Fungal Communities in the Native New Zealand Medicinal Plant Pseudowintera colorata (Horopito) Are Determined by Plant Organ Type and Host Maturity with Key Members Promoting Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Diversity Analysis of the Endophytic Fungi in P. colorata Using DGGE
2.3. Isolation and Identification of Cultured Endophytic Fungi
2.4. Functional Activity of Endophytic Fungi Isolated from P. colorata
2.4.1. Activity against Phytopathogenic Fungi
2.4.2. Activity against Opportunistic Human Pathogens
2.5. Influence of Endophytic Fungi on the Growth of P. colorata Seedlings in the Glasshouse
2.6. Confirmation of Endophytic Colonization Using DGGE
3. Results
3.1. Analysis of the Structure and Richness of Endophytic Fungi Using DGGE
3.2. Influence of Plant Age on the Community Structure and Richness of Endophytic Fungi in P. colorata
3.3. Isolation, Sequencing Data, and Identity of Culturable Endophytic Fungi from P. colorata Tissues
3.4. Activity against Phytopathogenic Fungi and Opportunistic Human Pathogens
3.5. Influence of Endophytic Fungi on the Growth of P. colorata Seedlings
3.6. Colonization of P. colorata Roots by Endophytic Fungi as Shown by DGGE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirtilla, A.M.; Compant, S.; Campisano, A.; Doring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.-K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef] [PubMed]
- Gond, S.K.; Mishra, A.; Sharma, V.K.; Verma, S.K.; Kumar, J.; Kharwar, R.N.; Kumar, A. Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 2012, 53, 113–121. [Google Scholar] [CrossRef]
- Bezerra, J.D.P.; Nascimento, C.C.F.; Barbosa, R.; Silsa, D.C.V.; da Silva, D.C.V.; Svedese, V.M.; Silva-Nogueira, E.B.; Gomes, B.S.; Paiva, L.M.; Souza-Motta, C.M. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz. J. Microbiol. 2015, 46, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- Puri, S.G.; Verma, V.; Amna, T.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 2005, 68, 1717–1719. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-Ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 2006, 122, 494–510. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, X.; Zhang, G.; Li, S.; Wang, J. Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr. Health Sci. 2017, 17, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.R.; Wedge, D.E.; Cantrell, C.L.; Silva-Hughes, A.F.; Pan, Z.; Moraes, R.M.; Madoxx, V.L.; Rosa, L.H. Molecular phylogeny, diversity, and bioprospecting of endophytic fungi associated with wild ethnomedicinal North American plant Echinacea purpurea (Asteraceae). Chem. Biodivers. 2016, 13, 918–930. [Google Scholar] [CrossRef]
- Mc Callion, R.F.; Cole, A.L.J.; Walker, J.R.L.; Blunt, J.W.; Munro, M.H.G. Antibiotic substances from New Zealand plants. Planta Med. 1982, 44, 134–138. [Google Scholar] [CrossRef]
- Brooker, S.G.; Cambie, R.C.; Cooper, R.C. New Zealand Medicinal Plants, 1st ed.; Heinemann: Auckland, New Zealand, 1987; p. 240. [Google Scholar]
- Gerard, P.J.; Perry, N.B.; Ruf, L.D.; Foster, L.M. Antifeedant and insecticidal activity of compounds from Pseudowintera colorata (Winteraceae) on the webbing clothes moth, Tineola bisselliella (Lepidoptera: Tineidae) and the Australian carpet beetle, Anthrenocerus australis (Coleoptera: Dermestidae). Bull. Entomol. Res. 1993, 83, 547–552. [Google Scholar] [CrossRef]
- Kubo, I.; Fujita, K.; Lee, S.H. Antifungal mechanism of polygodial. J. Agric. Food Chem. 2001, 49, 1607–1611. [Google Scholar] [CrossRef]
- Kubo, I.; Fujita, K.; Lee, S.H.; Ha, T.J. Antibacterial activity of Polygodial. Phytother. Res. 2005, 19, 1013–1017. [Google Scholar] [CrossRef]
- Purushotham, N.; Jones, E.; Monk, J.; Ridgway, H. Community structure of endophytic actinobacteria in a New Zealand native medicinal plant Pseudowintera colorata (Horopito) and their influence on plant growth. Microb. Ecol. 2018, 76, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Purushotham, N.; Jones, E.; Monk, J.; Ridgway, H. Community structure, diversity and potential of endophytic bacteria in the primitive New Zealand medicinal plant Pseudowintera colorata. Plants 2020, 9, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, A.; Verma, S.; Sahay, N.S.; Butehorn, B.; Franken, P. Piriformospora indica, a cultivable plant growth promoting root endophyte. Appl. Environ. Microbiol. 1999, 65, 2741–2744. [Google Scholar] [CrossRef] [Green Version]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hüchelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, E.W. Ethnobotany: An old practice, a new discipline. In Ethnobotany: Evolution of a Discipline; Schultes, R.E., von Reis, S., Eds.; Chapman and Hall: London, UK, 1995; pp. 40–51. [Google Scholar]
- Nalini, P.; Prabhakar, T.; Ellaiah, P.; Girijasankar, G. Isolation of alkaline phosphatase producing bacteria employing a novel screening medium for phosphatases. J. Pure Appl. Microbiol. 2014, 8, 3237–3244. [Google Scholar]
- Kumar, M.; Yadav, V.; Tuteja, N.; Johri, A.K. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 2009, 155, 780–790. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.C.; Lobkovsky, E.; Gange, A.C.; Singh, S.K.; Satya Prakash, S. Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J. Antibiot. 2011, 64, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Agarkar, G.; Rathod, D. Multiple applications of endophytic Colletotrichum species occurring in medicinal plants, in novel plant bioresources: Applications in food, medicine and cosmetics. In Novel Plant Bioresources; Gurib-Fakim, A., Ed.; Wiley: Chichester, UK, 2014; pp. 227–236. [Google Scholar]
- Rai, M.; Acharya, D.; Singh, A.; Varma, A. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 2001, 11, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Camehl, I.; Drzewiecki, C.; Vadassery, J.; Shahollari, B.; Sherameti, I.; Forzani, C.; Munnik, T.; Hirt, H.; Oelmüller, R. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog. 2011, 7, e1002051. [Google Scholar] [CrossRef]
- Carini, P.; Marsden, P.J.; Leff, J.W.; Morgan, E.E.; Strickland, M.S.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2016, 2, 16242. [Google Scholar] [CrossRef]
- Allen, G.C.; Flores-Vergara, M.A.; Krasynanski, S.; Kumar, S.; Thompson, W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- VandenKoornhuyse, P.; Baldauf, S.L.; Leyval, C.; Straczek, J.; Young, J.P.W. Evolution—Extensive fungal diversity in plant roots. Science 2002, 295, 2051. [Google Scholar] [CrossRef] [PubMed]
- Vainio, E.J.; Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 2000, 104, 927–936. [Google Scholar] [CrossRef]
- Liu, J.; Ridgway, H.J.; Jones, E.E. Apple endophyte community is shaped by tissue type, cultivar and site and has members with biocontrol potential against Neonectria ditissima. J. Appl. Microbiol. 2020, 128, 1735–1753. [Google Scholar] [CrossRef]
- Guillamón, J.M.; Sabaté, J.; Barrio, E.; Cano, J.; Querol, A. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 1998, 169, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; Smalla, K. Application of denaturing gradient gel electrophoresis (DDGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 1998, 73, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Gond, S.K.; Kumar, A.; Sharma, V.K.; Verma, S.K.; Kharwar, R.N.; Sieber, T.N. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographical location. Microb. Ecol. 2012, 64, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Oono, R.; Lefevre, E.; Simha, A.; Lutzoni, F. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol. 2015, 119, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wayman, K.A.; de Lange, P.J.; Larsen, L.; Sansom, C.E.; Perry, N.B. Chemotaxonomy of Pseudowintera: Sesquiterpene dialdehyde variants are species markers. Phytochemistry 2010, 71, 766–772. [Google Scholar] [CrossRef]
- Verma, S.K.; Gond, S.K.; Mishra, A.; Sharma, V.K.; Kumar, J.; Singh, D.K.; Kumar, A.; Goutam, J.; Kharwar, R.N. Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Ann. Microbiol. 2013, 64, 721–734. [Google Scholar] [CrossRef]
- Jin, H.; Yang, X.; Lu, D.; Li, C.; Yan, Z.; Li, X.; Zeng, L.; Qin, B. Phylogenetic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Leeuwenhoek 2015, 108, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Toghueo, R.M.K.; Eke, P.; Zabalgogeazcoa, I.; de Aldana, B.R.V.; Nana, L.W.; Boyom, F.F. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biol. Control 2016, 96, 8–20. [Google Scholar] [CrossRef]
- Hung, P.M.; Wattanachai, P.; Kasem, S.; Poeaim, S. Efficacy of Chaetomium species as biological control agents against Phytophthora nicotianae root rot in citrus. Mycobiology 2015, 43, 288–296. [Google Scholar] [CrossRef] [Green Version]
- da Silva, K.L.; Cechinel Filho, V. Plants of the genus Bauhinia: Chemical composition and pharmacological potential. Quim. Nova 2002, 25, 449–454. [Google Scholar]
- Strobel, G.A.; Miller, R.V.; Martinez-Miller, C.; Condron, M.M.; Teplow, D.B.; Hess, W.M. Cryptocandin a potent and antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 1999, 145, 1919–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, H.M.; Langley, D.; Sidebottom, P.J.; Lane, S.J.; Fisher, P.J. An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol. Res. 1991, 95, 1439–1440. [Google Scholar] [CrossRef]
- Khan, A.L.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Farsi, Z.; Al-Mamari, A.; Waqas, M.; Asaf, S.; Elyassi, A.; Mabood, F.; Shin, J.H.; et al. Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS ONE 2016, 11, e0158207. [Google Scholar] [CrossRef]
- Chirino-Valle, I.; Kandula, D.; Littlejohn, C.; Hill, R.; Walker, M.; Shield, M.; Cummings, N.; Hettiarachchi, D.; Wratten, S. Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus x giganteus in agriculture. Sci. Rep. 2016, 6, 25109. [Google Scholar] [CrossRef] [Green Version]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [Green Version]
- Newsham, K.K. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011, 190, 783–793. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; del-Val, E.; Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 2016, 92, fiw036. [Google Scholar] [CrossRef] [Green Version]
Location | Coordinates |
---|---|
Taihape Scenic Reserve (North Island) | −39.67635° S 175.80560° E |
Tongariro National Park (North Island) | −39.02237° S 175.71810° E |
Kaimanawa Forest Park (North Island) | −38.94721° S 175.94370° E |
Lake Rotopounamu Scenic Reserve (North Island) | −39.02656° S 175.73502° E |
Kahurangi National Park (South Island) | −41.07224° S 172.59166° E |
Paringa Forest (South Island) | −43.69379° S 169.40724° E |
Arthur’s Pass National Park (South Island) | −42.94215° S 171.56414° E |
Kaituna Valley Scenic Reserve (South Island) | −43.71655° S 172.7554° E |
Peel Forest (South Island) | −43.91835° S 171.25934° E |
Otago Peninsula Scenic Reserve (South Island) | −45.88184° S 170.58049° E |
Treatment | Microbial Communities Similarity a | Microbial Richness a |
---|---|---|
Location | 0.081 | 0.095 |
Plant organ | 0.001 ** | <0.001 ** |
Location vs. Plant organ | 0.002 ** | <0.001 ** |
Treatment | Microbial Communities Similarity a | Microbial Richness a |
---|---|---|
Location | 0.002 ** | 0.121 |
Plant organ | 0.001 ** | 0.015 * |
Plant age | 0.002 ** | 0.785 |
Location vs. Plant organ | 0.001 ** | <0.001 ** |
Location vs. Plant age | 0.164 | 0.448 |
Plant organ vs. Plant age | 0.001 ** | 0.393 |
Plant organ vs. Location vs. Plant age | 0.001 ** | 0.060 |
Location | Plant Organ | NCBI Match | Identity (%) | Classification |
---|---|---|---|---|
Kahurangi Nat. Park | Stem | Acrocalymma vagum strain 29T (1) (KP784427) | 100 | Acrocalymma sp. |
Kaituna valley scenic reserve | Root | Alternaria tenuissima isolate F293.82.1 (MZ678531) | 100 | Alternaria sp. |
Kaituna valley scenic reserve | Root | Chaetomium globosum isolate 1 (FJ791145) | 99 | Chaetomium sp. |
Kaituna valley scenic reserve | Stem | Paraconiothyrium sp. isolate MBD_4091 (MK595563) | 98 | Paraconiothyrium sp. |
Kaituna valley scenic reserve | Stem | Fungal sp. isolate 81 (MT820053) | 100 | Ascomycota |
Kaituna valley scenic reserve | Stem | Aspergillius arcoverdensis strain CBS DTO_316-F9 (KY808749) | 100 | Aspergillus sp. |
Kaituna valley scenic reserve | Root | Aspergillus parvulus culture IBT:22045 (KX423655) | 100 | Aspergillus sp. |
Arthur’s Pass nat. park | Root | Myceliophthora verrucosa (KM527251) | 100 | Myceliophthora sp. |
Arthur’s Pass nat. park | Stem | Chaetomium cupreum (KM357332) | 100 | Chaetomium sp. |
Tongariro nat. park | Root | Chaetomium globosum strain SYP-F8042 (MN960568) | 100 | Chaetomium sp. |
Lake Rotopounamu | Root | Chaetomium globosum isolate UWR_157 (MN654349) | 99 | Chaetomium sp. |
Kaituna valley scenic reserve | Root | Cadophora sp. BESC103j (KC007139) | 100 | Cadophora sp. |
Kahurangi Nat. Park | Stem | Cadophora sp. BESC103j (KC007139) | 100 | Cadophora sp. |
Kahurangi Nat. Park | Stem | Cadophora sp. isolate 500-G (MK163779) | 100 | Cadophora sp. |
Kahurangi Nat. Park | Leaf | Paraconiothyrium variabile isolate BL (KR909137) | 99 | Paraconiothyrium sp. |
Taihape scenic reseve | Root | Paraphoma chrysanthemicola strain HLP7 (MG025864) | 100 | Paraphoma sp. |
Lake Rotopounamu | Stem | Penicillium sp. strain UNIJAG.PL.202 (MT357207) | 100 | Penicillium sp. |
Lake Rotopounamu | Stem | Penicillium brefeldianum strain G26 (MT601953) | 100 | Penicillium sp. |
Lake Rotopounamu | Stem | Penicillium sp. E/As/10/7 (JX238733) | 100 | Penicillium sp. |
Kaimanawa forest park | Stem | Periconia macrospinosa strain ZMXR37 (MT446142) | 100 | Periconia sp. |
Arthur’s Pass nat. park | Stem | Pezicula ericae isolate ARSL_190907.7 | 100 | Pezicula sp. |
Arthur’s Pass nat. park | Stem | Pezicula ericae (NR_155653) | 99 | Pezicula sp. |
Taihape scenic reseve | Root | Phoma sp. NRRL 54108 (HM751088) | 99 | Phoma sp. |
Tongariro nat. park | Root | Phomopsis sp. isolate 5(1)b (MT278345) | 100 | Phomopsis sp. |
Kaimanawa forest park | Root | Diaporthe columnaris (MN540315) | 99 | Phomopsis sp. |
Arthur’s Pass nat. park | Root | Fusarium sp. (MH550484) | 100 | Fusarium sp. |
Taihape scenic reseve | Root | Fusarium acuminatum isolate N-51-1 (MT566456) | 100 | Fusarium sp. |
Taihape scenic reseve | Root | Fusarium tricinctum strain ME4 (MK559443) | 100 | Fusarium sp. |
Taihape scenic reseve | Stem | Fusarium solani isolate SY1 (MT605584) | 100 | Fusarium sp. |
Tongariro nat. park | Stem | Fusarium solani isolate N-54-1 (MT560379) | 100 | Fusarium sp. |
Taihape scenic reseve | Leaf | Diplogelasinospora grovesii CBS 340.73 (NR_077164) | 94 | Diplogelasinospora sp. |
Taihape scenic reseve | Root | Diplogelasinospora grovesii CBS 340.73 (NR_077164) | 94 | Diplogelasinospora sp. |
Peel forest | Leaf | Diplogelasinospora grovesii CBS 340.73 (NR_077164) | 94 | Diplogelasinospora sp. |
Peel forest | Stem | Clonostachys sp. isolate RL478 (MT557564) | 100 | Clonostachys sp. |
Peel forest | Stem | Clonostachys rosea isolate SRRB-171 (MT210883) | 100 | Clonostachys sp. |
Peel forest | Stem | Trichoderma sp. (MT557215) | 100 | Trichoderma sp. |
Peel forest | Stem | Trichoderma koningiopsis strain Tk1 (MT111912) | 100 | Trichoderma sp. |
Lake Rotopounamu | Root | Trichoderma viride isolate CTs9 (MK290390) | 100 | Trichoderma sp. |
Tongariro nat. park | Root | Trichoderma spirale isolate ELF14 (v) | 100 | Trichoderma sp. |
Paringa forest | Stem | Chaetomium G7 (MG548563) | 100 | Chaetomium sp. |
Peel forest | Leaf | Fusarium tricinctum (MH931273) | 100 | Fusarium sp. |
Paringa forest | Stem | Metarhizium sp. (DQ385622) | 100 | Metarhizium sp. |
Arthur’s Pass nat. park | Stem | Pezicula neosporulosa (LC206659) | 100 | Pezicula sp. |
Paringa forest | Stem | Pezicula sp. 1 ICMP 18831 (JN225940) | 100 | Pezicula sp. |
Peel forest | Leaf | Phoma sp. H39 (GU566295) | 100 | Phoma sp. |
Arthur’s Pass nat. park | Root | Hypocrea lixii DAOM 229978 (EF191298) | 100 | Trichoderma sp. |
Paringa forest | Stem | Trichoderma sp. XY24 (KX856006) | 100 | Trichoderma sp. |
Paringa forest | Stem | Trichoderma harzianum strain I 33 (KT351798) | 100 | Trichoderma sp. |
Peel forest | Stem | Xylariaceae sp. 5 ICMP 18786 (JN225905) | 100 | Xylariaceae sp. |
Peel forest | Leaf | Xylariaceae sp. 5 ICMP 18786 (JN225905) | 100 | Xylariaceae sp. |
Isolate | N. luteum | N. parvum | I. liriodendri | N. ditissima | C. albicans | S. aureus | E. coli |
---|---|---|---|---|---|---|---|
Chaetomium sp. PR1BC2 | ++ | ++ | ++ | ++ | +++ | +++ | − |
Fusarium sp. P4LC2 | ++ | ++ | + | + | +++ | +++ | − |
Metarhizium sp. PR1SB1 | +++ | +++ | +++ | +++ | - | +++ | − |
Pezicula sp. AF2 | +++ | +++ | +++ | +++ | +++ | +++ | − |
Pezicula sp. PRY2BA2 | +++ | +++ | +++ | +++ | +++ | +++ | − |
Phoma sp. P1LA4 | +++ | +++ | + | + | +++ | +++ | − |
Trichoderma sp. F3 | +++ | +++ | ++ | ++ | ++ | +++ | − |
Trichoderma sp. PRY2BA21 | +++ | +++ | ++ | + | +++ | +++ | − |
Trichoderma sp. PRY2BC1 | ++ | +++ | ++ | ++ | +++ | +++ | − |
Xylariaceae sp. P4BB2 | ++ | ++ | + | + | +++ | +++ | − |
Treatment | Shoot Height (cm) | Shoot Dry Weight (g) | Root Dry Weight (g) | No. of Internodes |
---|---|---|---|---|
Chaetomium sp. PR1BC2 | 7.35 ab | 0.98 | 0.54 | 6.0 b |
Fusarium sp. P4LC2 | 6.79 ab | 1.10 | 0.59 | 7.0 a |
Metarhizium sp. PR1SB1 | 4.99 cd | 1.10 | 0.47 | 4.3 d |
Trichoderma sp. PRY2BA21 | 8.36 a 1 | 1.14 | 0.68 | 6.0 b |
Trichoderma sp. PRY3BC1 | 7.46 ab | 0.95 | 0.72 | 4.8 cd |
Xylariaceae sp. P4BB2 | 6.84 ab | 0.99 | 0.62 | 5.3 bc |
Xylariaceae sp. P4LA3 | 5.97 bc | 0.93 | 0.69 | 5.8 b |
Untreated Control | 3.72 d | 1.02 | 0.59 | 4.1 d |
p Value | <0.001 | 0.88 | 0.31 | <0.001 |
LSD | 1.771 | NSD | NSD | 0.816 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purushotham, N.; Jones, E.; Monk, J.; Ridgway, H. Fungal Communities in the Native New Zealand Medicinal Plant Pseudowintera colorata (Horopito) Are Determined by Plant Organ Type and Host Maturity with Key Members Promoting Plant Growth. Microorganisms 2021, 9, 2576. https://doi.org/10.3390/microorganisms9122576
Purushotham N, Jones E, Monk J, Ridgway H. Fungal Communities in the Native New Zealand Medicinal Plant Pseudowintera colorata (Horopito) Are Determined by Plant Organ Type and Host Maturity with Key Members Promoting Plant Growth. Microorganisms. 2021; 9(12):2576. https://doi.org/10.3390/microorganisms9122576
Chicago/Turabian StylePurushotham, Neeraj, Eirian Jones, Jana Monk, and Hayley Ridgway. 2021. "Fungal Communities in the Native New Zealand Medicinal Plant Pseudowintera colorata (Horopito) Are Determined by Plant Organ Type and Host Maturity with Key Members Promoting Plant Growth" Microorganisms 9, no. 12: 2576. https://doi.org/10.3390/microorganisms9122576
APA StylePurushotham, N., Jones, E., Monk, J., & Ridgway, H. (2021). Fungal Communities in the Native New Zealand Medicinal Plant Pseudowintera colorata (Horopito) Are Determined by Plant Organ Type and Host Maturity with Key Members Promoting Plant Growth. Microorganisms, 9(12), 2576. https://doi.org/10.3390/microorganisms9122576