The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Data Sources and Search Strategy
2.3. Data Extraction
2.4. Study Selection Criteria
2.5. Quality Assessment and Selection
3. Results and Discussion
3.1. Spatial Distribution of Borrelia burgdorferi and Ticks
3.2. Distribution/Prevalence of Borrelia burgdorferi in Ticks of Different Continents
3.2.1. Europe
3.2.2. North America
3.2.3. Asia and Africa
3.3. Vector Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- de la Fuente, J.; Estrada-Peña, A.; Cabezas-Cruz, A.; Brey, R. Flying ticks: Anciently evolved associations that constitute a risk of infectious disease spread. Parasites Vectors 2015, 8, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumic, I.; Severnini, E. “Ticking bomb”: The impact of climate change on the incidence of Lyme disease. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5719081. [Google Scholar] [CrossRef] [Green Version]
- Toledo, Á.; Olmeda, A.S.; Escudero, R.; Jado, I.; Valcárcel, F.; Casado-Nistal, M.A.; Casado-Nistal, M.; Rodríguez-Vargas, H.; Gil, P.; Anda, P. Tick-borne zoonotic bacteria in ticks collected from central Spain. Am. J. Trop. Med. Hyg. 2009, 81, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Tamzali, Y. Equine piroplasmosis: An updated review. Equine Vet. Educ. 2013, 25, 590–598. [Google Scholar] [CrossRef]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.E. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, A.; Hauffe, H.C.; Carpi, G.; Vourc’h, G.; Neteler, M.; Rosa, R. Lyme borreliosis in Europe. Eurosurveillance 2011, 16, 19906. [Google Scholar] [CrossRef]
- Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Oliver, J.H., Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick-Borne Dis. 2011, 2, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Margos, G.; Fedorova, N.; Kleinjan, J.E.; Hartberger, C.; Schwan, T.G.; Sing, A.; Fingerle, V. Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. Int. J. Syst. Evol. Microbiol. 2017, 67, 3872. [Google Scholar] [CrossRef] [Green Version]
- Dumic, I.; Vitorovic, D.; Spritzer, S.; Sviggum, E.; Patel, J.; Ramanan, P. Acute transverse myelitis–A rare clinical manifestation of Lyme neuroborreliosis. IDCases 2019, 15, e00479. [Google Scholar] [CrossRef]
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.H. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 496. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Use of commercial claims data for evaluating trends in Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499. [Google Scholar] [CrossRef]
- Sykes, R.A.; Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe. J. Public Health 2017, 39, 74–81. [Google Scholar]
- Slatculescu, A.M.; Clow, K.M.; McKay, R.; Talbot, B.; Logan, J.J.; Thickstun, C.R.; Jardine, C.M.; Ogden, N.H.; Knudbury, A.J.; Kulkarni, M.A. Species distribution models for the eastern blacklegged tick, Ixodes scapularis, and the Lyme disease pathogen, Borrelia burgdorferi, in Ontario, Canada. PLoS ONE 2020, 15, e0238126. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, C.; Lynn, G.E.; Pedra, J.H.; Pal, U.; Narasimhan, S.; Fikrig, E. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 2020, 18, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616. [Google Scholar] [CrossRef]
- Halperin, J.J. Diagnosis and management of Lyme neuroborreliosis. Expert Rev. Anti-Infect. Ther. 2018, 16, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; O’Horo, J.C.; Wilson, J.W.; Granger, D.; Theel, E.S. (Eds.) An Unusual Cluster of Neuroinvasive Lyme Disease Cases Presenting with Bannwarth Syndrome in the Midwest United States (U.S). Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Margos, G.; Fingerle, V.; Reynolds, S. Borrelia bavariensis: Vector switch, niche invasion, and geographical spread of a tick-borne bacterial parasite. Front. Ecol. Evol. 2019, 7, 401. [Google Scholar] [CrossRef] [Green Version]
- Eisen, L. Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: A review. Ticks Tick-Borne Dis. 2020, 11, 101359. [Google Scholar] [CrossRef]
- Craine, N.; Randolph, S.; Nuttall, P. Seasonal variation in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochaete, in a British. Folia Parasitol. 1995, 42, 73–80. [Google Scholar]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J. W Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Wassermann, M.; Selzer, P.; Steidle, J.L.; Mackenstedt, U. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Ticks Tick-Borne Dis. 2016, 7, 768–771. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanincová, K.; Taragelová, V.; Koci, J.; Schafer, S.M.; Hails, R.; Ullmann, A.J.; Piesman, J.; Labuda, M.; Kurtenbach, K. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 2003, 69, 2825–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savić, S.; Vidić, B.; Lazić, S.; Lako, B.; Potkonjak, A.; Lepšanović, Z. Borrelia burgdorferi in ticks and dogs in the province of Vojvodina, Serbia. Parasite 2010, 17, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Reye, A.L.; Hubschen, J.M.; Sausy, A.; Muller, C.P. Prevalence and seasonality of tick-borne pathogens in questing Ixodes ricinus ticks from Luxembourg. Appl. Environ. Microbiol. 2010, 76, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
- Lommano, E.; Bertaiola, L.; Dupasquier, C.; Gern, L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl. Environ. Microbiol. 2012, 78, 4606–4612. [Google Scholar] [CrossRef] [Green Version]
- Råberg, L. Infection intensity and infectivity of the tick-borne pathogen Borrelia afzelii. J. Evol. Biol. 2012, 25, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Reye, A.L.; Stegniy, V.; Mishaeva, N.P.; Velhin, S.; Hübschen, J.M.; Ignatyev, G.; Muller, C.P. Prevalence of tick-borne pathogens in Ixodes ricinus and Dermacentor reticulatus ticks from different geographical locations in Belarus. PLoS ONE 2013, 8, e54476. [Google Scholar]
- Mannelli, A.; Boggiatto, G.; Grego, E.; Cinco, M.; Murgia, R.; Stefanelli, S.; De Meneghi, D.; Rosati, S. Acarological risk of exposure to agents of tick-borne zoonoses in the first recognized Italian focus of Lyme borreliosis. Epidemiol. Infect. 2003, 131, 1139–1147. [Google Scholar] [CrossRef]
- Stensvold, C.R.; Al Marai, D.; Andersen, L.O.B.; Krogfelt, K.A.; Jensen, J.S.; Larsen, K.S.; Nielsen, H.V. Babesia spp. and other pathogens in ticks recovered from domestic dogs in Denmark. Parasites Vectors 2015, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Aureli, S.; Galuppi, R.; Ostanello, F.; Foley, J.E.; Bonoli, C.; Rejmanek, D.; Rocchi, G.; Orlandi, E.; Tampieri, M. P Abundance of questing ticks and molecular evidence for pathogens in ticks in three parks of Emilia-Romagnaregion of Northern Italy. Ann. Agric. Environ. Med. 2015, 22, 459–466. [Google Scholar] [CrossRef]
- Pintore, M.; Ceballos, L.; Iulini, B.; Tomassone, L.; Pautasso, A.; Corbellini, D.; Rizzo, F.; Mandola, M.; Bardelli, M.; Peletto, S. Detection of invasive Borrelia burgdorferi strains in north-eastern Piedmont, Italy. Zoonoses Public Health 2015, 62, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Millins, C.; Magierecka, A.; Gilbert, L.; Edoff, A.; Brereton, A.; Kilbride, E.; Denwood, M.; Birtles, R.; Biek, R. An invasive mammal (the gray squirrel, Sciurus carolinensis) commonly hosts diverse and atypical genotypes of the zoonotic pathogen Borrelia burgdorferi sensu lato. Appl. Environ. Microbiol. 2015, 81, 4236–4245. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.R.; Gabrielli, S.; Iori, A.; Cancrini, G. Molecular detection of Rickettsia, Borrelia, and Babesia species in Ixodes ricinus sampled in northeastern, central, and insular areas of Italy. Exp. Appl. Acarol. 2015, 66, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebani, V.V.; Bertelloni, F.; Turchi, B.; Filogari, D.; Cerri, D. Molecular survey of tick-borne pathogens in Ixodid ticks collected from hunted wild animals in Tuscany, Italy. Asian Pac. J. Trop. Med. 2015, 8, 714–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krawczyk, A.I.; van Leeuwen, A.D.; Jacobs-Reitsma, W.; Wijnands, L.M.; Bouw, E.; Jahfari, S.; Van-Hoek, A.H.; Van Der Giessen, J.W.; Roelfsema, J.H.; Kroes, M. Presence of zoonotic agents in engorged ticks and hedgehog faeces from Erinaceus europaeus in (sub) urban areas. Parasites Vectors 2015, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Butler, C.M.; van Oldruitenborgh-Oosterbaan, M.M.S.; Werners, A.H.; Stout, T.A.; Nielen, M.; Jongejan, F.; Houwers, D.J. Borrelia burgdorferi and Anaplasma phagocytophilum in ticks and their equine hosts: A prospective clinical and diagnostic study of 47 horses following removal of a feeding tick. Pferdeheilkunde 2016, 32, 335. [Google Scholar] [CrossRef] [Green Version]
- Krstić, M.; Stajković, N.; Lazić, S. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks and assessment of entomological risk index at localities in Belgrade. Vojnosanit. Pregl. 2016, 73, 817–824. [Google Scholar] [CrossRef]
- Sormunen, J.J.; Penttinen, R.; Klemola, T.; Hänninen, J.; Vuorinen, I.; Laaksonen, M.; Sääksjärvi, I.E.; Ruohomäki, K.; Vesterinen, E.J. Tick-borne bacterial pathogens in southwestern Finland. Parasites Vectors 2016, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Skotarczak, B.; Wodecka, B.; Rymaszewska, A.; Adamska, M. Molecular evidence for bacterial pathogens in Ixodes ricinus ticks infesting Shetland ponies. Exp. Appl. Acarol. 2016, 69, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Raileanu, C.; Moutailler, S.; Pavel, I.; Porea, D.; Mihalca, A.D.; Savuta, G.; Vaussier, M. Borrelia diversity and co-infection with other tick borne pathogens in ticks. Front. Cell. Infect. Microbiol. 2017, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Davies, S.; Abdullah, S.; Helps, C.; Tasker, S.; Newbury, H.; Wall, R. Prevalence of ticks and tick-borne pathogens: Babesia and Borrelia species in ticks infesting cats of Great Britain. Vet. Parasitol. 2017, 244, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Obiegala, A.; Król, N.; Oltersdorf, C.; Nader, J.; Pfeffer, M. The enzootic life-cycle of Borrelia burgdorferi (sensu lato) and tick-borne rickettsiae: An epidemiological study on wild-living small mammals and their ticks from Saxony, Germany. Parasites Vectors 2017, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chvostáč, M.; Špitalská, E.; Václav, R.; Vaculová, T.; Minichová, L.; Derdáková, M. Seasonal patterns in the prevalence and diversity of tick-borne Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia spp. in an urban temperate forest in south western Slovakia. Int. J. Environ. Res. Public Health 2018, 15, 994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Rold, G.; Ravagnan, S.; Soppelsa, F.; Porcellato, E.; Soppelsa, M.; Obber, F.; Citterio, C.V.; Carlin, S.; Danesi, P.; Montarsi, F. Ticks are more suitable than red foxes for monitoring zoonotic tick-borne pathogens in northeastern Italy. Parasites Vectors 2018, 11, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millins, C.; Dickinson, E.R.; Isakovic, P.; Gilbert, L.; Wojciechowska, A.; Paterson, V.; Tao, F.; Jahn, M.; Kilbride, E.; Birtles, R. Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen. Parasites Vectors 2018, 11, 621. [Google Scholar] [CrossRef]
- Namina, A.; Capligina, V.; Seleznova, M.; Krumins, R.; Aleinikova, D.; Kivrane, A.; Akopjana, S.; Lazovska, M.; Berzina, I.; Ranka, R. Tick-borne pathogens in ticks collected from dogs, Latvia, 2011–2016. BMC Vet. Res. 2019, 15, 398. [Google Scholar] [CrossRef] [PubMed]
- Millet, I.; Ragionieri, M.; Tomassone, L.; Trentin, C.; Mannelli, A. Assessment of the exposure of people to questing ticks carrying agents of zoonoses in Aosta Valley, Italy. Vet. Sci. 2019, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Capligina, V.; Seleznova, M.; Akopjana, S.; Freimane, L.; Lazovska, M.; Krumins, R.; Kivrane, A.; Namina, A.; Aleinikova, D.; Kimsis, J. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasites Vectors 2020, 13, 351. [Google Scholar] [CrossRef]
- Zanet, S.; Battisti, E.; Pepe, P.; Ciuca, L.; Colombo, L.; Trisciuoglio, A.; Ferroglio, E.; Cringoli, G.; Rinaldi, L.; Maurelli, M.P. Tick-borne pathogens in Ixodidae ticks collected from privately-owned dogs in Italy: A country-wide molecular survey. BMC Vet. Res. 2020, 16, 46. [Google Scholar] [CrossRef] [Green Version]
- Pakanen, V.-M.; Sormunen, J.J.; Sippola, E.; Blomqvist, D.; Kallio, E.R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasites Vectors 2020, 13, 384. [Google Scholar] [CrossRef]
- Norte, A.C.; Margos, G.; Becker, N.S.; Albino Ramos, J.; Núncio, M.S.; Fingerle, V.; Araújo, P.M.; Adamík, P.; Alivizatos, H.; Barba, E. Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Mol. Ecol. 2020, 29, 485–501. [Google Scholar] [CrossRef]
- Levytska, V.A.; Mushinsky, A.B.; Zubrikova, D.; Blanarova, L.; Długosz, E.; Vichova, B.; Slivinska, K.A.; Gajewski, Z.; Gizinski, S.; Liu, S. Detection of pathogens in ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks Tick-Borne Dis. 2021, 12, 101586. [Google Scholar] [CrossRef] [PubMed]
- Kniazeva, V.; Baysal, O.; Krasko, A.; Iwaniak, W.; Higgs, S. The Prevalence and Genetic Characterization of Strains of Borrelia Isolated from Ixodes Tick Vectors in Belarus (2012–2019). Vector-Borne Zoonotic Dis. 2021, 21, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Borşan, S.-D.; Ionică, A.M.; Galon, C.; Toma-Naic, A.; Peştean, C.; Sándor, A.D.; Moutailler, S.; Mihalca, A.D. High Diversity, Prevalence, and Co-infection Rates of Tick-Borne Pathogens in Ticks and Wildlife Hosts in an Urban Area in Romania. Front. Microbiol. 2021, 12, 645002. [Google Scholar] [CrossRef]
- Kovryha, N.; Tsyhankova, A.; Zelenuchina, O.; Mashchak, O.; Terekhov, R.; Rogovskyy, A.S. Prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in Ixodid Ticks from Southeastern Ukraine. Vector-Borne Zoonotic Dis. 2021, 21, 242–246. [Google Scholar] [CrossRef]
- Holman, M.S.; Caporale, D.A.; Goldberg, J.; Lacombe, E.; Lubelczyk, C.; Rand, P.W.; Smith, R.P. Anaplasma phagocytophilum, Babesia microti, and Borrelia burgdorferi in Ixodes scapularis, southern coastal Maine. Emerg. Infect. Dis. 2004, 10, 744. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.S.; Steinlein, D.B.; Mun, J. Human behaviors elevating exposure to Ixodes pacificus (Acari: Ixodidae) nymphs and their associated bacterial zoonotic agents in a hardwood forest. J. Med. Entomol. 2004, 41, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Hamer, S.A.; Hickling, G.J.; Sidge, J.L.; Rosen, M.E.; Walker, E.D.; Tsao, J.I. Diverse Borrelia burgdorferi strains in a bird-tick cryptic cycle. Appl. Environ. Microbiol. 2011, 77, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Hamer, S.A.; Goldberg, T.L.; Kitron, U.D.; Brawn, J.D.; Anderson, T.K.; Loss, S.R.; Walker, E.D.; Hamer, G.L. Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005–2010. Emerg. Infect. Dis. 2012, 18, 1589. [Google Scholar] [CrossRef]
- Aliota, M.T.; Dupuis, A.P.; Wilczek, M.P.; Peters, R.J.; Ostfeld, R.S.; Kramer, L.D. The prevalence of zoonotic tick-borne pathogens in Ixodes scapularis collected in the Hudson Valley, New York State. Vector-Borne Zoonotic Dis. 2014, 14, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Adalsteinsson, S.A.; Shriver, W.G.; Hojgaard, A.; Bowman, J.L.; Brisson, D.; D’Amico, V.; Buler, J.J. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk. Parasites Vectors 2018, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Q.; Llanos-Soto, S.G.; Gangloff-Kaufmann, J.L.; Lampman, J.M.; Frye, M.J.; Benedict, M.C.; Tallmadge, R.L.; Mitchell, P.K.; Anderson, R.R.; Cronk, B.D. Active surveillance of pathogens from ticks collected in New York State suburban parks and schoolyards. Zoonoses Public Health 2020, 67, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Salkeld, D.J.; Lagana, D.M.; Wachara, J.; Porter, W.T.; Nieto, N.C. Examining prevalence and diversity of tick-borne pathogens in questing Ixodes pacificus ticks in California. Appl. Environ. Microbiol. 2021, 87, e00319-21. [Google Scholar] [CrossRef]
- Nelder, M.P.; Russell, C.B.; Dibernardo, A.; Clow, K.M.; Johnson, S.; Cronin, K.; Patel, S.N.; Lindsay, L.R. Monitoring the patterns of submission and presence of tick-borne pathogens in Ixodes scapularis collected from humans and companion animals in Ontario, Canada (2011–2017). Parasites Vectors 2021, 14, 260. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, T.-K.; Kim, T.Y.; Lee, H.I. Geographical Distribution of Borrelia burgdorferi sensu lato in Ticks Collected from Wild Rodents in the Republic of Korea. Pathogens 2020, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.-C.; Zhao, Q.-M.; Zhang, P.-H.; Yang, H.; Wu, X.-M.; Wen, B.-H.; Zhang, X.T.; Habbedema, J.D.F. Prevalence of Anaplasma phagocytophila and Borrelia burgdorferi in Ixodes persulcatus ticks from northeastern China. Am. J. Trop. Med. Hyg. 2003, 68, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Elhelw, R.; Elhariri, M.; Hamza, D.; Abuowarda, M.; Ismael, E.; Farag, H. Evidence of the presence of Borrelia burgdorferi in dogs and associated ticks in Egypt. BMC Vet. Res. 2021, 17, 49. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Bormane, A.; Derdakova, M.; Estrada-Peña, A.; George, J.-C.; Golovjova, T.G.; Jaenson, J.K.; Jensen, P.M. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 2013, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Bugmyrin, S.V.; Bespyatova, L.A.; Korotkov, Y.S.; Burenkova, L.A.; Belova, O.A.; Romanova, L.I.; Kozlovskaya, L.I.; Karganova, G.G.; Ieshko, E.P. Distribution of Ixodes ricinus and I. persulcatus ticks in southern Karelia (Russia). Ticks Tick-Borne Dis. 2013, 4, 57–62. [Google Scholar] [CrossRef]
- Jaenson, T.G.; Eisen, L.; Comstedt, P.; Mejlon, H.; Lindgren, E.; Bergström, S.; Olsen, B. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet. Entomol. 2009, 23, 226–237. [Google Scholar] [CrossRef]
- Jones, E.; Hinckley, A.; Hook, S.; Meek, J.; Backenson, B.; Kugeler, K.; Feldman, K. Pet ownership increases human risk of encountering ticks. Zoonoses Public Health 2018, 65, 74–79. [Google Scholar] [CrossRef]
- Schutzer, S.E.; Berger, B.W.; Krueger, J.G.; Eshoo, M.W.; Ecker, D.J.; Aucott, J.N. Atypical erythema migrans in patients with PCR-positive Lyme disease. Emerg. Infect. Dis. 2013, 19, 815. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Scott, C.; Anderson, J. The establishment of a blacklegged tick population by migratory songbirds in Ontario, Canada. J. Vet. Sci. Med. 2014, 2, 5. [Google Scholar] [CrossRef]
- Eisen, R.J.; Eisen, L. The blacklegged tick, Ixodes scapularis: An increasing public health concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef]
- Regier, Y.; Ballhorn, W.; Kempf, V.A. Molecular detection of Bartonella henselae in 11 Ixodes ricinus ticks extracted from a single cat. Parasites Vectors 2017, 10, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotté, V.; Bonnet, S.; Le Rhun, D.; Le Naour, E.; Chauvin, A.; Boulouis, H.-J.; Lecuelle, B.; Lillin, T.; Vayssier-Taussat, M. Transmission of Bartonella henselae by Ixodes ricinus. Emerg. Infect. Dis. 2008, 14, 1074. [Google Scholar] [CrossRef] [PubMed]
- Tsao, J.I. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet. Res. 2009, 40, 36. [Google Scholar] [CrossRef] [Green Version]
- Ogden, N.; Trudel, L.; Artsob, H.; Barker, I.; Beauchamp, G.; Charron, D.; Drebot, M.; Galloway, T.; O’Handley, R.; Thompson, R. Ixodes scapularis ticks collected by passive surveillance in Canada: Analysis of geographic distribution and infection with Lyme borreliosis agent Borrelia burgdorferi. J. Med. Entomol. 2006, 43, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, N.H.; Lindsay, L.R.; Hanincová, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, A.N.; Dubinina, H.V.; Van De Pol, I.; Schouls, L.M. Identification of Ehrlichia spp. and Borrelia burgdorferi in Ixodes ticks in the Baltic regions of Russia. J. Clin. Microbiol. 2001, 39, 2237–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.-C.; Zhao, Q.-M.; Zhang, P.-H.; Dumler, J.S.; Zhang, X.-T.; Fang, L.-Q.; Yang, H. Granulocytic Ehrlichiae in Ixodes persulcatus ticks from an area in China where Lyme disease is endemic. J. Clin. Microbiol. 2000, 38, 4208–4210. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Raoult, D. Tick-borne bacterial diseases emerging in Europe. Clin. Microbiol. Infect. 2001, 7, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Černý, J.; Lynn, G.; Hrnková, J.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. Management options for Ixodes ricinus-associated pathogens: A review of prevention strategies. Int. J. Environ. Res. Public Health 2020, 17, 1830. [Google Scholar] [CrossRef] [Green Version]
- Alkishe, A.A.; Peterson, A.T.; Samy, A.M. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS ONE 2017, 12, e0189092. [Google Scholar] [CrossRef] [PubMed]
- Spielman, A.; Wilson, M.L.; Levine, J.F.; Piesman, J. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annu. Rev. Entomol. 1985, 30, 439–460. [Google Scholar] [CrossRef]
- Deplazes, P.; Eckert, J.; Mathis, A.; Samson-Himmelstjerna, G.; Zahner, H. Parasitology in Veterinary Medicine; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016. [Google Scholar]
- Braks, M.A.; van Wieren, S.E.; Takken, W.; Sprong, H. Ecology and Prevention of Lyme Borreliosis; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016. [Google Scholar]
- Uspensky, I. Ticks as the main target of human tick-borne disease control: Russian practical experience and its lessons. J. Vector Ecol. J. Soc. Vector Ecol. 1999, 24, 40–53. [Google Scholar]
- Piesman, J.; Eisen, L. Prevention of tick-borne diseases. Annu. Rev. Entomol. 2008, 53, 323–343. [Google Scholar] [CrossRef] [PubMed]
Continent | Country | Region | Host/Sampling Site | Tick Species | Total Ticks Collected | Positive (n) | Prevalence % | 95% CI | Molecular Technique | Year of Study | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|
Europe | |||||||||||
Europe | Slovakia | Western Slovakia | Vegetation (Parks) | Ixodes scapularis | 1294 | 420 | 33% | Not given | PCR | 1999–2000 | [24] |
Birds (Parus major, Turdus merula, Turdus philomelos) | Ixodes scapularis | 57 | 16 | 28% | Not given | PCR | |||||
Serbia | Vojvodina | Vegetation (Forest) | Ixodes ricinus | 764 | 169 | 22.1% | 11–29 | PCR | 2006–2008 | [25] | |
Luxemburg | Not mentioned | Vegetation (Forest) | Ixodes ricinus | 1394 | 157 | 11.3% | Not given | PCR | 2007 | [26] | |
Switzerland | 11 sites located between 400 and 900 m above sea level | Vegetation (Parks) | Ixodes ricinus | 1458 | 328 | 22.5% | Not given | PCR | 2009–2010 | [27] | |
Sweden | Southern Sweden | Rodents (Myodes glareolus, Apodemus flavicollis) | Ixodes ricinus | 276 | 137 | 49.6% | Not given | q-PCR | 2008-2010 | [28] | |
Belarus | Brest, Gomel, Grodno, Minsk, Mogilev, Vitebsk | Vegetation (Parks) | Ixodes ricinus | 553 | 52 | 9.4% | Not given | PCR | 2009 | [29] | |
Italy | Borzonasca, Chiavari | Vegetation (Forest) | Ixodes ricinus | 170 | 31 | 18.2% | Not given | PCR | 1998–1999 | [30] | |
Denmark | South Jut land | Dogs | Ixodes ricinus | 661 | 99 | 15% | Not given | PCR | 2011 | [31] | |
Italy | Emilia-Romagna | Vegetation (Forest) | Ixodes ricinus | 284 | 78 | 27.5% | Not given | Real-time PCR | 2010 | [32] | |
Italy | Ossola Valley Province of Verbano–Cusio–Ossola | Vegetation and Wild animals (chamois, roe deer, red deer) | Ixodes ricinus | 1766 | 530 | 30% | Not given | PCR | 2011 | [33] | |
Scotland and Northern England | Not mentioned | Gray squirrel | Ixodes ricinus | 1585 | 189 | 11.9% | 9.7–14.6 | PCR | 2012–2013 | [34] | |
Italy | Belluno, Perugia | Vegetation (Forest) | Ixodes ricinus | 447 | 17 | 3.8% | Not given | PCR | 2007–2010 | [35] | |
Italy | Tuscany | Wild animals (Dama dama, Cervus elaphus) | Ixodes ricinus | 420 | 6 | 1.4% | Not given | PCR | 2015–2019 | [36] | |
Netherlands | Flevoland, Gelderland, Noord-Holland, Utrecht, and Zuid-Holland | Hedgehogs | Ixodes ricinus | 460 | 67 | 14% | Not given | q-PCR | 2010–2014 | [37] | |
Netherlands | Not mentioned | Horse | Ixodes ricinus | 120 | 52 | 43.3% | Not given | PCR | 2018 | [38] | |
Serbia | Forests (Lipovica, Bojčinska, Avala, Miljakovačk, Makiš), Park-forests (Ada Ciganlija, Zvezdara, Banjica, Košutnjak, Jajinci) Parks (Hajd park, Belevode, Usće, Šumice, Kalemegdan, Topčider, Tašmajdan, Banovobrdo, Pionirski park) | Vegetation (Forest) | Ixodes ricinus | 3199 | 704 | 22% | Not given | PCR | 2009 | [39] | |
Finland | Southwestern Finland | Vegetation (Forest) | Ixodes ricinus | 3169 | 217 | 6.8% | Not given | PCR | 2013–2014 | [40] | |
Poland | Goleniowska Forest | Shetland ponies | Ixodes ricinus | 1737 | 333 | 19% | Not given | PCR | 2010–2012 | [41] | |
Vegetation (Parks) | Ixodes ricinus | 371 | 18 | 4.8% | Not given | PCR | |||||
Romania | Eastern Romania | Vegetation (Forest) | Ixodes ricinus | 534 | 138 | 25.8% | Not given | PCR | 2014 | [42] | |
UK | Not mentioned | Cat | Ixodes ricinus, Ixodes hexagonus, Ixodes trianguliceps | 541 | 15 | 2.8% | Not given | PCR | 2016 | [43] | |
Germany | Saxony | Small mammals (Apodemus agrarius, Apodemus flavicollis, Microtus arvalis, Microtus agrestis, Mustela nivalis, Myodes glareolus Sorex araneus, Talpa europaea) | Ixodes ricinus | 2802 | 154 | 5.5 | 3.5–8.3 | PCR | 2012–2016 | [44] | |
Slovakia | Bratislava | Birds (Parus major, Sitta europaea, Turdus merula, Erithacus rubecula, Dendrocopos major, Parus montanus, Fringilla coelebs, Parus caeruleus, Muscicapa striata) | Ixodes ricinus | 295 | 37 | 12.5% | Not given | PCR | 2011–2012 | [45] | |
Italy | Dolomiti Bellunesi National Park in the Province of Bellun | Red foxes (Parks) | Ixodes ricinus | 2248 | 28 | 1.25% | Not given | Real-time PCR | 2011–2016 | [46] | |
Scotland | Loch Lomond and Trossachs National Park | Vegetation (Forest) | Ixodes ricinus | 6567 | 91 | 1.4% | 1.1–1.7 | PCR | 2011–2015 | [47] | |
Latvia | Not mentioned | Dog | Ixodes ricinus, Dermacentor reticulatus | 608 | 48 | 7.9% | Not given | Nested-PCR | 2011–2016 | [48] | |
Italy | Aosta Valley, western Alps | Vegetation (Forest) | Ixodes scapularis | 30 | 12 | 40% | 22.5–57.5 | PCR | 2016 | [49] | |
Latvia | All regions of Latvia | Vegetation (Parks) | Ixodes ricinus, Ixodes persulcatus, Dermacentor reticulatus | 4593 | 657 | 14% | Not given | PCR | 2017–2019 | [50] | |
Italy | 64 Italian provinces | Dog | Ixodes ricinus, Ixodes hexagonous | 723 | 3 | 0.4% | 0.2–0.8 | PCR | 2016–2017 | [51] | |
Finland | 8 sites on the coast of Bothnian Bay | Vegetation (Forest) | Ixodes persulcatus | 163 | 101 | 62% | 55–70 | PCR | 2019 | [52] | |
Czech Republic, Estonia, Finland, Germany, Greece, Hungary, Netherlands, Portugal, Slovenia, Spain and Sweden | 11 European countries | Birds | Ixodes ricinus, Ixodes arboricola, Ixodes frontalis | 656 | 244 | 37.2% | Not given | PCR | 2005–2008 2013–2014 and 2016 | [53] | |
Ukraine | Chernivtsi, Khmelnytskyi, Kyiv, Ternopil, Vinnytsia regions | Vegetation, wild and domestic animals (brown bear, raccoon, red fox, lynx, cats, cattle dogs) | Ixodes ricinus | 99 | 25 | 25% | Not given | PCR | 2019–2020 | [54] | |
Belarus | Brest Gomel, Grodno, Minsk, Mogilev and Vitebsk | Vegetation and Cow | Ixodes ricinus, Dermacentor reticulatus | 4070 | 253 | 6.2% | Not given | PCR | 2012–2019 | [55] | |
Romania | Luliu Haţieganu Park, Alexandru Borza Botanical Garden, Mănăştur Cemetery Hoia, Făget forest | Vegetation (Forest) | Ixodes ricinus, Haemaphysalis punctata | 148 | 39 | 26.35% | 19.46–34.22 | PCR | 2018 | [56] | |
Rodents, birds, and hedgehogs | Ixodes ricinus, Ixodes hexagonus, Haemaphysalis punctata, Haemaphysalis concinna | 222 | 81 | 36.5% | 29.29–42.27 | PCR | |||||
Ukraine | Southeastern Ukraine (Zaporizhzhya region) | Vegetation (Forest) | Ixodes ricinus | 358 | 115.6 | 32.3% | Not given | PCR | 2014–2018 | [57] | |
North America | |||||||||||
North America | US | Southern coastal Maine | Pets, chipmunks, white-footed mice | Ixodes scapularis | 394 | 88 | 22.3% | Not given | PCR | 1995–1997 | [58] |
US | University of California Hopland Research and Extension Center (HREC) | Vegetation (Forest) | Ixodes pacificus | 181 | 7 | 3.9% | Not given | PCR | 2003 | [59] | |
US | Southwestern Michigan | Birds | Ixodes dentatus, Haemaphysalis leporispalustris, Ixodes scapularis, Dermacentor variabilis | 12,301 | 517 | 4.2% | Not given | PCR | 2004–2007 | [60] | |
US | Southwestern suburban Chicago | Wild birds | Ixodes scapularis, Haemaphysalis leporispalustris | 120 | 5 | 4% | Not given | PCR | 2005–2010 | [61] | |
US | Hudson Valley | Vegetation (Forest) | Ixodes ricinus | 1245 | 760 | 61% | Not given | PCR | 2011 | [62] | |
US | New Castle County, Delaware | Vegetation (Parks) | Ixodes scapularis | 441 | 46 | 10.4% | Not given | PCR | 2013–2014 | [63] | |
US | New York State | Vegetation (Forest) | Ixodesscapularis | 677 | 346 | 51% | 39.3–63.3 | rt-PCR | 2018 | [64] | |
US | Marin County California | Vegetation (Parks) | Ixodes pacificus | 1419 | 41 | 2.9% | 2.3–3.7 | rt-PCR | 2015–2018 | [65] | |
Canada | Ontario | Human | Ixodesscapularis | 17,230 | 3015 | 17.5% | 16.97–18.09 | PCR | 2011–2017 | [66] | |
Companion animals (dogs) | Ixodes scapularis | 4375 | 433 | 9.9% | 9.15–10.78 | PCR | |||||
Asia | |||||||||||
Asia | Korea | Pocheon, Donghae, Sejong, Boryeong, Uiseong, Jeongup, Geoje, Goheung, and Jeju Island | Wild rodents | Ixodes nipponensis, Ixodes angustus, Haemaphysalis longicornis | 738 | 248 | 33.6% | Not given | PCR | 2017 | [67] |
China | Great Xingan Mountains, Small Xingan Mountains | Vegetation (parks) | Ixodes persulcatus | 1345 | 454 | 33.8% | Not given | PCR | 1999–2001 | [68] | |
Africa | |||||||||||
Africa | Egypt | Cairo, Giza, Al-Buhayrah, and Matrouh govern | Dog | Rhipicephalus sanguineus | 60 | 1 | 1.67% | Not given | PCR | 2017 | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Hussain, A.; Aziz, U.; Song, B.; Zeb, J.; George, D.; Li, J.; Sparagano, O. The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review. Microorganisms 2021, 9, 2412. https://doi.org/10.3390/microorganisms9122412
Hussain S, Hussain A, Aziz U, Song B, Zeb J, George D, Li J, Sparagano O. The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review. Microorganisms. 2021; 9(12):2412. https://doi.org/10.3390/microorganisms9122412
Chicago/Turabian StyleHussain, Sabir, Abrar Hussain, Umair Aziz, Baolin Song, Jehan Zeb, David George, Jun Li, and Olivier Sparagano. 2021. "The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review" Microorganisms 9, no. 12: 2412. https://doi.org/10.3390/microorganisms9122412
APA StyleHussain, S., Hussain, A., Aziz, U., Song, B., Zeb, J., George, D., Li, J., & Sparagano, O. (2021). The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review. Microorganisms, 9(12), 2412. https://doi.org/10.3390/microorganisms9122412