The Kynurenine Pathway is Differentially Activated in Children with Lyme Disease and Tick-Borne Encephalitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ethics
2.3. Analysis of KYNA and Kynurenine
2.4. Analysis of Cytokines
2.5. Statistical Analysis
3. Results
3.1. CSF Levels of Kynurenine and KYNA
3.2. Correlations between CSF Kynurenine or KYNA with Inflammatory Cytokines
4. Discussion
5. Strength and limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fowler, A.; Stödberg, T.; Eriksson, M.; Wickström, R. Childhood encephalitis in Sweden: Etiology, clinical presentation and outcome. Eur. J. Paediatr. Neurol. 2008, 12, 484–490. [Google Scholar] [CrossRef]
- Mygland, Å.; Ljøstad, Å.; Fingerle, V.; Rupprecht, T.; Schmutzhard, E.; Steiner, I. EFNS guidelines on the diagnosis and management of European lyme neuroborreliosis. Eur. J. Neurol. 2010, 17, 8-e4. [Google Scholar] [CrossRef]
- Smittskyddsinstitutet. Laboratoriediagnostik av Borreliainfektion. (Laboratory Diagnostics of Borrelia Infection). Solna: Folkhälsomyndigheten; 2015. Swedish. Epidemiological Annual Report 2015 in Sweden. 2015. Available online: https://www.folkhalsomyndigheten.se/contentassets/eef7c263a25f4095907742d0bc03762e/laboratoriediagnostik-av-borreliainfektion-2013-101-28.pdf (accessed on 2 February 2021).
- Fowler, Å.; Forsman, L.; Eriksson, M.; Wickström, R. Tick-borne encephalitis carries a high risk of incomplete recovery in children. J. Pediatr. 2013, 163, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, M.E.; Orvell, C.; Engman, M.L.; Wide, K.; Lindquist, L.; Lidefelt, K.J.; Sundin, M. Tick-borne encephalitis in childhood rare or missed? Pediatr. Infect. Dis. J. 2011, 30, 355–357. [Google Scholar] [CrossRef]
- Gyllemark, P.; Forsberg, P.; Ernerudh, J.; Henningsson, A.J. Intrathecal Th17- and B cell-associated cytokine and chemokine responses in relation to clinical outcome in Lyme neuroborreliosis: A large retrospective study. J. Neuroinflamm. 2017, 1, 14–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietikäinen, A.; Maksimow, M.; Kauko, T.; Hurme, S.; Salmi, M.; Hytönen, J. Cerebrospinal fluid cytokines in Lyme neuroborreliosis. J. Neuroinflamm. 2016, 18, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henningsson, A.J.; Gyllemark, P.; Lager, M.; Skogman, B.H.; Tjernberg, I. Evaluation of two assays for CXCL13 analysis in cerebrospinal fluid for laboratory diagnosis of Lyme neuroborreliosis. APMIS 2016, 124, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Ygberg, S.; Fowler, Å.; Bogdanovic, G.; Wickström, R. The Cerebrospinal Fluid Interleukin-6/Interleukin-10 Ratio Differentiates Pediatric Tick-borne Infections. Pediatr. Infect. Dis. J. 2020. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016, 37, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opitz, C.A.; Litzenburger, U.M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011, 478, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liang, X.; Peterson, A.J.; Munn, D.H.; Blazar, B.R. The Indoleamine 2,3-Dioxygenase Pathway Is Essential for Human Plasmacytoid Dendritic Cell-Induced Adaptive T Regulatory Cell Generation. J. Immunol. 2008, 18, 5396–5404. [Google Scholar] [CrossRef] [PubMed]
- Fallarino, F.; Grohmann, U.; Vacca, C.; Orabona, C.; Spreca, A.; Fioretti, M.C.; Puccetti, P. T cell apoptosis by tryptophan catabolism. Adv. Exp. Med. Biol. 2003, 527, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, G.J.; Kerr, S.J.; Smythe, G.A.; Smith, D.G.; Kapoor, V.; Armati, P.J.; Croitoru, J.; Brew, B.J. Kynurenine pathway metabolism in human astrocytes: A paradox for neuronal protection. J. Neurochem. 2001, 78, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.G.; Danysz, W.; Quack, G.; Hartmann, S.; Lorenz, B.; Wollenburg, C.; Baran, L.; Przegalinski, E.; Kostowski, W.; Krzascik, P.; et al. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: Electrophysiological, biochemical and behavioral characterization. J. Pharmacol. Exp. Ther. 1997, 283, 1264–1275. [Google Scholar] [PubMed]
- Hilmas, C.; Pereira, E.F.; Alkondon, M.; Rassoulpour, A.; Schwarcz, R.; Albuquerque, E.X. The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. 2001, 21, 7463–7473. [Google Scholar] [CrossRef] [PubMed]
- Sellgren, C.M.; Kegel, M.E.; Bergen, S.E.; Ekman, C.J.; Olsson, S.; Larsson, M.; Vawter, M.P.; Backlund, L.; Sullivan, P.F.; Sklar, P.; et al. A genome-wide association study of kynurenic acid in cerebrospinal fluid: Implications for psychosis and cognitive impairment in bipolar disorder. Psychiatry 2016, 21, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Atlas, A.; Franzen-Röhl, E.; Söderlund, J.; Jönsson, E.G.; Samuelsson, M.; Schwieler, L.; Sköldenberg, B.; Engberg, G. Sustained Elevation of Kynurenic Acid in the Cerebrospinal Fluid of Patients with Herpes Simplex Virus Type 1 Encephalitis. Int. J. Tryptophan Res. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sühs, K.W.; Novoselova, N.; Kuhn, M.; Seegers, L.; Kaever, V.; Müller-Vahl, K.; Trebst, C.; Skripuletz, T.; Stangel, M.; Pessler, F.J. Kynurenine Is a Cerebrospinal Fluid Biomarker for Bacterial and Viral Central Nervous System Infections. Infect. Dis. 2019, 5, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Fuhs, D.; Dotevall, L.; Hagberg, L.; Werner, E.; Wächter, H. Kynurenine in cerebrospinal fluid of patients with Lyme neuroborreliosis. Immun. Infect. Dis. 1991, 1, 271–274. [Google Scholar]
- Holtze, M.; Mickiené, A.; Atlas, A.; Lindquist, L.; Schwieler, L. Elevated cerebrospinal fluid kynurenic acid levels in patients with tick-borne encephalitis. J. Intern. Med. 2012, 272, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linderholm, K.R.; Skogh, E.; Olsson, S.K.; Dahl, M.L.; Holtze, M.; Engberg, G.; Samuelsson, M.; Erhardt, S. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull. 2012, 38, 426–432. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.r-project.org (accessed on 2 February 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Alberati-Giani, D.; Ricciardi-Castagnoli, P.; Köhler, C.; Cesura, A.M. Regulation of the kynurenine metabolic pathway by interferon-γ in murine cloned macrophages and microglial cells. Adv. Exp. Med. Biol. 1996, 398, 171–175. [Google Scholar] [CrossRef]
- Fujigaki, H.; Saito, K.; Fujigaki, S.; Takemura, M.; Sudo, K.; Ishiguro, H.; Seishima, M.J. The signal transducer and activator of transcription 1α and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: Involvement of p38 mitogen-activated protein kinase and nuclear factor-κB pathways, and synergistic effect of several proinflammatory cytokines. Biochemistry 2006, 139, 655–662. [Google Scholar] [CrossRef]
- Jung, I.D.; Lee, C.M.; Jeong, Y.I.; Lee, J.S.; Park, W.S.; Han, J.; Park, Y.M. Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett. 2007, 581, 1449–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, J.C.; André, C.; Wang, Y.; Lawson, M.A.; Szegedi, S.S.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R.J. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus calmette-guérin. Neuroscience 2009, 29, 4200–4209. [Google Scholar] [CrossRef] [PubMed]
- Schwieler, L.; Larsson, M.K.; Skogh, E.; Kegel, M.E.; Orhan, F.; Abdelmoaty, S.; Finn, A.; Bhat, M.; Samuelsson, M.; Lundberg, K. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia—Significance for activation of the kynurenine pathway. J. Psychiatry Neurosci. 2015, 2, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Liebau, C.; Baltzer, A.W.; Schmidt, S.; Roesel, C.; Karreman, C.; Prisack, J.B.; Bojar, H.; Merk, H. Interleukin-12 and interleukin-18 induce indoleamine 2,3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-γ. Anticancer Res. 2002, 22, 931–936. [Google Scholar]
- Yadav, M.C.; Burudi, E.M.; Alirezaei, M.; Flynn, C.C.; Watry, D.D.; Lanigan, C.M.; Fox, H.S. IFN-γ-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 2007, 55, 1385–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahanonda, R.; Sa-Ard-Iam, N.; Montreekachon, P.; Pimkhaokham, A.; Yongvanichit, K.; Fukuda, M.M.; Pichyangkul, S.J. IL-8 and IDO Expression by Human Gingival Fibroblasts via TLRs. J. Immunol. 2007, 178, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Jung, I.D.; Lee, M.G.; Chang, J.H.; Lee, J.S.; Jeong, Y.I.; Lee, C.M.; Park, W.S.; Han, J.; Seo, S.K.; Lee, S.Y.; et al. Blockade of Indoleamine 2,3-Dioxygenase Protects Mice against Lipopolysaccharide-Induced Endotoxin Shock. J. Immunol. 2009, 182, 3146–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagawa, Y.; Iwabuchi, K.; Onoé, K. Immunology. Co-operative action of interleukin-10 and interferon-γ to regulate dendritic cell functions. Immunology 2009, 127, 345–353. [Google Scholar] [CrossRef]
- Grygorczuk, S.; Parczewski, M.; Moniuszko, A.; Świerzbińska, R.; Kondrusik, M.; Zajkowska, J.; Czupryna, P.; Dunaj, J.; Boroń-Kaczmarska, A.; Pancewicz, S. Increased concentration of interferon lambda-3, interferon beta and interleukin-10 in the cerebrospinal fluid of patients with tick-borne encephalitis. Cytokine 2015, 2, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mándi, Y.; Vécsei, L. The kynurenine system and immunoregulation. J. Neural Transm. 2012, 2, 197–209. [Google Scholar] [CrossRef]
- Fleckner, J.; Martensen, P.M.; Tolstrup, A.B.; Kjeldgaard, N.O.; Justesen, J. Differential regulation of the human, interferon inducible tryptophanyl-trna synthetase by various cytokines in cell lines. Cytokine 1995, 7, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.Y.; Anderson, S.L.; Xing, L.; Powell, R.J.; Tate, W.P. Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts. J. Biol. Chem. 1991, 266, 24245–24248. [Google Scholar] [CrossRef]
- Aucott, J.N.; Crowder, L.A.; Kortte, K.B. Development of a foundation for a case definition of post-treatment Lyme disease syndrome. Int. J. Infect. Dis. 2013, 17, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G. The clinical assessments treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef]
- DeLong, A.; Hsu, M.; Kotsoris, H. Estimation of cumulative number of post-treatment Lyme disease cases in the US, 2016 and 2020. BMC Public Health 2019, 24, 352. [Google Scholar] [CrossRef] [PubMed]
- Skogman, B.H.; Glimåker, K.; Nordwall, M.; Vrethem, M.; Ödkvist, L.; Forsberg, P. Long-term clinical outcome after lyme neuroborreliosis in childhood. Pediatrics 2012, 130, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.; Sparrow, S.S.; Shapiro, E.D. Long-term neuropsychologic and health outcomes of children with facial nerve palsy attributable to Lyme disease. Pediatrics 2003, 112, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Bloom, B.J.; Wyckoff, P.M.; Meissner, H.C.; Steere, A.C. Neurocognitive abnormalities in children after classic manifestations of Lyme disease. Pediatr. Infect. Dis. J. 1998, 17, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zotter, S.; Koch, J.; Schlachter, K.; Katzensteiner, S.; Dorninger, L.; Brunner, J.; Baumann, M.; Wolf-Magele, A.; Schmid, H.; Ulmer, H.; et al. Neuropsychological profile of children after an episode of neuroborreliosis. Neuropediatrics 2013, 44, 346–353. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.F.; Jackson, M.F.; Beazely, M.A. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit. Rev. Neurobiol. 2006, 18, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Pocivavsek, A.; Wu, H.Q.; Potter, M.C.; Elmer, G.I.; Pellicciari, R.R. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 2011, 36, 2357–2367. [Google Scholar] [CrossRef]
- Alexander, K.S.; Wu, H.Q.; Schwarcz, R.; Bruno, J.P. Normalization by the alpha7 positive modulator galantamine. Psychopharmacology 2012, 220, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Love, A.C.; Schwartz, I.; Petzke, M.M. Induction of indoleamine 2,3-dioxygenase by Borrelia burgdorferi in human immune cells correlates with pathogenic potential. J. Leukoc. Biol. 2015, 97, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engman, M.L.; Lindström, K.; Sallamba, M.; Hertz, C.; Sundberg, B.; Hansson, M.E.; Lindquist, L.; Orvell, C.; Lidefelt, K.J.; Sundin, M. One-year follow-up of tick-borne central nervous system infections in childhood. Pediatr. Infect. Dis J. 2012, 31, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Fowler, Å.; Ygberg, S.; Bogdanovic, G.; Wickström, R. Biomarkers in Cerebrospinal Fluid of Children With Tick-borne Encephalitis: Association With Long-term Outcome. Pediatr. Infect. Dis. J. 2016, 35, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Beal, M.F.; Swartz, K.J.; Isacson, O. Developmental changes in brain kynurenic acid concentrations. Brain Res. Dev. Brain Res. 1992, 24, 136–139. [Google Scholar] [CrossRef]
- Pocivavsek, A.; Thomas, M.A.; Elmer, G.I.; Bruno, J.P.; Schwarcz, R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology 2014, 231, 2799–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notarangelo, F.M.; Pocivavsek, A. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology 2017, 112, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, H.; Murakami, H.; Horiguchi, K.; Egawa, B. Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain Dev. 1995, 17, 327–329. [Google Scholar] [CrossRef]
- Lavebratt, C.; Olsson, S.; Backlund, L.; Frisén, L.; Sellgren, C.; Priebe, L.; Nikamo, P.; Träskman-Bendz, L.; Cichon, S.; Vawter, M.P.; et al. The KMO allele encoding Arg 452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Mol. Psychiatry 2014, 19, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atlas, A.; Gisslén, M.; Nordin, C.; Lindström, L.; Schwieler, L. Acute psychotic symptoms in HIV-1 infected patients are associated with increased levels of kynurenic acid in cerebrospinal fluid. Brain Behav. Immun. 2007, 21, 86–91. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wickström, R.; Fowler, Å.; Goiny, M.; Millischer, V.; Ygberg, S.; Schwieler, L. The Kynurenine Pathway is Differentially Activated in Children with Lyme Disease and Tick-Borne Encephalitis. Microorganisms 2021, 9, 322. https://doi.org/10.3390/microorganisms9020322
Wickström R, Fowler Å, Goiny M, Millischer V, Ygberg S, Schwieler L. The Kynurenine Pathway is Differentially Activated in Children with Lyme Disease and Tick-Borne Encephalitis. Microorganisms. 2021; 9(2):322. https://doi.org/10.3390/microorganisms9020322
Chicago/Turabian StyleWickström, Ronny, Åsa Fowler, Michel Goiny, Vincent Millischer, Sofia Ygberg, and Lilly Schwieler. 2021. "The Kynurenine Pathway is Differentially Activated in Children with Lyme Disease and Tick-Borne Encephalitis" Microorganisms 9, no. 2: 322. https://doi.org/10.3390/microorganisms9020322
APA StyleWickström, R., Fowler, Å., Goiny, M., Millischer, V., Ygberg, S., & Schwieler, L. (2021). The Kynurenine Pathway is Differentially Activated in Children with Lyme Disease and Tick-Borne Encephalitis. Microorganisms, 9(2), 322. https://doi.org/10.3390/microorganisms9020322