Microbial Adhesion and Biofilm Formation on Bioactive Surfaces of Ti-35Nb-7Zr-5Ta Alloy Created by Anodization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Anodization
2.3. Surface Characterization
2.4. Microbiological Tests
2.5. Statistical Analyses
3. Results
3.1. Surface Characterization before Microbial Colonization
3.2. Microbial Adhesion to and Biofilm Formation on Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.aaid-implant.org/what-are-dental-implants/ (accessed on 1 February 2017).
- Vanzillotta, P.S.; Sader, M.S.; Bastos, I.N.; Soares, G.D.A. Improvement of in vitro titanium bioactivity by three different surface treatments. Dent. Mater. 2006, 22, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Donato, T.A.G.; Almeida, L.H.; Nohueira, R.A.; Niemeyer, T.C.; Grandini, C.R.; Caram, R. Cytotoxicity study of some Ti alloys used as biomaterial. Mater. Sci. Eng. C 2009, 29, 1365–1369. [Google Scholar] [CrossRef]
- Geng, F.; Niinomi, M.; Nakai, M. Observation of yielding and strain hardening in a titanium alloy having high oxygen content. Mater. Sci. Eng. A 2011, 528, 5435–5445. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.; Chakraborty, M. The influence of heat treatment and role of boron on sliding wear behaviour of β-type Ti–35Nb–7.2Zr–5.7Ta alloy in dry condition and in simulated body fluids. J. Mech. Behav. Biomed. Mater. 2011, 4, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chu, P.K.; Ding, C. Surface nano-functionalization of biomaterials. Mater. Sci. Eng. R Rep. 2010, 70, 275–302. [Google Scholar] [CrossRef]
- Minagar, S.; Berndt, C.; Wang, J.; Ivanova, E.; Wen, C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012, 8, 2875–2888. [Google Scholar] [CrossRef]
- Yetim, A.F. Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf. Coat. Technol. 2010, 205, 1757–1763. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef]
- Cordeiro, J.M.; Nagay, B.E.; Ribeiro, A.L.R.; da Cruz, N.C.; Rangel, E.C.; Fais, L.M.G.; Vaz, L.G.; Barão, V.A.R. Functionalization of an ex-perimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation. J. Alloys Compd. 2019, 770, 1038–1048. [Google Scholar] [CrossRef]
- Suh, J.-Y.; Jang, B.-C.; Zhu, X.; Ong, J.L.; Kim, K. Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials 2003, 24, 347–355. [Google Scholar] [CrossRef]
- Laurindo, C.A.; Torres, R.; Mali, S.A.; Gilbert, J.L.; Soares, P. Incorporation of Ca and P on anodized titanium surface: Effect of high current density. Mater. Sci. Eng. C 2014, 37, 223–231. [Google Scholar] [CrossRef] [PubMed]
- El-wassefy, N.A.; Hammouda, I.M.; Habib, A.N.; El-awady, G.Y.; Marzook, H.A. Assessment of anodized titanium implants bioac-tivity. Clin. Oral Implant. Res. 2014, 25, e1–e9. [Google Scholar] [CrossRef]
- Hieda, J.; Niinomi, M.; Nakai, M.; Cho, K.; Mohri, T.; Hanawa, T. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical beta-type titanium alloy. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 36, 244–251. [Google Scholar] [CrossRef]
- Puckett, S.D.; Taylor, E.; Raimondo, T.; Webster, T.J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 2010, 31, 706–713. [Google Scholar] [CrossRef]
- Sul, Y.-T.; Johansson, C.B.; Jeong, Y.; Albrektsson, T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 2001, 23, 329–346. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Chen, R.; Li, L. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 2005, 134, 705–710. [Google Scholar] [CrossRef]
- Lee, W.-J.; Alhoshan, M.; Smyrl, W.H. Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes. J. Electrochem. Soc. 2006, 153, B499–B505. [Google Scholar] [CrossRef]
- Kim, S.E.; Lim, J.H.; Lee, S.C.; Nam, S.-C.; Kang, H.-G.; Choi, J. Anodically nanostructured titanium oxides for implant applications. Electrochim. Acta 2008, 53, 4846–4851. [Google Scholar] [CrossRef]
- Kim, H.-S.; Yang, Y.; Koh, J.-T.; Lee, K.-K.; Lee, D.-J.; Lee, K.-M.; Park, S.-W. Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88B, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Koyano, K.; Atsuta, I.; Jinno, Y. Anodized surface and its clinical performance. In Implant Surfaces and Their Biological and Clinical Impact; Wennerberg, A., Albrektsson, T., Jimbo, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 137–146. [Google Scholar]
- Oh, S.-H.; Finõnes, R.R.; Daraio, C.; Chen, L.-H.; Jin, S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005, 26, 4938–4943. [Google Scholar] [CrossRef]
- Tao, X.; Li, S.; Zheng, C.; Fu, J.; Guo, Z.; Hao, Y.; Yang, R. Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation. Mater. Sci. Eng. C 2009, 29, 1923–1934. [Google Scholar] [CrossRef]
- Camargo, S.E.A.; Xia, X.; Fares, C.; Ren, F.; Hsu, S.-M.; Budei, D.; Aravindraja, C.; Kesavalu, L.; Esquivel-Upshaw, J.F. Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium. Materials 2021, 14, 4357. [Google Scholar] [CrossRef] [PubMed]
- Calandriello, R.; Tomatis, M. Immediate occlusal loading of single lower molars using Branemark System® Wide Platform TiUniteTM implants: A 5-year follow-up report of a prospective clinical multicenter study. Clin. Implant Dent. Relat. Res. 2011, 13, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Roos-Jansåker, A.-M.; Lindahl, C.; Renvert, H.; Persson, G.R. Infection at titanium implants with or without a clinical diagnosis of inflammation. Clin. Oral Implant. Res. 2007, 18, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.E.; Becker, B.; Newman, M.G.; Nyman, S. Clinical and microbiologic findings that may contribute to dental implant failure. Int. J. Oral Maxillofac. Implant. 1990, 5, 31–38. [Google Scholar]
- Salcetti, J.M.; Moriarty, J.D.; Cooper, L.; Smith, F.W.; Collins, J.G.; Socransky, S.S.; Offenbacher, S. The clinical, microbial, and host response characteristics of the failing implant. Int. J. Oral Maxillofac. Implant. 1997, 12, 32–42. [Google Scholar]
- Listgarten, M.A.; Lai, C.-H. Comparative Microbiological Characteristics of Failing Implants and Periodontally Diseased Teeth. J. Periodontol. 1999, 70, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Kolenbrander, P.E.; Palmer, R.J., Jr.; Periasamy, S.; Jakubovics, N. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Genet. 2010, 8, 471–480. [Google Scholar] [CrossRef]
- Schreurs, W.J.; Rosenberg, H. Effect of silver ions on transport and retention of phosphate by Escherichia coli. J. Bacteriol. 1982, 152, 7–13. [Google Scholar] [CrossRef]
- Del Re, M.; Gouttebarn, R.; Dauchota, J.P.; Lecle’re, P.; Lazzaronib, R.; Wauteleta, M.; Hecq, M. Growth and morphology of magnetron sputter deposited silver films. Surf. Coat. Technol. 2002, 151–152, 86–90. [Google Scholar] [CrossRef]
- Das, K.; Bose, S.; Bandyopadhyay, A.; Karandikar, B.; Gibbins, B.L. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87B, 455–460. [Google Scholar] [CrossRef]
- Juan, L.; Liao, J.; Anchun, M.; Zhu, Z.; Quan, Y. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int. J. Nanomed. 2010, 5, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Miotto, L.N.; Fais, L.M.; Ribeiro, A.L.; Vaz, L.G. Surface properties of Ti-35Nb-7Zr-5Ta: Effects of long-term immersion in artificial saliva and fluoride solution. J. Prosthet. Dent. 2016, 116, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Mabboux, F.; Ponsonnet, L.; Morrier, J.-J.; Jaffrezic, N.; Barsotti, O. Surface free energy and bacterial retention to saliva-coated dental implant materials—An in vitro study. Colloids Surf. B Biointerfaces 2004, 39, 199–205. [Google Scholar] [CrossRef]
- Surmeneva, M.; Lapanje, A.; Chudinova, E.; Ivanova, A.; Koptyug, A.; Loza, K.; Prymak, O.; Epple, M.; Ennen-Roth, F.; Ulbricht, M.; et al. Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles. Appl. Surf. Sci. 2019, 480, 822–829. [Google Scholar] [CrossRef]
- Larsen, T.; Fiehn, N.-E. Dental biofilm infections—An update. Apmis 2017, 125, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.; Kindblom, C.; Mizgalska, D.; Magdoń, A.; Jurczyk, K.; Sculean, A.; Stavropoulos, A. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins—An in vitro study. Arch. Oral Biol. 2017, 75, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.A.; Abranches, J.; Koo, H.; Marquis, R.E.; Burne, R.A. Protocols to Study the Physiology of Oral Biofilms. Methods Mol. Biol. 2010, 666, 87–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wennerberg, A.; Albrektsson, T. On implant surfaces: A review of current knowledge and opinions. Int. J. Oral Maxillofac. Implant. 2010, 25, 63–74. [Google Scholar]
- Schmidlin, P.R.; Müller, P.; Attin, T.; Wieland, M.; Hofer, D.; Guggenheim, B. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J. Appl. Oral Sci. 2013, 21, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Fürst, M.M.; Salvi, G.E.; Lang, N.P.; Persson, G.R. Bacterial colonization immediately after installation on oral titanium implants. Clin. Oral Implant. Res. 2007, 18, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, A.G.; Muñoz-Tabares, J.A.; Godoy-Gallardo, M.; Juárez, A.; Gil, F.-J.S. sanguinis adhesion on rough titanium surfaces: Effect of culture media. Mater. Sci. Eng. C 2013, 33, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Pantaroto, H.N.; Amorim, K.P.; Cordeiro, J.; Souza, J.G.S.; Ricomini-Filho, A.P.; Rangel, E.; Ribeiro, A.L.R.; Vaz, L.G.; Barão, V.A. Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. Biofouling 2019, 35, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Badihi Hauslich, L.; Sela, M.N.; Steinberg, D.; Rosen, G.; Kohavi, D. The adhesion of oral bacteria to modified titanium surfaces: Role of plasma proteins and electrostatic forces. Clin. Oral Implants Res. 2013, 24 (Suppl. A100), 49–56. [Google Scholar] [CrossRef]
- Sul, Y.-T.; Johansson, C.; Albrektsson, T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int. J. Prosthodont. 2006, 19, 319–328. [Google Scholar]
- Kournetas, N.; Spintzyk, S.; Schweizer, E.; Sawada, T.; Said, F.; Schmid, P.; Geis-Gerstorfer, J.; Eliades, G.; Rupp, F. Comparative evaluation of topographical data of dental implant surfaces applying optical interferometry and scanning electron microscopy. Dent. Mater. 2017, 33, e317–e327. [Google Scholar] [CrossRef]
- Tan, A.; Pingguan-Murphy, B.; Ahmad, R.; Akbar, S. Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 2012, 38, 4421–4435. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Scheideler, L.; Reichl, R.; Geis-Gerstorfer, J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 2004, 25, 4087–4103. [Google Scholar] [CrossRef]
- Takebe, J.; Ito, S.; Miura, S.; Miyata, K.; Ishibashi, K. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles. Mater. Sci. Eng. C 2012, 32, 55–60. [Google Scholar] [CrossRef]
- Zhao, L.; Mei, S.; Chu, P.K.; Zhang, Y.; Wu, Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 2010, 31, 5072–5082. [Google Scholar] [CrossRef]
- Cavalcanti, I.; Filho, A.R.; Lucena-Ferreira, S.; da Silva, W.; Leme, A.P.; Senna, P.; Cury, A.D.B. Salivary pellicle composition and multispecies biofilm developed on titanium nitrided by cold plasma. Arch. Oral Biol. 2014, 59, 695–703. [Google Scholar] [CrossRef]
- Hauser-Gerspach, I.; Kulik, E.M.; Weiger, R.; Decker, E.-M.; Von Ohle, C.; Meyer, J. Adhesion of Streptococcus sanguinis to Dental Implant and Restorative Materials In Vitro. Dent. Mater. J. 2007, 26, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Matos, A.O.; Ricomini-Filho, A.P.; Beline, T.; Ogawa, E.S.; Costa-Oliveira, B.E.; de Almeida, A.B.; Junior, F.H.N.; Rangel, E.C.; Cruz, N.C.; Sukotjo, C.; et al. Three-species biofilm model onto plasma-treated titanium implant surface. Colloids Surf. B Biointerfaces 2017, 152, 354–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilarrasa, J.; Delgado, L.M.; Galofré, M.; Àlvarez, G.; Violant, D.; Manero, J.M.; Blanc, V.; Gil, F.J.; Nart, J. In vitro evaluation of a multispecies oral biofilm over antibacterial coated titanium surfaces. J. Mater. Sci. Mater. Med. 2018, 29, 164. [Google Scholar] [CrossRef] [PubMed]
- Radtke, A.; Ehlert, M.; Jędrzejewski, T.; Bartmański, M. The Morphology, Structure, Mechanical Properties and Biocompatibility of Nanotubular Titania Coatings before and after Autoclaving Process. J. Clin. Med. 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, M.C.; Llama-Palacios, A.; Fernández, E.; Figuero, E.; Marin, M.J.; León, R.; Blanc, V.; Herrera, D.; Sanz, M. An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent. Mater. 2014, 30, 1161–1171. [Google Scholar] [CrossRef]
- Quirynen, M.; Bollen, C.M. The influence of surface roughness and surface-free energy on supra- and subgingival plaque for-mation in man. A review of the literature. J. Clin. Periodontol. 1995, 22, 1–14. [Google Scholar] [CrossRef]
- Pereira da Silva, C.H.; Vidigal, G.M., Jr.; de Uzeda, M.; de Almeida Soares, G. Influence of titanium surface roughness on attachment of Streptococcus sanguis: An in vitro study. Implant Dent. 2005, 14, 88–93. [Google Scholar] [CrossRef]
- Amoroso, P.F.; Adams, R.J.; Waters, M.G.; Williams, D.W. Titanium surface modification and its effect on the adherence of Porphy-romonas gingivalis: An in vitro study. Clin. Oral Implant. Res. 2006, 17, 633–637. [Google Scholar] [PubMed]
- Nascimento, C.D.; Pita, M.S.; Fernandes, F.H.N.C.; Pedrazzi, V.; Junior, R.F.D.A.; Ribeiro, R.F. Bacterial adhesion on the titanium and zirconia abutment surfaces. Clin. Oral Implant. Res. 2014, 25, 337–343. [Google Scholar] [CrossRef]
- Almaguer-Flores, A.; Ximénez-Fyvie, L.A.; Rodil, S.E. Oral bacterial adhesion on amorphous carbon and titanium films: Effect of surface roughness and culture media. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 92, 196–204. [Google Scholar] [CrossRef]
- Lin, H.Y.; Liu, Y.; Wismeijer, D.; Crielaard, W.; Deng, D.M. Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy. Int. J. Oral Maxillofac. Implant. 2013, 28, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Pita, P.P.C.; Rodrigues, J.; Ota-Tsuzuki, C.; Miato, T.F.; Zenóbio, E.; Giro, G.; Figueiredo, L.C.; Gonçalves, C.; Gehrke, S.A.; Cassoni, A.; et al. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies. BioMed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez y Baena, R.; Arciola, C.R.; Selan, L.; Battaglia, R.; Imbriani, M.; Rizzo, S.; Visai, L. Evaluation of bacterial adhesion on machined titanium, Osseotite® and Nanotite® discs. Int. J. Artif. Organs 2012, 35, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Park, S.-Y.; Han, M.-S.; Lee, Y.-M.; Ku, Y.; Rhyu, I.-C.; Seol, Y.-J. Occurrence of Progressive Bone Loss Around Anodized Surface Implants and Resorbable Blasting Media Implants: A Retrospective Cohort Study. J. Periodontol. 2017, 88, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Noronha, V.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Muller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Rodríguez-Hernández, A.G.; Delgado, L.M.; Manero, J.M.; Javier Gil, F.; Rodríguez, D. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius. Clin. Oral Implant. Res. 2015, 26, 1170–1179. [Google Scholar] [CrossRef] [Green Version]
- Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588. [Google Scholar] [CrossRef]
Subgroups | Electrolytes | Anodizing Parameters |
---|---|---|
Control | none | none |
CaP | 0.04 mol/L β-sodium glycerophosphate (Sigma Aldrich) and 0.35 mol/L calcium acetate (Sigma Aldrich) | 1 min, 300 V, 2.5 amps |
CaPAg | 0.04 mol/l β-sodium glycerophosphate (Sigma Aldrich, St. Louis, MO, USA) and 0.35 mol/L calcium acetate (Sigma Aldrich) | 1 min, 300 V, 2.5 amps |
0.01 M Silver nitrate (Sigma Aldrich) | 2 min, 50 V, 2 amps | |
HF | 0.3 M hydrofluoric acid (Sigma Aldrich) | 60 min, 20 V, 2.5 amps |
HFAg | 0.3 M hydrofluoric acid (Sigma Aldrich) | 60 min, 20 V, 2.5 amps |
0.01 M Silver nitrate (Sigma Aldrich) | 2 min, 50 V, 2 amps |
TAV | TNZT | |
---|---|---|
Control | 0.1914 (0.0137) Aa | 0.2762 (0.0592) Aa |
CaP | 0.5114 (0.039) Ab | 0.5756 (0.1088) Abc |
CaPAg | 0.525 (0.0333) Ab | 0.6488 (0.1811) Bc |
HF | 0.1868 (0.0281) Aa | 0.3156 (0.0840) Ba |
HFAg | 0.1885 (0.0237) Aa | 0.4848 (0.1864) Bb |
SFE | TAV | TNZT | |
---|---|---|---|
γT | 47.51 (1.40) Aa | 47.23 (1.23) Aa | |
Control | γD | 37.61 | 37.52 |
γP | 9.90 | 9.71 | |
γT | 48.46 (3.29) Aab | 46.65 (0.69) Aa | |
CaP | γD | 35.85 | 39.21 |
γP | 12.61 | 7.35 | |
γT | 50.21 (1.13) Aab | 50.7 (2.07) Ab | |
CaPAg | γD | 44.20 | 43.60 |
γP | 6.01 | 7.16 | |
γT | 53.01 (4.41) Abc | 54.38 (1.79) Acd | |
HF | γD | 38.37 | 41.72 |
γP | 14.64 | 12.66 | |
HFAg | γT | 50.69 (1.30) Ac | 54.59 (1.97) Ad |
γD | 43.64 | 42.64 | |
γP | 7.05 | 11.84 |
SFE | TAV | TNZT | |
---|---|---|---|
Control | γT | 45.44 (4.96) Aab | 46.65 (2.77) Aab |
γD | 12.02 | 13.84 | |
γP | 33.43 | 32.81 | |
CaP | γT | 56.98 (3.83) Ac | 60.51 (7.43) Ac |
γD | 3.32 | 3.31 | |
γP | 52.76 | 57.12 | |
CaPAg | γT | 50.17 (4.35) Abc | 51.97 (6.67) Abc |
γD | 6.92 | 6.67 | |
γP | 43.25 | 45.30 | |
HF | γT | 48.25 (6.06) Aab | 46.38 (3.70) Aab |
γD | 7.08 | 12.57 | |
γP | 40.45 | 33.81 | |
HFAg | γT | 45.91 (6.22) Aa | 40.80 (2.50) Aa |
γD | 17.16 | 15.81 | |
γP | 27.75 | 24.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fais, L.M.G.; de Sales Leite, L.; Reis, B.A.d.; Ribeiro, A.L.R.; Vaz, L.G.; Klein, M.I. Microbial Adhesion and Biofilm Formation on Bioactive Surfaces of Ti-35Nb-7Zr-5Ta Alloy Created by Anodization. Microorganisms 2021, 9, 2154. https://doi.org/10.3390/microorganisms9102154
Fais LMG, de Sales Leite L, Reis BAd, Ribeiro ALR, Vaz LG, Klein MI. Microbial Adhesion and Biofilm Formation on Bioactive Surfaces of Ti-35Nb-7Zr-5Ta Alloy Created by Anodization. Microorganisms. 2021; 9(10):2154. https://doi.org/10.3390/microorganisms9102154
Chicago/Turabian StyleFais, Laiza Maria Grassi, Luana de Sales Leite, Bárbara Araújo dos Reis, Ana Lúcia Roselino Ribeiro, Luis Geraldo Vaz, and Marlise Inêz Klein. 2021. "Microbial Adhesion and Biofilm Formation on Bioactive Surfaces of Ti-35Nb-7Zr-5Ta Alloy Created by Anodization" Microorganisms 9, no. 10: 2154. https://doi.org/10.3390/microorganisms9102154
APA StyleFais, L. M. G., de Sales Leite, L., Reis, B. A. d., Ribeiro, A. L. R., Vaz, L. G., & Klein, M. I. (2021). Microbial Adhesion and Biofilm Formation on Bioactive Surfaces of Ti-35Nb-7Zr-5Ta Alloy Created by Anodization. Microorganisms, 9(10), 2154. https://doi.org/10.3390/microorganisms9102154