Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Experimental Animals
2.3. RNA Extraction from Spiked Tissue
2.4. RNA Extraction from Infected Mice Lungs
2.5. mRNA Enrichment
2.6. Bioinformatic Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diard, M.; Hardt, W.-D. Evolution of bacterial virulence. FEMS Microbiol. Rev. 2017, 41, 679–697. [Google Scholar] [CrossRef] [PubMed]
- La, M.-V.; Raoult, D.; Renesto, P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol. Rev. 2008, 32, 440–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lathem, W.; Crosby, S.D.; Miller, V.; Goldman, W.E. From The Cover: Progression of primary pneumonic plague: A mouse model of infection, pathology, and bacterial transcriptional activity. Proc. Natl. Acad. Sci. USA 2005, 102, 17786–17791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentice, M.B.; Rahalison, L. Plague. Lancet 2007, 369, 1196–1207. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, Z.; Yang, R. Yersinia pestis: Mechanisms of entry into and resistance to the host cell. Front. Cell. Infect. Microbiol. 2013, 3, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pechous, R.D.; Broberg, C.A.; Stasulli, N.M.; Miller, V.L.; Goldman, W.E. In Vivo Transcriptional Profiling of Yersinia pestis Reveals a Novel Bacterial Mediator of Pulmonary Inflammation. MBio 2015, 6, e02302-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, L.; Poyot, T.; Schnetterle, M.; Guillier, S.; Soulé, E.; Nolent, F.; Gorgé, O.; Neulat-Ripoll, F.; Valade, E.; Sebbane, F.; et al. Transcriptomic studies and assessment of Yersinia pestis reference genes in various conditions. Sci. Rep. 2019, 9, 2501. [Google Scholar] [CrossRef] [PubMed]
- Westermann, A.J.; Barquist, L.; Vogel, J. Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathog. 2017, 13, e1006033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, G.C.; Essex-Lopresti, A.; Moore, K.A.; Williamson, E.D.; Lukaszewski, R.; Paszkiewicz, K.; David, J. Common Host Responses in Murine Aerosol Models of Infection Caused by Highly Virulent Gram-Negative Bacteria from the Genera Burkholderia, Francisella and Yersinia. Pathogens 2019, 8, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuss, A.M.; Beckstette, M.; Pimenova, M.; Schmühl, C.; Opitz, W.; Pisano, F.; Heroven, A.K.; Dersch, P. Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host–pathogen transcriptomes. Proc. Natl. Acad. Sci. USA 2017, 114, E791–E800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tidhar, A.; Flashner, Y.; Cohen, S.; Levi, Y.; Zauberman, A.; Gur, D.; Aftalion, M.; Elhanany, E.; Zvi, A.; Shafferman, A.; et al. The NlpD Lipoprotein Is a Novel Yersinia pestis Virulence Factor Essential for the Development of Plague. PLoS ONE 2009, 4, e7023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tidhar, A.; Levy, Y.; Zauberman, A.; Vagima, Y.; Gur, D.; Aftalion, M.; Israeli, O.; Chitlaru, T.; Ariel, N.; Flashner, Y.; et al. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. PLoS Negl. Trop. Dis. 2019, 13, e0007449. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.S.; Ferreira, I.M.; Figueiredo, I.; Verícimo, M.A. Access to the tracheal pulmonary pathway in small rodents. J. Bras. Patol. Med. Lab. 2015, 51, 183–188. [Google Scholar] [CrossRef]
- Vagima, Y.; Zauberman, A.; Levy, Y.; Gur, D.; Tidhar, A.; Aftalion, M.; Shafferman, A.; Mamroud, E. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague. PLoS Pathog. 2015, 11, e1004893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Deutscher, M.P. Degradation of RNA in bacteria: Comparison of mRNA and stable RNA. Nucleic Acids Res. 2006, 34, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Westermann, A.J.; Vogel, J. Cross-species RNA-seq for deciphering host–microbe interactions. Nat. Rev. Genet. 2021, 22, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Stasulli, N.M.; Eichelberger, K.R.; Price, P.A.; Pechous, R.D.; Montgomery, S.A.; Parker, J.S.; Goldman, W.E. Spatially Distinct Neutrophil Responses within the Inflammatory Lesions of Pneumonic Plague. MBio 2015, 6, e01530-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample No. | RIN of Sample | RNA Concentration (ng/µL) | Total RNA Reads | Mouse RNA Reads | Bacterial RNA Reads | ||
---|---|---|---|---|---|---|---|
Before Depletion | After Depletion | ||||||
Whole lung 24 hpi | 1 | 8.7 | 52 | 1.3 | 60,325,276 | 42,909,562 (71.13%) | 3,889,876 (6.45%) |
2 | 8.4 | 56 | 1.95 | 82,104,539 | 58,227,020 (70.92%) | 4,637,343 (5.65%) | |
3 | 8 | 27 | 1.7 | 51,954,957 | 34,715,948 (66.82%) | 2,306,038 (4.44%) | |
4 | 8.7 | 34 | 0.5 | 61,118,291 | 45,386,746 (74.26%) | 2,101,363 (3.44%) | |
Whole lung 48 hpi | 5 | 6.7 | 30 | 3.3 | 52,065,573 | 29,282,281 (56.24%) | 10,214,742 (19.62%) |
6 | 6.5 | 20 | 2.4 | 49,791,084 | 32,695,959 (65.67%) | 4,724,302 (9.49%) | |
7 | 6.7 | 27 | 2.6 | 69,861,786 | 41,193,569 (58.96%) | 6,297,704 (9.01%) | |
8 | 6.6 | 33 | 0.66 | 65,972,823 | 39,385,308 (59.7%) | 4,497,619 (6.82%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Israeli, O.; Cohen-Gihon, I.; Aftalion, M.; Gur, D.; Vagima, Y.; Zauberman, A.; Levy, Y.; Zvi, A.; Chitlaru, T.; Mamroud, E.; et al. Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection. Microorganisms 2021, 9, 2166. https://doi.org/10.3390/microorganisms9102166
Israeli O, Cohen-Gihon I, Aftalion M, Gur D, Vagima Y, Zauberman A, Levy Y, Zvi A, Chitlaru T, Mamroud E, et al. Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection. Microorganisms. 2021; 9(10):2166. https://doi.org/10.3390/microorganisms9102166
Chicago/Turabian StyleIsraeli, Ofir, Inbar Cohen-Gihon, Moshe Aftalion, David Gur, Yaron Vagima, Ayelet Zauberman, Yinon Levy, Anat Zvi, Theodor Chitlaru, Emanuelle Mamroud, and et al. 2021. "Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection" Microorganisms 9, no. 10: 2166. https://doi.org/10.3390/microorganisms9102166
APA StyleIsraeli, O., Cohen-Gihon, I., Aftalion, M., Gur, D., Vagima, Y., Zauberman, A., Levy, Y., Zvi, A., Chitlaru, T., Mamroud, E., & Tidhar, A. (2021). Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection. Microorganisms, 9(10), 2166. https://doi.org/10.3390/microorganisms9102166