Ecology of Nontuberculous Mycobacteria
Abstract
:1. Introduction to Nontuberculous Mycobacteria (NTM)
2. Habitats Occupied by NTM
2.1. Soils
2.2. Sediments
2.3. Dusts
2.4. Estuaries
2.5. Surface Waters
2.6. Ground-, Well- and Spring-Water
3. Transmission of NTM from Environmental Habitats
3.1. Aerosolization
3.2. Dust Generation
3.3. Swallowing
3.4. Surface Contact
4. NTM Characteristics Contributing to Environmental Survival
4.1. Hydrophobicity
4.2. Humic and Fulvic Acid Growth Stimulation
4.3. Salt Tolerance
4.4. Desiccation Tolerance
5. Habitat Adaptation by NTM
5.1. Introduction
5.2. Colony Type Variation in M. avium
5.3. Temperature Tolerance in M. avium
6. Geographic Distribution of NTM in the United States
6.1. Distribution of NTM Inferred from Skin-Sensitivity Reactions
6.2. Distribution of NTM Based on Isolation, Enumeration, and Identification of NTM
6.3. NTM Distribution Influenced by Geology—The “Fall Line” of the Eastern, Coastal United States
7. Ecology of NTM in Household and Hospital Plumbing
Indoor Plumbing—An Ideal Habitat for NTM
8. A Concluding Challenge
Funding
Conflicts of Interest
References
- Honda, J.R.; Knight, V.; Chan, E.D. Pathogenesis and Risk Factors for Nontuberculous Mycobacterial Lung Disease. Clin. Chest Med. 2015, 36, 1–11. [Google Scholar] [CrossRef]
- Strollo, S.; Adjemian, J.; Adjemian, M.; Prevots, D.R. The Burden of Pulmonary Nontuberculous Mycobacterial Disease in the United States. Ann. Am. Thorac. Soc. 2015, 12, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O., III; Iseman, M.D.; de Haas, P.; van Soolingen, D. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 2008, 6, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groote, M.A.; Pace, N.R.; Fulton, K.; Falkinham, J.O., III. Relationships between Mycobacterium Isolates from Patients with Pulmonary Mycobacterial Infection and Potting Soils. Appl. Environ. Microbiol. 2006, 72, 7602–7606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescenko, P.; Matlova, L.; Dvorska, L.; Bartos, M.; Vavra, O.; Navratil, S.; Novotny, L.; Pavlik, I. Mycobacterial infection in aquarium fish. Vet. Med. 2012, 48, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Thomson, R.M.; Armstrong, J.G.; Looke, D.F. Gastroesophageal Reflux Disease, Acid Suppression, and Mycobacterium avium Complex Pulmonary Disease. Chest 2007, 131, 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Brooks, R.W.; Parker, B.C.; Gruft, H.; Falkinham, J.O., III. Epidemiology of infection by nontuberculous mycobacteria. V. Numbers in eastern United States soils and correlation with soil characteristics. Am. Rev. Respir. Dis. 1984, 130, 630–633. [Google Scholar] [CrossRef]
- Lahiri, A.; Kneisel, J.; Kloster, I.; Kamal, E.; Lewin, A. Abundance of Mycobacterium avium ssp. hominissuis in soil and dust in Germany—Implications for the infection route. Lett. Appl. Microbiol. 2014, 59, 65–70. [Google Scholar] [CrossRef]
- Thorel, M.F.; Falkinham, J.O., III; Moreau, R.G. Environmental mycobacteria from alpine and subalpine habitats. FEMS Microbiol. Ecol. 2004, 49, 343–347. [Google Scholar] [CrossRef]
- Kazda, J. The Ecology of Mycobacteria; Kluwer: Berlin, Germany, 2000. [Google Scholar]
- Iivanainen, E.K.; Martikainen, P.J.; Räisänen, M.L.; Katila, M.-L. Mycobacteria in boreal forest soils. FEMS Microbiol. Ecol. 1997, 23, 325–332. [Google Scholar] [CrossRef]
- Kirschner, R.A.; Parker, B.C.; Falkinham, J.O., III. Epidemiology of Infection by Nontuberculous Mycobacteria: Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in Acid, Brown-Water Swamps of the Southeastern United States and Their Association with Environmental Variables. Am. Rev. Respir. Dis. 1992, 145, 271–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.; Rhodes, M.; Sturgis, B.; Wood, B. Influence of Environmental Gradients on the Abundance and Distribution of Mycobacterium spp. in a Coastal Lagoon Estuary. Appl. Environ. Microbiol. 2009, 75, 7378–7384. [Google Scholar] [CrossRef] [Green Version]
- Falkinham, J.O., III; Norton, C.D.; LeChevallier, M.W. Factors Influencing Numbers of Mycobacterium avium, Mycobacterium intracellulare, and Other Mycobacteria in Drinking Water Distribution Systems. Appl. Environ. Microbiol. 2001, 67, 1225–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, A.H.; Falkinham, J.O., III. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int. J. Mycobacteriol. 2015, 4, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Torvinen, E.; Torkko, P.; Nevalainen, A.; Rintala, H. Real-time PCR detection of environmental mycobacteria in house dust. J. Microbiol. Meth. 2010, 82, 78–84. [Google Scholar] [CrossRef]
- Alcalde-Vázquez, R.; González-Merchand, J.A.; Medina-Jaritz, N.B.; Olivera-Ramirez, R. Nontuberculous mycobacteria from Mexican archaeological sites. TIP Rev. Espec. Cienc. Quim.-Biol. 2019, 22, 1–9. [Google Scholar] [CrossRef]
- Andersen, A.A. New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 1958, 76, 471–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkinham, J.O., III; Parker, B.C.; Gruft, H. Epidemiology of infection by nontuberculous mycobacteria. I. Geographic distribution in the eastern United States. Am. Rev. Respir. Dis. 1980, 121, 931–937. [Google Scholar] [CrossRef]
- George, K.L.; Parker, B.C.; Gruft, H.; Falkinham, J.O., III. Epidemiology of infection by nontuberculous mycobacteria. II. Growth and survival in natural waters. Am. Rev. Respir. Dis. 1980, 122, 89–94. [Google Scholar] [PubMed]
- Edwards, L.B.; Acquaviva, F.A.; Livesay, V.T.; Cross, F.W.; Palmer, C.E. An atlas of sensitivity to tuberculin, PPD-B, and histoplasmin in the United States. Am. Rev. Respir. Dis. 1969, 99 (Suppl. 1), 132. [Google Scholar]
- Edwards, P.Q. Interpretation and significance of the tuberculin test in typical and atypical mycobacterial infections. In Rational Therapy and Control of Tuberculosis; Johnson, J.E., III, Ed.; University of Florida Press: Gainesville, FL, USA, 1970; pp. 43–55. [Google Scholar]
- Crow, S.A.; Ahearn, D.G.; Cook, W.L.; Bourquin, A.W. Densities of bacteria and fungi in coastal surface films as determined by a membrane-adsorption procedure. Limnol. Oceanogr. 1975, 20, 644–646. [Google Scholar] [CrossRef]
- Wendt, S.L.; George, K.L.; Parker, B.C.; Gruft, H.; Falkinham, J.O., III. Epidemiology of infection by nontuberculous Mycobacteria. III. Isolation of potentially pathogenic mycobacteria from aerosols. Am. Rev. Respir. Dis. 1980, 122, 263. [Google Scholar] [CrossRef]
- Roguet, A.; Therial, C.; Saad, M.; Boudahmane, L.; Moulin, L.; Lucas, F.S. High mycobacterial diversity in recreational lakes. Antonie Leeuwenhoek 2016, 109, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, E. Mycobacterial Lymphadenitis in Children: A Prospective Study of 105 Nontuberculous Cases with Long-Term Follow-Up. Clin. Infect. Dis. 1995, 20, 954–963. [Google Scholar] [CrossRef]
- Smith, R.A.; Alexander, R.B.; Wolman, M.G. Water-Quality Trends in the Nation’s Rivers. Science 1987, 235, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.H.; Falkinham, J.O., III; Norton, C.D.; LeChevallier, M.W. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium. Appl. Environ. Microbiol. 2000, 66, 1702–1705. [Google Scholar] [CrossRef] [Green Version]
- Mullis, S.; Falkinham, J.O., III. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J. Appl. Microbiol. 2013, 115, 908–914. [Google Scholar] [CrossRef]
- Martin, E.C.; Parker, B.C.; Falkinham, J.O., III. Epidemiology of Infection by Nontuberculous Mycobacteria. VII. Absence of mycobacteria in southeastern groundwaters. Am. Rev. Respir. Dis. 1987, 136, 344–348. [Google Scholar] [CrossRef] [Green Version]
- Falkinham, J.O., III. Nontuberculous Mycobacteria from Household Plumbing of Patients with Nontuberculous Mycobacteria Disease. Emerg. Infect. Dis. 2011, 17, 419–424. [Google Scholar] [CrossRef]
- Norton, G.J.; Williams, M.; Falkinham, J.O., III; Honda, J.R. Physical Measures to Reduce Exposure to Tap Water–Associated Nontuberculous Mycobacteria. Front. Public Health 2020, 8, 190. [Google Scholar] [CrossRef]
- Parker, B.C.; Ford, M.A.; Gruft, H.; Falkinham, J.O., III. Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am. Rev. Respir. Dis. 1983, 128, 652–656. [Google Scholar] [CrossRef]
- Muilenberg, M.L.; Burge, H.T.; Sweet, T. Hypersensitivity pneumonitis and exposure to acid-fast bacilli in coolant aerosols. J. Allergy Clin. Immunol. 1998, 91, 311. [Google Scholar]
- Hamilton, L.A.; Iii, J.O.F. Aerosolization of Mycobacterium avium and Mycobacterium abscessus from a household ultrasonic humidifier. J. Med. Microbiol. 2018, 67, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Mangione, E.J.; Huitt, G.; Lenaway DBeebe, J.; Bailey, A.; Figoski, M.; Rau, M.P.; Albrecht, K.D.; Yakrus, M.A. Nontuberculous mycobacterial disease following hot tub exposure. Emerg. Infect. Dis. 2001, 7, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Sax, H.; Bloemberg, G.; Hasse, B.; Sommerstein, R.; Kohler, P.; Achermann, Y.; Rössle, M.; Falk, V.; Kuster, S.; Böttger, E.C.; et al. Prolonged Outbreak of Mycobacterium chimaera Infection After Open-Chest Heart Surgery. Clin. Infect. Dis. 2015, 61, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, D.C.; Syzdek, L. Mechanism for the Water-to-Air Transfer and Concentration of Bacteria. Science 1970, 170, 626–628. [Google Scholar] [CrossRef]
- Rintala, H.; Pitkäranta, M.; Täubel, M. Microbial Communities Associated with House Dust. Adv. Appl. Microbiol. 2012, 78, 75–120. [Google Scholar] [CrossRef]
- Hashish, E.; Merwad, A.-R.; Elgaml, S.; Amer, A.; Kamal, H.; Elsadek, A.; Marei, A.; Sitohy, M. Mycobacterium marinum infection in fish and man: Epidemiology, pathophysiology and management; a review. Vet. Q. 2018, 38, 35–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [Google Scholar] [CrossRef]
- Steed, K.A.; Falkinham, J.O., III. Effect of Growth in Biofilms on Chlorine Susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 2006, 72, 4007–4011. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, R.A.; Parker, B.C.; Falkinham, J.O., III. Humic and fulvic acids stimulate the growth of Mycobacterium avium. FEMS Microbiol. Ecol. 1999, 30, 327–332. [Google Scholar] [CrossRef]
- Hasan, N.A.; Epperson, L.E.; Lawsin, A.; Rodger, R.R.; Perkins, K.M.; Halpin, A.L.; Perry, K.A.; Moulton-Meissner, H.; Diekema, D.; Crist, M.B.; et al. Genomic Analysis of Cardiac Surgery–Associated Mycobacterium chimaera Infections, United States. Emerg. Infect. Dis. 2019, 25, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Haller, S.; Höller, C.; Jacobshagen, A.; Hamouda, O.; Abu Sin, M.; Monnet, D.L.; Plachouras, D.; Eckmanns, T. Contamination during production of heater-cooler units by Mycobacterium chimaera potential cause for invasive cardiovascular infections: Results of an outbreak investigation in Germany, April 2015 to February 2016. Eurosurveillance 2016, 21, 30215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, C. Spontaneous and Induced Mutation in Mycobacterium avium. Infect. Immun. 1970, 2, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Lande, L.; Alexander, D.C.; Wallace, R.J.; Kwait, R.; Iakhiaeva, E.; Williams, M.; Cameron, A.D.; Olshefsky, S.; Devon, R.; Vasireddy, R.; et al. Mycobacterium avium in Community and Household Water, Suburban Philadelphia, Pennsylvania, USA, 2010–2012. Emerg. Infect. Dis. 2019, 25, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenette, S.; Williams, M.D.; Falkinham, J.O., III. Growth Temperature, Trehalose, and Susceptibility to Heat in Mycobacterium avium. Pathogens 2020, 9, 657. [Google Scholar] [CrossRef]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank, D.N.; Harris, J.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 2009, 106, 16393–16399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkinham, J.O., III. Ecology of Nontuberculous Mycobacteria. Microorganisms 2021, 9, 2262. https://doi.org/10.3390/microorganisms9112262
Falkinham JO III. Ecology of Nontuberculous Mycobacteria. Microorganisms. 2021; 9(11):2262. https://doi.org/10.3390/microorganisms9112262
Chicago/Turabian StyleFalkinham, Joseph O., III. 2021. "Ecology of Nontuberculous Mycobacteria" Microorganisms 9, no. 11: 2262. https://doi.org/10.3390/microorganisms9112262
APA StyleFalkinham, J. O., III. (2021). Ecology of Nontuberculous Mycobacteria. Microorganisms, 9(11), 2262. https://doi.org/10.3390/microorganisms9112262