. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhu, H.; Qian, J.; Xiong, E.; Zhang, L.; Wang, Y.-Q.; Chu, Y.; Kubagawa, H.; Tsubata, T.; Wang, J.-Y. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front. Immunol. 2018, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Xiong, E.; Hong, R.; Lu, Q.; Ohno, H.; Wang, J.Y. Role of the IgM Fc Receptor in Immunity and Tolerance. Front. Immunol. 2019, 10, 529. [Google Scholar] [CrossRef]
- Schwartz, J.T.; Barker, J.H.; Long, M.E.; Kaufman, J.; McCracken, J.; Allen, L.-A. Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via complement receptors 1 and 3 in nonimmune serum. J. Immunol. 2012, 189, 3064–3077. [Google Scholar] [CrossRef] [Green Version]
- Geier, H.; Celli, J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect Immun. 2011, 79, 2204–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, D.; Roes, J.; Kühn, R.; Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991, 350, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Elkins, K.L.; MacIntyre, A.T.; Rhinehart-Jones, T.R. Nonspecific early protective immunity in Francisella and Listeria infections can be dependent on lymphocytes. Infect. Immun. 1998, 66, 3467–3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, D.D.; Scott, D.P.; Bosio, C.M. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PLoS ONE 2012, 7, e33349. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Bergman, A.; Rutemark, C.; Ouchida, R.; Ohno, H.; Wang, J.-Y.; Heyman, B. Complement-Activating IgM Enhances the Humoral but Not the T Cell Immune Response in Mice. PLoS ONE 2013, 8, e81299. [Google Scholar] [CrossRef] [PubMed]
- Sörman, A.; Zhang, L.; Ding, Z.; Heyman, B. How antibodies use complement to regulate antibody responses. Mol. Immunol. 2014, 61, 79–88. [Google Scholar] [CrossRef]
- Zivna, L.; Krocova, Z.; Härtlova, A.; Kubelkova, K.; Zakova, J.; Rudolf, E.; Hrstka, R.; Macela, A.; Stulík, J. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb. Pathog. 2010, 49, 226–236. [Google Scholar] [CrossRef]
- Li, Z.; Woo, C.J.; Iglesias-Ussel, M.D.; Ronai, D.; Scharff, M.D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bournazos, S.; Wang, T.T.; Dahan, R.; Maamary, J.; Ravetch, J.V. Signaling by Antibodies: Recent Progress. Annu. Rev. Immunol. 2017, 35, 285–311. [Google Scholar] [CrossRef] [Green Version]
- Pincetic, A.; Bournazos, S.; DiLillo, D.J.; Maamary, J.; Wang, T.T.; Dahan, R.; Fiebiger, B.M.; Ravetch, J.V. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014, 15, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Ravetch, J.V. Functional diversification of IgGs through Fc glycosylation. J. Clin. Investig. 2019, 129, 3492–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.L.; Suscovich, T.J.; Fortune, S.M.; Alter, G. Beyond binding: Antibody effector functions in infectious diseases. Nat. Rev. Immunol. 2018, 18, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.E.; Yang, Y.; Elkins, K.L.; Fernandez, E.T.; Qureshi, N.; Shlomchik, M.J.; Herzenberg, L.A.; Herzenberg, L.A.; Vogel, S.N. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc. Natl. Acad. Sci. USA 2009, 106, 4343–4348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, Y.; Kirimanjeswara, G.S.; Roberts, S.; Metzger, D.W. Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis live vaccine strain infection. Infect. Immun. 2013, 81, 3434–3441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlan, W.J.; Shen, H.; Kuolee, R.; Zhao, X.; Chen, W. Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an alphabeta T cell-and interferon gamma- dependent mechanism. Vaccine 2005, 23, 2477–2485. [Google Scholar]
- Wu, T.H.; Hutt, J.A.; Garrison, K.A.; Berliba, L.S.; Zhou, Y.; Lyons, C.R. Intranasal vaccination induces protective immunity against intranasal infection with virulent Francisella tularensis biovar A. Infect. Immun. 2005, 73, 2644–2654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, Y.; Kirimanjeswara, G.S.; Roberts, S.; Racine, R.; Wilson-Welder, J.; Sanfilippo, A.M.; Salmon, S.I.; Metzger, D.W. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice. Vaccine 2017, 35, 4997–5005. [Google Scholar] [CrossRef]
- Rawool, D.B.; Bitsaktsis, C.; Li, Y.; Gosselin, D.R.; Lin, Y.; Kurkure, N.V.; Metzger, D.W.; Gosselinet, E.J. Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. J. Immunol. 2008, 180, 5548–5557. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, B.V.; Bitsaktsis, C.; Pham, G.; Drake, J.R.; Hazlett, K.R.O.; Porter, K.; Gosselin, E.J. Multiple mechanisms mediate enhanced immunity generated by mAb-inactivated F. tularensis immunogen. Immunol. Cell Biol. 2013, 91, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Kirimanjeswara, G.S.; Golden, J.M.; Bakshi, C.S.; Metzger, D.W. Prophylactic and therapeutic use of antibodies for protection against respiratory infection with Francisella tularensis. J. Immunol. 2007, 179, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, L.E.; Kolonoski, P.; Young, L.S. Natural killer cell activity and macrophage-dependent inhibition of growth or killing of Mycobacterium avium complex in a mouse model. J. Leukoc. Biol. 1990, 47, 135–141. [Google Scholar] [CrossRef]
- Galdiero, F.; Romano Carratelli, C.; Nuzzo, I.; Folgore, A. Cytotoxic antibody dependent cells in mice experimentally infected with Brucella abortus. Microbiologica 1985, 8, 217–224. [Google Scholar]
- Taylor, D.W. Schistosome vaccines. Experientia 1991, 47, 152–157. [Google Scholar] [CrossRef]
- Tagliabue, A.; Boraschi, D.; Villa, L.; Keren, D.F.; Lowell, G.H.; Rappuoli, R.; Nencioni, L. IgA-dependent cell-mediated activity against enteropathogenic bacteria: Distribution, specificity, and characterization of the effector cells. J. Immunol. 1984, 133, 988–992. [Google Scholar]
- Sanapala, S.; Yu, J.J.; Murthy, A.K.; Li, W.; Guentzel, M.N.; Chambers, J.P.; Klose, K.E.; Arulanandamet, B.P. Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida ΔfopC vaccine strain. Infect. Immun 2012, 80, 2177–2185. [Google Scholar] [CrossRef] [Green Version]
- Francis, E.; Felton, L. Antitularemic serum. Public Health Rep. 1942, 57, 44–50. [Google Scholar] [CrossRef]
- Foshay, L.; Ruchman, I.; Nicholes, P.S. Antitularense serum: Correlation between protective capacity for white rats and precipitable antibody content. J. Clin. Investig. 1947, 26, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Foshay, L. Tularemia. Annu. Rev. Microbiol. 1950, 4, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Tärnvik, A. Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis. 1989, 11, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Roche, M.I.; Hui, J.H.; Unal, B.; Felgner, P.L.; Gulati, S.; Madico, G.; Sharon, J. Generation and characterization of hybridoma antibodies for immunotherapy of tularemia. Immunol. Lett. 2007, 112, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhinehart-Jones, T.R.; Fortier, A.H.; Elkins, K.L. Transfer of immunity against lethal murine Francisella infection by specific antibody depends on host gamma interferon and T cells. Infect. Immun. 1994, 62, 3129–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culkin, S.J.; Rhinehart-Jones, T.; Elkins, K.L. A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 1997, 158, 3277–3284. [Google Scholar] [PubMed]
- Fulop, M.; Mastroeni, P.; Green, M.; Titball, R.W. Role of antibody to lipopolysaccharide in protection against low-and high-virulence strains of Francisella tularensis. Vaccine 2001, 19, 4465–4472. [Google Scholar] [CrossRef]
- Stenmark, S.; Lindgren, H.; Tärnvik, A.; Sjöstedt, A. Specific antibodies contribute to the host protection against strains of Francisella tularensis subspecies holarctica. Microb. Pathog. 2003, 35, 73–80. [Google Scholar] [CrossRef]
- Stenmark, S.; Sjöstedt, A. Transfer of specific antibodies results in increased expression of TNF-alpha and IL12 and recruitment of neutrophils to the site of a cutaneous Francisella tularensis infection. J. Med. Microbiol. 2004, 53 Pt 6, 501–504. [Google Scholar] [CrossRef]
- Kirimanjeswara, G.S.; Olmos, S.; Bakshi, C.S.; Metzger, D.W. Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis. Immunol. Rev. 2008, 225, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Kubelkova, K.; Krocova, Z.; Balonova, L.; Pejchal, J.; Stulik, J.; Macela, A. Specific antibodies protect gamma-irradiated mice against Francisella tularensis infection. Microb. Pathog. 2012, 53, 259–268. [Google Scholar] [CrossRef]
- Kubelkova, K.; Benuchova, M.; Kozakova, H.; Sinkora, M.; Krocova, Z.; Pejchal, J.; Macela, A. Gnotobiotic mouse model’s contribution to understanding host-pathogen interactions. Cell. Mol. Life Sci. 2016, 73, 3961–3969. [Google Scholar] [CrossRef]
- Chou, A.Y.; Kennett, N.J.; Melillo, A.A.; Elkins, K.L. Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes. Microbes Infect. 2017, 19, 91–100. [Google Scholar] [CrossRef]
- Sebastian, S.; Pinkham, J.T.; Lynch, J.G.; Ross, R.A.; Reinap, B.; Blalock, L.T.; Conlan, J.W.; Kasper, D.L. Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis. Vaccine 2009, 27, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Barrio, L.; Sahoo, M.; Lantier, L.; Reynolds, J.M.; Ceballos-Olvera, I.; Re, F. Production of anti-LPS IgM by B1a B cells depends on IL-1β and is protective against lung infection with Francisella tularensis LVS. PLoS Pathog. 2015, 11, e1004706. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Rynkiewicz, M.J.; Madico, G.; Li, S.; Yang, C.Y.; Perkins, H.M.; Sompuram, S.R.; Kodela, V.; Liu, T.; Morris, T.; et al. B-cell epitopes in GroEL of Francisella tularensis. PLoS ONE 2014, 9, e99847. [Google Scholar] [CrossRef] [PubMed]
- Holland-Tummillo, K.M.; Shoudy, L.E.; Steiner, D.; Kumar, S.; Rosa, S.J.; Namjoshi, P.; Singh, A.; Sellati, T.J.; Gosselin, E.J.; Hazlett, K.R. Autotransporter-Mediated Display of Complement Receptor Ligands by Gram-Negative Bacteria Increases Antibody Responses and Limits Disease Severity. Pathogens 2020, 9, 375. [Google Scholar] [CrossRef]
Effector | Target | Process | |
---|---|---|---|
Stage 1 | nIg sAb * | Microbial surface targets | Opsonization |
Stage 2 | Complement | nIg–antigen complex | Complement activation |
Stage 3 | C-Ig–Ag complex | CRs, IgRs ** and/or BCR | Cell–microbe interaction |
Stage 4 | B cell subset(s) activation | ||
Stage 5 | Production of i-nAb *** | ||
Stage 6 | i-nAb | Components of pathogen(s) and/or self-infection-damaged cells | Reinforced opsonization |
Stage 7 | i-nAb–(C)-Ag complex | Receptors of phagocytic and/or immunocompetent cells | Elimination and destruction of pathogens and damaged self-cells by phagocytes |
Stage 8 | Induction of adaptive immunity and immunological memory | ||
Stage 9 | Restored homeostasis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubelkova, K.; Macela, A. Francisella and Antibodies. Microorganisms 2021, 9, 2136. https://doi.org/10.3390/microorganisms9102136
Kubelkova K, Macela A. Francisella and Antibodies. Microorganisms. 2021; 9(10):2136. https://doi.org/10.3390/microorganisms9102136
Chicago/Turabian StyleKubelkova, Klara, and Ales Macela. 2021. "Francisella and Antibodies" Microorganisms 9, no. 10: 2136. https://doi.org/10.3390/microorganisms9102136
APA StyleKubelkova, K., & Macela, A. (2021). Francisella and Antibodies. Microorganisms, 9(10), 2136. https://doi.org/10.3390/microorganisms9102136