Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia
Abstract
:1. Introduction
2. Impact of T2D on Latent TB Infection and Active TB Disease
2.1. T2D Increases the Risk of Latent TB Infection
2.2. T2D Increases the Risk of Active TB
2.3. T2D Increases the Risk of Multidrug-Resistant TB
3. T2D Increases TB Disease Severity and the Risk of Adverse TB Treatment Outcomes
4. Contribution of Hyperglycemia to TB Disease Severity and Adverse TB Treatment Outcomes
4.1. T2D-Related Chronic Hyperglycemia
4.2. Transient TB-Induced Hyperglycemia
5. Hyperinsulinemia and TB Disease Severity
6. Dyslipidemia and TB Disease Severity: Cholesterol vs. Triglycerides
7. Impact of T2D Treatment on TB Outcomes
7.1. Metformin
7.2. Statins
7.3. Aspirin
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, A.; Mathiasen, V.D.; Schön, T.; Wejse, C. The global prevalence of latent tuberculosis: A systematic review and meta-analysis. Eur. Respir. J. 2019, 54, 1900655. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Federation, I.D. IDF Diabetes Atlas. Available online: https://www.diabetesatlas.org (accessed on 22 September 2021).
- McMurry, H.S.; Mendenhall, E.; Rajendrakumar, A.; Nambiar, L.; Satyanarayana, S.; Shivashankar, R. Coprevalence of type 2 diabetes mellitus and tuberculosis in low-income and middle-income countries: A systematic review. Diabetes Metab. Res. Rev. 2019, 35, e3066. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The Impact of the COVID-19 Pandemic on Noncommunicable Disease Resources and Services: Results of a Rapid Assessment; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Glaziou, P. Predicted impact of the COVID-19 pandemic on global tuberculosis deaths in 2020. medRxiv 2020. [Google Scholar] [CrossRef]
- Restrepo, B.I.; Kleynhans, L.; Salinas, A.B.; Abdelbary, B.; Tshivhula, H.; Aguillon-Duran, G.P.; Kunsevi-Kilola, C.; Salinas, G.; Stanley, K.; Malherbe, S.T.; et al. Diabetes screen during tuberculosis contact investigations highlights opportunity for new diabetes diagnosis and reveals metabolic differences between ethnic groups. Tuberculosis 2018, 113, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hensel, R.L.; Kempker, R.R.; Tapia, J.; Oladele, A.; Blumberg, H.M.; Magee, M.J. Increased risk of latent tuberculous infection among persons with pre-diabetes and diabetes mellitus. Int. J. Tuberc. Lung Dis. 2016, 20, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.-H.; Fu, H.; Lee, M.-R.; Magee, M.; Lin, H.-H. Tuberculosis and diabetes in low and moderate tuberculosis incidence countries. Int. J. Tuberc. Lung Dis. 2018, 22, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Barron, M.M.; Shaw, K.M.; Bullard, K.M.; Ali, M.K.; Magee, M.J. Diabetes is associated with increased prevalence of latent tuberculosis infection: Findings from the National Health and Nutrition Examination Survey, 2011–2012. Diabetes Res. Clin. Pract. 2018, 139, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Salindri, A.D.; Haw, J.S.; Amere, G.A.; Alese, J.T.; Umpierrez, G.E.; Magee, M.J. Latent tuberculosis infection among patients with and without type-2 diabetes mellitus: Results from a hospital case-control study in Atlanta. BMC Res. Notes 2021, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Critchley, J.A.; Restrepo, B.I.; Ronacher, K.; Kapur, A.; Bremer, A.A.; Schlesinger, L.S.; Basaraba, R.; Kornfeld, H.; van Crevel, R. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 1: Epidemiology and Clinical Management. Chest 2017, 152, 165–173. [Google Scholar] [CrossRef]
- Restrepo, B.I. Diabetes and Tuberculosis. Microbiol. Spectr. 2016, 4, 28084206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Workneh, M.H.; Bjune, G.A.; Yimer, S.A. Prevalence and associated factors of tuberculosis and diabetes mellitus comorbidity: A systematic review. PLoS ONE 2017, 12, e0175925. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifai, R.H.; Pearson, F.; Critchley, J.A.; Abu-Raddad, L.J. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0187967. [Google Scholar] [CrossRef] [Green Version]
- Olomi, W.; Biraro, I.A.; Kilonzo, K.; Te Brake, L.; Kibirige, D.; Chamba, N.; Ntinginya, N.E.; Sabi, I.; Critchley, J.; Sharples, K.; et al. Tuberculosis preventive therapy for people with diabetes mellitus. Clin. Infect. Dis. 2021, ciab755. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.L.; Huang, W.C.; Lin, K.D.; Liu, S.S.; Lee, M.R.; Cheng, M.H.; Chin, C.S.; Lu, P.L.; Sheu, C.C.; Wang, J.Y.; et al. Completion Rate and Safety of Programmatic Screening and Treatment for Latent Tuberculosis Infection in Elderly Patients With Poorly Controlled Diabetic Mellitus: A Prospective Multicenter Study. Clin. Infect. Dis. 2021, 73, e1252–e1260. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, B.S.; Mengesha, M.M.; Teferra, A.A.; Awoke, M.A.; Habtewold, T.D. Association between diabetes mellitus and multi-drug-resistant tuberculosis: Evidence from a systematic review and meta-analysis. Syst. Rev. 2018, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huangfu, P.; Ugarte-Gil, C.; Golub, J.; Pearson, F.; Critchley, J. The effects of diabetes on tuberculosis treatment outcomes: An updated systematic review and meta-analysis. Int. J. Tuberc. Lung Dis. 2019, 23, 783–796. [Google Scholar] [CrossRef]
- Ruesen, C.; Chaidir, L.; Ugarte-Gil, C.; Van Ingen, J.; Critchley, J.; Hill, P.C.; Ruslami, R.; Santoso, P.; Huynen, M.A.; Dockrell, H.M.; et al. Diabetes is associated with genotypically drug-resistant tuberculosis. Eur. Respir. J. 2019, 55, 1901891. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.K.H.; Chandrasekaran, V.; Kannan, T.; Murali, A.L.; Lavanya, J.; Sudha, V.; Swaminathan, S.; Ramachandran, G. Anti-tuberculosis drug concentrations in tuberculosis patients with and without diabetes mellitus. Eur. J. Clin. Pharmacol. 2016, 73, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Alfarisi, O.; Mave, V.; Gaikwad, S.; Sahasrabudhe, T.; Ramachandran, G.; Kumar, H.; Gupte, N.; Kulkarni, V.; Deshmukh, S.; Atre, S.; et al. Effect of Diabetes Mellitus on the Pharmacokinetics and Pharmacodynamics of Tuberculosis Treatment. Antimicrob. Agents Chemother. 2018, 62, e01383-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, M.J.; Kempker, R.R.; Kipiani, M.; Gandhi, N.R.; Darchia, L.; Tukvadze, N.; Howards, P.P.; Narayan, K.V.; Blumberg, H.M. Diabetes mellitus is associated with cavities, smear grade, and multidrug-resistant tuberculosis in Georgia. Int. J. Tuberc. Lung Dis. 2015, 19, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Arriaga, M.B.; Rocha, M.S.; Nogueira, B.M.F.; Nascimento, V.; Araújo-Pereira, M.; Souza, A.B.; Andrade, A.M.S.; Costa, A.G.; Gomes-Silva, A.; Silva, E.C.; et al. The Effect of Diabetes and Prediabetes on Mycobacterium tuberculosis Transmission to Close Contacts. J. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.Y.; Lee, J.J.; Chien, S.T.; Enarson, D.A.; Chang, Y.C.; Chen, Y.T.; Hu, T.Y.; Lin, C.B.; Suk, C.W.; Tao, J.M.; et al. Glycemic control and radiographic manifestations of tuberculosis in diabetic patients. PLoS ONE 2014, 9, e93397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sane Schepisi, M.; Navarra, A.; Altet Gomez, M.N.; Dudnyk, A.; Dyrhol-Riise, A.M.; Esteban, J.; Giorgetti, P.F.; Gualano, G.; Guglielmetti, L.; Heyckendorf, J.; et al. Burden and Characteristics of the Comorbidity Tuberculosis-Diabetes in Europe: TBnet Prevalence Survey and Case-Control Study. Open Forum Infect. Dis. 2019, 6, ofy337. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, I.J.; Kim, J.H. CT findings of pulmonary tuberculosis and tuberculous pleurisy in diabetes mellitus patients. Diagn. Interv. Radiol. 2017, 23, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.K.; Wang, H.H.; Lai, Y.C.; Chang, S.C. The impact of glycemic status on radiological manifestations of pulmonary tuberculosis in diabetic patients. PLoS ONE 2017, 12, e0179750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dousa, K.M.; Hamad, A.; Albirair, M.; Al Soub, H.; Elzouki, A.N.; Alwakeel, M.I.; Thiel, B.A.; Johnson, J.L. Impact of Diabetes Mellitus on the Presentation and Response to Treatment of Adults With Pulmonary Tuberculosis in Qatar. Open Forum Infect. Dis. 2019, 6, ofy335. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Harries, A.D.; Jeon, C.Y.; Hart, J.E.; Kapur, A.; Lonnroth, K.; Ottmani, S.E.; Goonesekera, S.D.; Murray, M.B. The impact of diabetes on tuberculosis treatment outcomes: A systematic review. BMC Med. 2011, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Mave, V.; Gaikwad, S.; Barthwal, M.; Chandanwale, A.; Lokhande, R.; Kadam, D.; Dharmshale, S.; Bharadwaj, R.; Kagal, A.; Pradhan, N.; et al. Diabetes Mellitus and Tuberculosis Treatment Outcomes in Pune, India. Open Forum Infect. Dis. 2021, 8, ofab097. [Google Scholar] [CrossRef]
- Arriaga, M.B.; Araujo-Pereira, M.; Barreto-Duarte, B.; Nogueira, B.; Freire, M.; Queiroz, A.T.L.; Rodrigues, M.M.S.; Rocha, M.S.; Souza, A.B.; Spener-Gomes, R.; et al. The Effect of Diabetes and Prediabetes on Anti-tuberculosis Treatment Outcomes: A Multi-center Prospective Cohort Study. J. Infect. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, H.; Sahukar, S.B.; Procter-Gray, E.; Kumar, N.P.; West, K.; Kane, K.; Natarajan, M.; Li, W.; Babu, S.; Viswanathan, V. Impact of Diabetes and Low Body Mass Index on Tuberculosis Treatment Outcomes. Clin. Infect. Dis. 2020, 71, e392–e398. [Google Scholar] [CrossRef] [PubMed]
- Araneta, M.R.G.; Kanaya, A.M.; Hsu, W.C.; Chang, H.K.; Grandinetti, A.; Boyko, E.J.; Hayashi, T.; Kahn, S.E.; Leonetti, D.L.; McNeely, M.J.; et al. Optimum BMI Cut Points to Screen Asian Americans for Type 2 Diabetes. Diabetes Care 2015, 38, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, R.W.; Sarkar, S.; Horsburgh, C.R.; Roy, G.; Kratz, M.; Reshma, A.; Knudsen, S.; Salgame, P.; Ellner, J.J.; Drain, P.K.; et al. Interaction of nutritional status and diabetes on active and latent tuberculosis: A cross-sectional analysis. BMC Infect. Dis. 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lönnroth, K.; Williams, B.; Cegielski, P.; Dye, C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int. J. Epidemiol. 2009, 39, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Aibana, O.; Acharya, X.; Huang, C.C.; Becerra, M.C.; Galea, J.T.; Chiang, S.S.; Contreras, C.; Calderon, R.; Yataco, R.; Velasquez, G.E.; et al. Nutritional Status and Tuberculosis Risk in Adult and Pediatric Household Contacts. PLoS ONE 2016, 11, e0166333. [Google Scholar]
- Lin, H.-H.; Wu, C.-Y.; Wang, C.-H.; Fu, H.; Lönnroth, K.; Chang, Y.-C.; Huang, Y.-T. Association of Obesity, Diabetes, and Risk of Tuberculosis: Two Population-Based Cohorts. Clin. Infect. Dis. 2017, 66, 699–705. [Google Scholar] [CrossRef]
- Sinha, R.; Ngo, M.D.; Bartlett, S.; Bielefeldt-Ohmann, H.; Keshvari, S.; Hasnain, S.Z.; Donovan, M.L.; Kling, J.C.; Blumenthal, A.; Chen, C.; et al. Pre-Diabetes Increases Tuberculosis Disease Severity, While High Body Fat Without Impaired Glucose Tolerance Is Protective. Front. Cell. Infect. Microbiol. 2021, 11, 691823. [Google Scholar] [CrossRef]
- Skyler, J.S.; Bakris, G.L.; Bonifacio, E.; Darsow, T.; Eckel, R.H.; Groop, L.; Groop, P.-H.; Handelsman, Y.; Insel, R.A.; Mathieu, C.; et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2016, 66, 241–255. [Google Scholar] [CrossRef] [Green Version]
- CCritchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic Control and Risk of Infections Among People With Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care 2018, 41, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.Y.; Bai, K.J.; Lin, H.H.; Chien, S.T.; Lee, J.J.; Enarson, D.A.; Lee, T.-I.; Yu, M.-C. The Influence of Diabetes, Glycemic Control, and Diabetes-Related Comorbidities on Pulmonary Tuberculosis. PLoS ONE 2015, 10, e0121698. [Google Scholar] [CrossRef] [PubMed]
- Salindri, A.D.; Kipiani, M.; Kempker, R.R.; Gandhi, N.R.; Darchia, L.; Tukvadze, N.; Blumberg, H.M.; Magee, M.J. Diabetes Reduces the Rate of Sputum Culture Conversion in Patients With Newly Diagnosed Multidrug-Resistant Tuberculosis. Open Forum Infect. Dis. 2016, 3, ofw126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flood, D.; A Seiglie, J.; Dunn, M.; Tschida, S.; Theilmann, M.; E Marcus, M.; Brian, G.; Norov, B.; Mayige, M.T.; Gurung, M.S.; et al. The state of diabetes treatment coverage in 55 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data in 680 102 adults. Lancet Heal. Longev. 2021, 2, e340–e351. [Google Scholar] [CrossRef]
- Ayala, T.S.; Tessaro, F.H.G.; Jannuzzi, G.P.; Bella, L.M.; Ferreira, K.S.; Martins, J.O. High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Sci. Rep. 2019, 9, 11447. [Google Scholar] [CrossRef] [PubMed]
- Martens, G.W.; Arikan, M.C.; Lee, J.; Ren, F.; Greiner, D.; Kornfeld, H. Tuberculosis Susceptibility of Diabetic Mice. Am. J. Respir. Cell Mol. Biol. 2007, 37, 518–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheekatla, S.S.; Tripathi, D.; Venkatasubramanian, S.; Nathella, P.K.; Paidipally, P.; Ishibashi, M.; Welch, E.; Tvinnereim, A.R.; Ikebe, M.; Valluri, V.L.; et al. NK-CD11c+ Cell Crosstalk in Diabetes Enhances IL-6-Mediated Inflammation during Mycobacterium tuberculosis Infection. PLoS Pathog. 2016, 12, e1005972. [Google Scholar] [CrossRef] [PubMed]
- Eckold, C.; Kumar, V.; Weiner, J.; Alisjahbana, B.; Riza, A.L.; Ronacher, K.; Coronel, J.; Kerry-Barnard, S.; Malherbe, S.T.; Kleynhans, L.; et al. Impact of Intermediate Hyperglycemia and Diabetes on Immune Dysfunction in Tuberculosis. Clin. Infect. Dis. 2021, 72, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Ronacher, K.; van Crevel, R.; Critchley, J.A.; Bremer, A.A.; Schlesinger, L.S.; Kapur, A.; Basaraba, R.; Kornfeld, H.; Restrepo, B.I. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 2: Underlying Biologic Mechanisms. Chest 2017, 152, 174–180. [Google Scholar] [CrossRef]
- Martinez, N.; Ketheesan, N.; West, K.; Vallerskog, T.; Kornfeld, H. Impaired Recognition of Mycobacterium tuberculosis by Alveolar Macrophages From Diabetic Mice. J. Infect. Dis. 2016, 214, 1629–1637. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lopez, N.; Martinez, A.G.R.; Garcia-Hernandez, M.H.; Hernandez-Pando, R.; Castaneda-Delgado, J.E.; Lugo-Villarino, G.; Cougoule, C.; Neyrolles, O.; Rivas-Santiago, B.; Valtierra-Alvarado, M.A.; et al. Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Memórias Inst. Oswaldo Cruz 2018, 113, e170326. [Google Scholar] [CrossRef]
- Alim, M.A.; Kupz, A.; Sikder, S.; Rush, C.; Govan, B.; Ketheesan, N. Increased susceptibility to Mycobacterium tuberculosis infection in a diet-induced murine model of type 2 diabetes. Microbes Infect. 2020, 22, 303–311. [Google Scholar] [CrossRef]
- Restrepo, B.I.; Khan, A.; Singh, V.K.; De-Leon, E.; Aguillón-Durán, G.P.; Ledezma-Campos, E.; Canaday, D.H.; Jagannath, C. Human monocyte-derived macrophage responses to M. tuberculosis differ by the host’s tuberculosis, diabetes or obesity status, and are enhanced by rapamycin. Tuberculosis 2020, 126, 102047. [Google Scholar] [CrossRef]
- Valtierra-Alvarado, M.A.; Castaneda Delgado, J.E.; Ramirez-Talavera, S.I.; Lugo-Villarino, G.; Duenas-Arteaga, F.; Lugo-Sanchez, A.; Adame-Villalpando, M.S.; Rivas-Santiago, B.; Enciso-Moreno, J.; Serrano, C.J. Type 2 diabetes mellitus metabolic control correlates with the phenotype of human monocytes and monocyte-derived macrophages. J. Diabetes Complicat. 2020, 34, 107708. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, B.I.; Twahirwa, M.; Jagannath, C. Hyperglycemia and dyslipidemia: Reduced HLA-DR expression in monocyte subpopulations from diabetes patients. Hum. Immunol. 2021, 82, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Magee, M.J.; Salindri, A.D.; Kyaw, N.T.T.; Auld, S.C.; Haw, J.S.; Umpierrez, G.E. Stress Hyperglycemia in Patients with Tuberculosis Disease: Epidemiology and Clinical Implications. Curr. Diab. Rep. 2018, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Gil, C.; Alisjahbana, B.; Ronacher, K.; Riza, A.L.; Koesoemadinata, R.C.; Malherbe, S.T.; Cioboata, R.; Llontop, J.C.; Kleynhans, L.; Lopez, S.; et al. Diabetes Mellitus Among Pulmonary Tuberculosis Patients From 4 Tuberculosis-endemic Countries: The TANDEM Study. Clin. Infect. Dis. 2020, 70, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Kubjane, M.; Berkowitz, N.; Goliath, R.; Levitt, N.S.; Wilkinson, R.J.; Oni, T. Tuberculosis, Human Immunodeficiency Virus, and the Association With Transient Hyperglycemia in Periurban South Africa. Clin. Infect. Dis. 2020, 71, 1080–1088. [Google Scholar] [CrossRef]
- Menon, S.; Rossi, R.; Dusabimana, A.; Zdraveska, N.; Bhattacharyya, S.; Francis, J. The epidemiology of tuberculosis-associated hyperglycemia in individuals newly screened for type 2 diabetes mellitus: Systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 937. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.; Marchesini, G.; Benazzi, B.; Morelli, A.; Montesi, D.; Bini, C.; Rizzo, S.G. Stress Hyperglycemia and Mortality in Subjects With Diabetes and Sepsis. Crit. Care Explor. 2020, 2, e0152. [Google Scholar] [CrossRef]
- Pearson, F.; Huangfu, P.; McNally, R.; Pearce, M.; Unwin, N.; Critchley, J. Tuberculosis and diabetes: Bidirectional association in a UK primary care data set. J. Epidemiol. Community Health 2018, 73, 142–147. [Google Scholar] [CrossRef]
- Cadena, J.; Rathinavelu, S.; Lopez-Alvarenga, J.C.; Restrepo, B.I. The re-emerging association between tuberculosis and diabetes: Lessons from past centuries. Tuberculosis 2019, 116, S89–S97. [Google Scholar] [CrossRef]
- Yang, W.; Wang, H.; Mao, J.; Chen, Z.; Xu, J.; Wang, L.; Xu, M.; Zhang, X. The correlation between CT features and insulin resistance levels in patients with T2DM complicated with primary pulmonary tuberculosis. J. Cell. Physiol. 2020, 235, 9370–9377. [Google Scholar] [CrossRef]
- Sinha, P.; Davis, J.; Saag, L.; Wanke, C.; Salgame, P.; Mesick, J.; Horsburgh, C.; Hochberg, N.S. Undernutrition and Tuberculosis: Public Health Implications. J. Infect. Dis. 2018, 219, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Van Niekerk, G.; Christowitz, C.; Conradie, D.; Engelbrecht, A.-M. Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev. 2019, 52, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.P.; Chakraborty, M.; Dasgupta, S. Primary Mycobacterium tuberculosis infection over insulin injection site. BMJ Case Rep. 2016, 2016, bcr2016218054. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.S.; Han, K.; Kim, D.; Yoo, J.E.; Kim, Y.; Yang, B.; Choi, H.; Sohn, J.W.; Shin, D.W.; Lee, H. Relationship between total cholesterol level and tuberculosis risk in a nationwide longitudinal cohort. Sci. Rep. 2021, 11, 16254. [Google Scholar] [CrossRef] [PubMed]
- Deniz, O.; Gumus, S.; Yaman, H.; Ciftci, F.; Ors, F.; Cakir, E.; Tozkoparan, E.; Bilgic, H.; Ekiz, K. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin. Biochem. 2007, 40, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Shi, J.; Dorhoi, A.; Zhang, J.; Soodeen-Lalloo, A.K.; Tan, W.; Yin, H.; Sha, W.; Li, W.; Zheng, R.; et al. Hemostasis and Lipoprotein Indices Signify Exacerbated Lung Injury in TB With Diabetes Comorbidity. Chest 2017, 153, 1187–1200. [Google Scholar] [CrossRef]
- Chidambaram, V.; Zhou, L.; Ruelas Castillo, J.; Kumar, A.; Ayeh, S.K.; Gupte, A.; Wang, J.Y.; Karakousis, P.C. Higher Serum Cholesterol Levels Are Associated With Reduced Systemic Inflammation and Mortality During Tuberculosis Treatment Independent of Body Mass Index. Front. Cardiovasc. Med. 2021, 8, 696517. [Google Scholar] [CrossRef] [PubMed]
- Shivakoti, R.; Newman, J.W.; Hanna, L.E.; Queiroz, A.T.L.; Borkowski, K.; Gupte, A.N.; Paradkar, M.; Satyamurthi, P.; Kulkarni, V.; Selva, M.; et al. Host Lipidome and Tuberculosis Treatment Failure. Eur. Respir. J. 2021, 58, 2004532. [Google Scholar] [CrossRef] [PubMed]
- Gatfield, J.; Pieters, J. Essential Role for Cholesterol in Entry of Mycobacteria into Macrophages. Science 2000, 288, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, S.; Gemiarto, A.T.; Ngo, M.D.; Sajiir, H.; Hailu, S.; Sinha, R.; Foo, C.X.; Kleynhans, L.; Tshivhula, H.; Webber, T.; et al. GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Front. Immunol. 2020, 11, 601534. [Google Scholar] [CrossRef]
- Hughes, D.A.; Townsend, P.J.; Haslam, P.L. Enhancement of the antigen-presenting function of monocytes by cholesterol: Possible relevance to inflammatory mechanisms in extrinsic allergic alveolitis and atherosclerosis. Clin. Exp. Immunol. 1992, 87, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guzmán, C.; Vargas, M.H.; Quiñonez, F.; Bazavilvazo, N.; Aguilar, A. A Cholesterol-Rich Diet Accelerates Bacteriologic Sterilization in Pulmonary Tuberculosis. Chest 2005, 127, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soh, A.Z.; Chee, C.B.; Wang, Y.-T.; Yuan, J.-M.; Koh, W.-P. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J. Nutr. 2016, 146, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Martens, G.W.; Arikan, M.C.; Lee, J.; Ren, F.; Vallerskog, T.; Kornfeld, H. Hypercholesterolemia Impairs Immunity to Tuberculosis. Infect. Immun. 2008, 76, 3464–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, M.J.; Salindri, A.; Kornfeld, H.; Singhal, A. Reduced prevalence of latent tuberculosis infection in diabetes patients using metformin and statins. Eur. Respir. J. 2018, 53, 1801695. [Google Scholar] [CrossRef]
- Lee, M.-C.; Lee, C.-H.; Lee, M.-R.; Wang, J.-Y.; Chen, S.-M. Impact of metformin use among tuberculosis close contacts with diabetes mellitus in a nationwide cohort study. BMC Infect. Dis. 2019, 19, 936. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Lee, C.; Li, Y.; Lin, S. Metformin as a potential protective therapy against tuberculosis in patients with diabetes mellitus: A retrospective cohort study in a single teaching hospital. J. Diabetes Investig. 2021, 12, 1603–1609. [Google Scholar] [CrossRef]
- Heo, E.; Kim, E.; Jang, E.J.; Lee, C.-H. The cumulative dose-dependent effects of metformin on the development of tuberculosis in patients newly diagnosed with type 2 diabetes mellitus. BMC Pulm. Med. 2021, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- SSinghal, A.; Jie, L.; Kumar, P.; Hong, G.S.; Leow, M.K.-S.; Paleja, B.; Tsenova, L.; Kurepina, N.; Chen, J.; Zolezzi, F.; et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 2014, 6, 263ra159. [Google Scholar] [CrossRef] [PubMed]
- Degner, N.R.; Wang, J.-Y.; E Golub, J.; Karakousis, P.C. Metformin Use Reverses the Increased Mortality Associated With Diabetes Mellitus During Tuberculosis Treatment. Clin. Infect. Dis. 2017, 66, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell. Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Lachmandas, E.; Eckold, C.; Bohme, J.; Koeken, V.; Marzuki, M.B.; Blok, B.; Arts, R.J.W.; Chen, J.; Teng, K.W.W.; Ratter, J.; et al. Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects. J. Infect. Dis. 2019, 220, 139–150. [Google Scholar] [CrossRef]
- Böhme, J.; Martinez, N.; Li, S.; Lee, A.; Marzuki, M.; Tizazu, A.M.; Ackart, D.; Frenkel, J.H.; Todd, A.; Lachmandas, E.; et al. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat. Commun. 2020, 11, 5225. [Google Scholar] [CrossRef] [PubMed]
- Sathkumara, H.D.; Hansen, K.; Miranda-Hernandez, S.; Govan, B.; Rush, C.M.; Henning, L.; Ketheesan, N.; Kupz, A. Disparate Effects of Metformin on Mycobacterium tuberculosis Infection in Diabetic and Nondiabetic Mice. Antimicrob. Agents Chemother. 2020, 65, e01422-20. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.K.; Pinn, M.L.; Karakousis, P.C. Metformin Adjunctive Therapy Does Not Improve the Sterilizing Activity of the First-Line Antitubercular Regimen in Mice. Antimicrob. Agents Chemother. 2017, 61, e00652-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, S.P.; Guler, R.; Lang, D.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Simvastatin Enhances Protection against Listeria monocytogenes Infection in Mice by Counteracting Listeria-Induced Phagosomal Escape. PLoS ONE 2013, 8, e75490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, S.P.; Hartley, M.-A.; Hurdayal, R.; Guler, R.; Brombacher, F. Topical Simvastatin as Host-Directed Therapy against Severity of Cutaneous Leishmaniasis in Mice. Sci. Rep. 2016, 6, 33458. [Google Scholar] [CrossRef] [PubMed]
- Uthman, O.A.; Nduka, C.; Watson, S.I.; Mills, E.J.; Kengne, A.P.; Jaffar, S.S.; Clarke, A.; Moradi, T.; Ekström, A.-M.; Lilford, R. Statin use and all-cause mortality in people living with HIV: A systematic review and meta-analysis. BMC Infect. Dis. 2018, 18, 258. [Google Scholar] [CrossRef]
- Duan, H.; Liu, T.; Zhang, X.; Yu, A.; Cao, Y. Statin use and risk of tuberculosis: A systemic review of observational studies. Int. J. Infect. Dis. 2020, 93, 168–174. [Google Scholar] [CrossRef]
- Pan, S.; Yen, Y.; Feng, J.; Chuang, P.; Su, V.Y.; Kou, Y.R.; Su, W.; Chan, Y. Opposite effects of statins on the risk of tuberculosis and herpes zoster in patients with diabetes: A population-based cohort study. Br. J. Clin. Pharmacol. 2019, 86, 569–579. [Google Scholar] [CrossRef]
- Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin Therapy Reduces the mycobacterium tuberculosis Burden in Human Macrophages and in Mice by Enhancing Autophagy and Phagosome Maturation. J. Infect. Dis. 2013, 209, 754–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skerry, C.; Pinn, M.L.; Bruiners, N.; Pine, R.; Gennaro, M.L.; Karakousis, P.C. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother. 2014, 69, 2453–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.A.; Choi, N.-K.; Seong, J.-M.; Heo, E.Y.; Koo, B.K.; Hwang, S.-S.; Park, B.-J.; Yim, J.-J.; Lee, C.-H. The effects of statin use on the development of tuberculosis among patients with diabetes mellitus. Int. J. Tuberc. Lung Dis. 2014, 18, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Huaman, M.A.; Kryscio, R.J.; Fichtenbaum, C.J.; Henson, D.; Salt, E.; Sterling, T.R.; Garvy, B.A. Tuberculosis and risk of acute myocardial infarction: A propensity score-matched analysis. Epidemiol. Infect. 2017, 145, 1363–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheu, J.J.; Chiou, H.Y.; Kang, J.H.; Chen, Y.H.; Lin, H.C. Tuberculosis and the risk of ischemic stroke: A 3-year follow-up study. Stroke 2010, 41, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Salindri, A.D.; Wang, J.-Y.; Lin, H.-H.; Magee, M.J. Post-tuberculosis incidence of diabetes, myocardial infarction, and stroke: Retrospective cohort analysis of patients formerly treated for tuberculosis in Taiwan, 2002–2013. Int. J. Infect. Dis. 2019, 84, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Kroesen, V.M.; Rodríguez-Martínez, P.; García, E.; Rosales, Y.; Díaz, J.; Martín-Céspedes, M.; Tapia, G.; Sarrias, M.R.; Cardona, P.-J.; Vilaplana, C. A Beneficial Effect of Low-Dose Aspirin in a Murine Model of Active Tuberculosis. Front. Immunol. 2018, 9, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Crevel, R.; Critchley, J.A. The Interaction of Diabetes and Tuberculosis: Translating Research to Policy and Practice. Trop. Med. Infect. Dis. 2021, 6, 8. [Google Scholar] [CrossRef]
- Marzo, E.; Vilaplana, C.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P.J. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis. Tuberculosis 2014, 94, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-R.; Lee, M.-C.; Chang, C.-H.; Liu, C.-J.; Chang, L.-Y.; Zhang, J.-F.; Wang, J.-Y.; Lee, C.-H. Use of Antiplatelet Agents and Survival of Tuberculosis Patients: A Population-Based Cohort Study. J. Clin. Med. 2019, 8, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Du, Z.; Ni, M.; Wang, Z.; Liang, M.; Sheng, H.; Zhang, A.; Yang, J. Aspirin enhances the clinical efficacy of anti-tuberculosis therapy in pulmonary tuberculosis in patients with type 2 diabetes mellitus. Infect. Dis. 2020, 52, 721–729. [Google Scholar] [CrossRef] [PubMed]
Host | Hyperglycemia | Impact on TB Susceptibility | Refs. |
---|---|---|---|
Human | T2D patient with high HbA1c (≥9%) | Elevated risk of infection and hospitalisation, increased mortality, lower rate of sputum culture conversion | [29,41,42] |
T2D patients with controlled HbA1c (≤8%) | Reduced risk of hospitalisation, faster sputum culture conversion time | [41,43] | |
MDMs from obese humans | Higher antigen-presenting capacity to stimulate T cells | [53] | |
Monocytes, MDMs from T2D patients | Compromised capacity for killing intracellular Mtb, lower expression of HLA-DR and CD68, HLA-DR expression correlated negatively with HbA1c, VLDL-C and triglyceride concentrations, but HLA-DR and CD68 correlated positively with HDL-C | [53,54,55] | |
Mouse | Chronic hyperglycemia (≥12 weeks); STZ model | Higher bacterial burden and higher inflammation in the lungs compared to acute hyperglycemia (STZ treatment for 4–9 weeks) | [46,47] |
Pre-diabetes (≤8% HbA1c); impaired glucose tolerance; HFD model | Trend towards higher Mtb burden in animals with impaired glucose tolerance, significantly higher lung pathology scores and impaired cytokine responses | [39] | |
Host | Dyslipidemia | Impact on TB susceptibility | Refs. |
Human | Low TC | Associated with an increased risk of TB disease | [67] |
Low TC, HDL-C, LDL-C | Associated with more extensive lung lesions on chest radiographs/CT scans, higher degree of smear positivity | [68,69] | |
High TC, HDL-C, LDL-C | Associated with lower all-cause and infection-related mortality, reduced levels of inflammation markers | [70] | |
Mouse | High TC | Associated with delayed expression of adaptive immunity | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, M.D.; Bartlett, S.; Ronacher, K. Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia. Microorganisms 2021, 9, 2282. https://doi.org/10.3390/microorganisms9112282
Ngo MD, Bartlett S, Ronacher K. Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia. Microorganisms. 2021; 9(11):2282. https://doi.org/10.3390/microorganisms9112282
Chicago/Turabian StyleNgo, Minh Dao, Stacey Bartlett, and Katharina Ronacher. 2021. "Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia" Microorganisms 9, no. 11: 2282. https://doi.org/10.3390/microorganisms9112282
APA StyleNgo, M. D., Bartlett, S., & Ronacher, K. (2021). Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia. Microorganisms, 9(11), 2282. https://doi.org/10.3390/microorganisms9112282