A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy (Literature Search Strategies/Identifying Data Source)
2.1.1. Databases Searched
2.1.2. Keywords Used in the Search
2.2. Selection Criteria
Defining Vaccine Efficacy for Selecting Eligible Studies for This Review
2.3. Data Extraction
2.4. Data Analysis
3. Results
3.1. Search Results
3.1.1. Screening Process
3.1.2. Eligibility
Trial No. | Vaccine Formulations, Antigens, and Regimens | Bacterial Challenge Strain (Dose (log10 CFU)) and Day of Challenge | Age of Chickens at the End of Study (Days) | Levels of Campylobacter jejuni Colonization (Mean log10 CFU/gram 1 and/or ± Standard Error of Mean) Following Challenge | Reduction in Levels (Mean log10 CFU/gram) of C. jejuni Colonization Reported 2 | Reference | |
---|---|---|---|---|---|---|---|
Vaccinated Broilers | Non-Vaccinated Broilers | ||||||
1 | Crude cell lysate vaccine with 125 µg of total outer membrane proteins (OMP) encapsulated with poly lactide-co-glycolide nanoparticles (OMP-NP), orally with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | 6.3 3 | 6.7 3 | Non-significant 0.4 log 10 reduction | Annamalai et al. [47] |
2 | Crude cell lysate vaccine with 125 µg of OMP, orally with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | 5.9 3 | 6.7 3 | Non-significant 0.8 log10 reduction 4 | Annamalai et al. [47] |
3 | Crude cell lysate vaccine with 125 µg of OMPs-NP, subcutaneously with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | <1.00 (below detection limit) | 6.7 3 | Significant 5.7 log10 reductions | Annamalai et al. [47] |
4 | Crude cell lysate vaccine with 125 µg of OMP, orally with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | <1.00 (below detection limit) | 6.7 3 | Significant 5.7 log10 reductions 4 | Annamalai et al. [47] |
5 | Crude cell lysate vaccine with 25 µg of OMP-NP, subcutaneously with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | 5.5 3 | 6.7 3 | Non-significant 1.2 log10 reductions | Annamalai et al. [47] |
6 | Crude cell lysate vaccine with 250 µg of OMP-NP, orally with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | 5.8 3 | 6.7 3 | Non-significant 0.9 log10 reductions | Annamalai et al. [47] |
7 | Crude cell lysate vaccine with 25 µg of OMP, orally with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | 5.1 3 | 6.7 3 | Non-significant 1.6 log10 reductions 4 | Annamalai et al. [47] |
8 | Crude cell lysate vaccine with 250 µg of OMP, orally with booster | C. jejuni 81–176 (8.0) and Day 35 | 42 | 5.7 3 | 6.7 3 | Non-significant 1.0 log10 reduction 4 | Annamalai et al. [47] |
9 | 109 CFU of L. lactis NZ9000 strain vectored vaccine expressing C. jejuni surface-exposed lipoprotein A (JlpA), intragastrically with booster | C. jejuni BCH71 (9.0) and Day 28 | 35 | 6.43 ± 0.107 in Trial#1 8.06 ± 0.05 in Trial#2 9.078 ± 0.052 in Trial#3 | 7.22 ± 0.106 in Trial#1 8.53 ± 0.089 in Trial#2 9.56 ± 0.075 in Trial#3 | Significant 0.79 log10 reduction in Trial#1 Significant 0.47 log10 reduction in #2 Significant 0.482 log10 reduction in #3 | Gorain et al. [48] |
10 | Subunit vaccine with 50 µg of recombinant JlpA emulsified in Freund’s incomplete adjuvant, subcutaneously with booster | C. jejuni BCH71 (9.0) and Day 28 | 35 | 6.89 ± 0.091 in Trial#1 7.90 ± 0.05 in Trial#2 9.15 ± 0.080 in Trial#3 | 7.00 ± 0.107 in Trial#1 8.59 ± 0.069 in Trial#2 9.64 ± 0.037 in Trial#3 | Non-significant 0.11 log10 in Trial#1 Significant 0.69 log10 in Trial#2 Significant 0.49 log10 in Trial#3 | Gorain et al. [48] |
11 | 25 µg of Capsular polysaccharide conjugated with diphtheria toxoid of Corynebacterium diphtheriae vaccine (CPSconj) mixed with 10 µg of CpG ODN 2007, subcutaneously with booster | C. jejuni 81–176 (7.3) and Day 28 | 38 | 7.55 ± 0.15 | 8.11 ± 0.15 | Significant 0.56 log10 reduction 5 | Hodgins et al. [49] |
12 | 25 µg of CPSconj mixed with 100 µL of Addavax, subcutaneously with booster | C. jejuni 81–176 (7.3) and Day 28 | 38 | 7.47 ± 0.14 | 8.11 ± 0.15 | Significant 0.64 log10 redcution 5 | Hodgins et al. [49] |
13 | 25 µg of CPSconj, subcutaneously with booster | C. jejuni 81–176 (7.3) and Day 28 | 38 | 7.38 ± 0.15 | 8.11 ± 0.15 | Significant 0.73 log10 reduction | Hodgins et al. [49] |
14 | DNA vaccine (prime) with 300 µg of purified DNA of Campylobacter hemolysin activation/secretion protein (YP_001000437.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP_001000437.1 protein emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 4.41 ± 2.15 | 8.02 ± 1.19 | Significant 3.61 log10 reductions upon heterologous challenge | Meunier et al. [50] |
15 | DNA vaccine (prime) with 300 µg of purified DNA of YP_001000437.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP_001000437.1 protein emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 3.53 ± 1.86 (GenEq/g) | 5.45 ± 2.61 (GenEq/g) | Non-significant 1.92 log10 GenEq/g reductions upon heterologous challenge | Meunier et al. [50] |
16 | DNA vaccine (prime) with 300 µg of purified DNA of flagellin protein family (FlgL) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgL emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 5.99 ± 1.48 | 8.02 ± 1.19 | Significant 2.03 log10 reductions upon heterologous challenge | Meunier et al. [50] |
17 | DNA vaccine (prime) with 300 µg of purified DNA of FlgL cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgL emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 4.39 ± 2.37 (GenEq/g) | 5.45 ± 2.61 (GenEq/g) | Non-significant 1.06 log10 GenEq/g reductions upon heterologous challenge | Meunier et al. [50] |
18 | DNA vaccine (prime) with 300 µg of purified DNA of hypothetical protein (YP99838.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP99838.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 5.94 ± 1.48 | 8.02 ± 1.19 | Significant 2.08 log10 reductions upon heterologous challenge | Meunier et al. [50] |
19 | DNA vaccine (prime) with 300 µg of purified DNA of YP99838.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of YP99838.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 6.83 ± 0.91 (GenEq/g) | 5.45 ± 2.61 (GenEq/g) | No reduction upon heterologous challenge | Meunier et al. [50] |
20 | DNA vaccine (prime) with 300 µg of purified DNA of hypothetical protein (YP99817.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP99817.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 3.75 ± 1.49 | 8.02 ± 1.19 | Significant 4.27 log10 reductions upon heterologous challenge | Meunier et al. [50] |
21 | DNA vaccine (prime) with 300 µg of purified DNA of YP99817.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP99817.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 6.19 ± 2.16 (GenEq/g) | 5.45 ± 2.61 (GenEq/g) | No reduction upon heterologous challenge | Meunier et al. [50] |
22 | DNA vaccine with 300 µg of purified DNA of YP99817.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 7.04 | 6.2 3 | No reduction upon heterologous challenge | Meunier et al. [50] |
23 | Subunit vaccine with 100 µg of recombinant YP99817.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 7.87 | 7.03 | No reduction upon heterologous challenge | Meunier et al. [50] |
24 | DNA vaccine (prime) with 300 µg of purified DNA of flagellar hook-basal body complex protein (FlgE-1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgE-1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 5.8 3 | 8.02 ± 1.19 | Non-significant 2.20 log10 reductions (a wide range of individual colonized broilers was observed in the work of Meunier et al.) upon heterologous challenge | Meunier et al. [50] |
25 | DNA vaccine (prime) with 300 µg of purified DNA of flagellar hook-associated protein (FlgK) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgK emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 6.3 3 | 8.02 ± 1.19 | Non-significant 1.72 log10 reductions (a wide range of individual colonized broilers was observed in the work of Meunier et al.) upon heterologous challenge | Meunier et al. [50] |
26 | DNA vaccine (prime) with 300 µg of multiple DNA proteins (a combination of purified YP_001000437.1, FlgL, FlgK, FliE-1, YP99817.1, and YP99838.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant multiple proteins (YP_001000437.1, FlgL, FlgK, FliE-1, YP99817.1, and YP99838.1) emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni C97Anses640 (5.0) and Day 19 | 42 | 7.9 3 | 8.02 ± 1.19 | Non-significant 0.12 log10 reduction (No decrease of C. jejuni colonization reported in the original paper) upon heterologous challenge | Meunier et al. [50] |
27 | DNA vaccine with 100 µg of purified DNA of flagellin A protein (FlaA) cloned into pcDNA3 plasmid mixed with 25 µg of CpG ODN2007, subcutaneously with booster | C. jejuni 81–176 (5.0) and Day 21 | 42 | 7.7 3 (geometric mean) | 7.8 3 (geometric mean) | Non-significant 0.1 geometric mean log10 reduction | Meunier et al. [51] |
28 | DNA vaccine with 100 µg of purified DNA of FlaA cloned into pcDNA3 plasmid mixed with 25 µg of CpG ODN2007, intramuscularly with booster | C. jejuni 81–176 (5.0) and Day 21 | 42 | 5.0 3 (geometric mean) | 5.2 3 (geometric mean) | Non-significant 0.2 median log10 reductions | Meunier et al. [51] |
29 | DNA vaccine (prime) with 150 µg of purified DNA of FlaA into pcDNA3 plasmid mixed with 25 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlaA emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | C. jejuni 81–176 (5.0) and Day 21 | 42 | 5.3 3 (geometric mean) | 5.2 3 (geometric mean) | No reduction | Meunier et al. [51] |
30 | Subunit vaccine with 240 µg of recombinant Campylobacter adhesion protein to fibronectin (CadF)6 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | C. jejuni F38011 (8.3) and Day 20 | 27 | 6.04 (median) | 7.76 (median) | 1.71 median log10 reductions 5 | Neal-McKinney et al. [25] |
31 | Subunit vaccine with 240 µg recombinant FlaA6 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | C. jejuni F38011 (8.3) and Day 20 | 27 | 4.41 (median) | 7.76 (median) | 3.35 median log10 reductions 5 | Neal-McKinney et al. [25] |
32 | Subunit vaccine with 240 µg recombinant fibronectin-like protein A (FlpA)6 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | C. jejuni F38011 (8.3) and Day 20 | 27 | 4.65 (median) | 7.76 (median) | 3.11 median log10 reductions 5 | Neal-McKinney et al. [25] |
33 | Subunit vaccine with 240 µg recombinant a component of multidrug efflux pump (CmeC) 6 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | C. jejuni F38011 (8.3) and Day 20 | 27 | 6.39 (median) | 7.76 (median) | No effect of reduction due to the widest range in the level of colonization observed by the authors from the original paper (even 1.37 median log10 reduction calculated from the supplement table provided 5) | Neal-McKinney et al. [25] |
34 | Subunit vaccine of 240 µg a fusion protein of recombinant CadF-FlaA-FlpA7 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | C. jejuni F38011 (8.3) and Day 20 | 27 | 4.6 (median) | 7.76 (median) | 3.16 median log10 reductions 5 | Neal-McKinney et al. [25] |
35 | 108 cells of E. coli wzy::kan strain vectored vaccine expressing C. jejuni protein glycosylation (N-glycan), orally with booster | C. jejuni 81–176 (6.0) and Day 28 | 35 | 5.7 3 (median) in Trial#1 7.6 3 (median) in Trial#2 | 9.0 3 (median) in Trial#1 9.6 3 (median) in Trial#2 | Significant 3.30 median log10 reductions in Trial#1 upon heterologous challenge Significant 2.00 median log10 reductions in Trial#2 upon heterologous challenge | Nothaft et al. [46] |
36 | A formalin-killed whole-cell vaccine with 6.75 × 107 CFU of bacterins mixed with oil adjuvants, subcutaneously | C. jejuni PD-316 (5.0) and Day 72 | 128 | 6.8 3 | 7.5 3 | Non-significant 0.7 log10 reduction 5 | Okamura et al. [52] |
37 | A formalin-killed whole-cell vaccine with 6.75 × 107 CFU of bacterins mixed with aluminum hydroxide gel adjuvant, subcutaneously with booster | C. jejuni PD-316 (5.0) and Day 72 | 128 | 6.7 3 | 7.5 3 | Non-significant 0.8 log10 reduction 5 | Okamura et al. [52] |
38 | Subunit vaccine with 40 µg of recombinant NHC flagellin mixed with 0.4 M urea, 10 mM Tris pH 9.0, 20% glycerol, 5 mM sucrose, in ovo | C. jejuni 81–116 (5.0) and Day 18 | 25 | 6.8 3 | 7.3 3 | Non-significant 0.5 log10 reduction | Radomska et al. [53] |
39 | Subunit vaccine with 20 µg of recombinant NHC flagellin mixed with 0.4 M urea, 10 mM Tris pH 9.0, 20% glycerol, 5 mM sucrose, in ovo | C. jejuni 81–116 (5.0) and Day 18 | 25 | 7.3 3 | 7.3 3 | No reduction | Radomska et al. [53] |
40 | 107 CFU of Salmonella Typhimurium (∆aroA) mutant-1 (STM-1) vectored vaccine expressing cysteine ABC transporter substrate-binding protein (CjaA) on chromosome | C. jejuni 81–116 (9.0) and Day 35 | 49 | 7.8 3 | 8.9 3 | 1.1 log10 reductions 5 | Saxena et al. [24] |
41 | 107 CFU of STM-1 vectored vaccine expressing CjaA in PMW2 plasmids | C. jejuni 81–116 (9.0) and Day 35 | 49 | 7.5 3 | 9.0 3 | 1.5 log10 reductions 5 | Saxena et al. [24] |
42 | 107 CFU of STM-1 vectored vaccine expressing glycoprotein Cj1496 periplasmic protein on chromosome | C. jejuni 81–116 (9.0) and Day 35 | 49 | 8.3 3 | 8.9 3 | 0.6 log10 reduction 5 | Saxena et al. [24] |
43 | 107 CFU of STM-1 vectored vaccine expressing Cj1496 periplasmic protein in PMW2 plasmids | C. jejuni 81–116 (9.0) and Day 35 | 49 | 8.0 3 | 9.0 3 | 1.0 log10 reduction 5 | Saxena et al. [24] |
44 | 107 CFU of STM-1 vectored vaccine expressing Campylobacter invasion antigen B (CiaB) on chromosome | C. jejuni 81–116 (9.0) and Day 35 | 49 | 7.7 3 | 8.9 3 | 1.2 log19 reductions 5 | Saxena et al. [24] |
45 | 107 CFU of STM-1 vectored vaccine expressing CiaB in PMW2 plasmids | C. jejuni 81–116 (9.0) and Day 35 | 49 | 8.6 3 | 9.0 3 | 0.4 log10 reduction 5 | Saxena et al. [24] |
46 | 107 CFU of STM-1 vectored vaccine expressing CadF on chromosome | C. jejuni 81–116 (9.0) and Day 35 | 49 | 7.8 3 | 8.9 3 | 1.1 log10 reductions 5 | Saxena et al. [24] |
47 | 107 CFU of STM-1 vectored vaccine expressing CadF in PMW2 plasmids | C. jejuni 81–116 (9.0) and Day 35 | 49 | 7.5 3 | 9.0 3 | 1.5 log10 reductions 5 | Saxena et al. [24] |
48 | 107 CFU of STM-1 vectored vaccine expressing CjaA, CadF, CiaB, and cj1496 on chromosome | C. jejuni 81–116 (9.0) and Day 35 | 49 | 7.0 3 | 8.9 3 | 1.9 log10 reductions 5 | Saxena et al. [24] |
49 | 107 CFU of STM-1 vectored vaccine expressing CjaA, CadF, CiaB, and cj1496 in PMW2 plasmids | C. jejuni 81–116 (9.0) and Day 35 | 49 | 6.8 3 | 9.0 3 | 2.2 log10 reductions 5 | Saxena et al. [24] |
50 | Subunit vaccine with 50 µg of recombinant hemolysin co-regulated protein (rHcp) mixed with Freund’s incomplete adjuvant, orally with booster | C. jejuni BCH 71 (8.0) and Day 28 | 35 | 6.9 3 | 8.9 3 | Significant 0.5 log10 reduction | Singh et al. [54] |
51 | Subunit vaccine with 50 µg of rHcp entrapped in chitosan-Sodium tripolyphosphate nanoparticles (CS-TPP NPs) (CS-TPP-rhcp), orally with booster | C. jejuni BCH 71 (8.0) and Day 28 | 35 | 6.5 3 | 7.53 | Significant 1.0 log10 reduction (as reported in the original paper) | Singh et al. [54] |
52 | Cell lysate vaccine with 4.3 µg of C. jejuni cell lysates, orally | C. jejuni 81–176 (7.0) and Day 15 | 37 | 5.7 3 in Trial#1 6.3 3 in Trial#2 | 7.8 3 in Trial#1 7.9 3 in Trial#2 | Significant 2.14 log10 reductions in Trial#1 (reported in the original paper) Significant 1.92 log10 reductions in Trial#2 (reported in the original paper) | Taha-Abdelaziz et al. [55] |
53 | Cell lysate vaccine with 21 µg of C. jejuni cell lysates, orally | C. jejuni 81–176 (7.0) and Day 15 | 37 | 6.9 3 | 7.6 3 | Non-significant 0.7 log reduction | Taha-Abdelaziz et al. [55] |
54 | Cell lysate vaccine with 4.3 µg of C. jejuni cell lysates combined with 5 µg of E-CpG, orally | C. jejuni 81–176 (7.0) and Day 15 | 37 | 5.5 3 | 7.9 3 6.93 | Significant 2.42 log10 reductions (compared with PBS as reported in the original paper) Significant 1.42 log10 reductions (compared with E-CpG alone) in this review as it was presented in the figure of the original paper | Taha-Abdelaziz et al. [55] |
55 | Subunit vaccine with 0.2 mg of recombinant DNA binding protein for biofilm formation (Dps) mixed with Freund’s complete adjuvant, subcutaneously with boosters | C. jejuni NCTC 11168 (5.0) and Day 34 | 44 | 8.12 (geometric mean) | 7.96 (geometric mean) | No reduction | Theoret et al. [56] |
56 | Bacterial density (O.D.600 = 10.0, 0.50 mL) of Salmonella Typhimurium strain χ9088 vectored vaccine (OD600, 0.5 mL) expressing Dps, orally with boosters | C. jejuni NCTC 11168 (5.0) and Day 34 | 36 | 3.72 (geometric mean) | 6.2 (geometric mean) | Significant 2.48 (geometric mean) log10 reductions | Theoret et al. [56] |
57 | 2 × 1010 CFU of Lactobacillus lactis NZ3900 vectored vaccine expressing cysteine ABC transporter substrate-binding protein (CjaA) fused to heat-labile enterotoxin B subunit (LTB) of E. coli (CjaA-LT-B), orally with boosters | C. jejuni NCTC 11168 (6.2) and Day 33 | 42 | 6.8 3 | 5.8 3 | No reduction | Wang et al. [57] |
58 | 2 × 1010 CFU of Lactobacillus lactis NZ3900 vectored vaccine expressing CjaA, orally with boosters | C. jejuni NCTC 11168 (6.2) and Day 33 | 42 | 6.0 3 | 5.8 3 | No reduction | Wang et al. [57] |
59 | Avirulent Salmonella Typhimurium χ3987 strain vectored vaccine (108 cells) expressing CjaA, orally with boosters | C. jejuni labeled with pUOA18 (8.3) and Day 28 | 40 | <3.00 (below detection limit) | 9.1 3 | Significant 6.0 log10 reductions (reported in the original paper) upon heterologous challenge | Wyszynska et al. [26] |
60 | 108 CFU of Salmonella Enteritidis (SE) vectored vaccine expressing Omp18 protein (Cj0013), peptidoglycan associated lipoprotein of Salmonella (PAL of Salmonella), and high mobility group box 1 protein (HMGB1), orally | C. jejuni field strain (6.8) and Day 7 | 43 | 7.14 ± 0.29 | 7.70 ± 0.29 | Non-significant 0.56 log10 reduction | Yang et al. [58] |
61 | 108 CFU of SE vectored vaccine expressing HMGB1, PAL of Salmonella, and Cj0013, orally | C. jejuni field strain (6.8) and Day 7 | 43 | 7.5 3 | 7.70 ± 0.29 | Non-significant 0.2 log10 reduction (non-significant) | Yang et al. [58] |
62 | 108 CFU of SE vectored vaccine expressing Cj0013, HMGB1, and PAL of Salmonella, orally | C. jejuni field strain (6.8) and Day 7 | 43 | 7.6 3 | 7.70 ± 0.29 | Non-significant 0.1 log10 reduction | Yang et al. [58] |
3.2. Vaccine Types
3.3. Vaccine Antigens and Vaccine Regimens
3.4. Levels of C. jejuni Loads (log10 CFU/g) in Cecal Contents as Vaccine Efficacy
3.5. Prevalence of Colonized Broilers in Vaccine Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef] [PubMed]
- EFSA, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 4634.
- Moffatt, C.R.; Fearnley, E.; Bell, R.; Wright, R.; Gregory, J.; Sloan-Gardner, T.; Kirk, M.; Stafford, R. Characteristics of Campylobacter Gastroenteritis Outbreaks in Australia, 2001 to 2016. Foodborne Pathog. Dis. 2020, 17, 308–315. [Google Scholar] [CrossRef] [PubMed]
- EFSA, Scientific Opinion on Quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 2010, 8, 1437. [CrossRef]
- O’Leary, M.C.; Harding, O.; Fisher, L.; Cowden, J. A continuous common-source outbreak of campylobacteriosis associated with changes to the preparation of chicken liver pâté. Epidemiol. Infect. 2008, 137, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Meade, K.G.; Narciandi, F.; Cahalane, S.; Reiman, C.; Allan, B.; O’Farrelly, C. Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 2008, 61, 101–110. [Google Scholar] [CrossRef]
- Romero-Barrios, P.; Hempen, M.; Messens, W.; Stella, P.; Hugas, M. Quantitative microbiological risk assessment (QMRA) of food-borne zoonoses at the European level. Food Control. 2013, 29, 343–349. [Google Scholar] [CrossRef]
- EFSA, Scientific Opinion on Campylobacterin broiler meat production: Control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011, 9, 2105. [CrossRef]
- Nauta, M.J.; Johannessen, G.; Adame, L.L.; Williams, N.; Rosenquist, H. The effect of reducing numbers of Campylobacter in broiler intestines on human health risk. Microb. Risk Anal. 2016, 68–77. [Google Scholar] [CrossRef]
- Smith, S.; Messam, L.L.; Meade, J.; Gibbons, J.; McGill, K.; Bolton, D.; Whyte, P. The impact of biosecurity and partial depopulation on Campylobacter prevalence in Irish broiler flocks with differing levels of hygiene and economic performance. Infect. Ecol. Epidemiol. 2016, 6, 31454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis de los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Metcalf, J.H.; Reyes-Herrera, I.; Dirain, M.L.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens. Poult. Sci. 2009, 88, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Skånseng, B.; Kaldhusdal, M.; Moen, B.; Gjevre, A.-G.; Johannessen, G.; Sekelja, M.; Trosvik, P.; Rudi, K. Prevention of intestinal Campylobacter jejuni colonization in broilers by combinations of in-feed organic acids. J. Appl. Microbiol. 2010, 109, 1265–1273. [Google Scholar] [CrossRef]
- Hermans, D.; Martel, A.; Van Deun, K.; Verlinden, M.; Van Immerseel, F.; Garmyn, A.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids. Poult. Sci. 2010, 89, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.H.; Donoghue, A.M.; Venkitanarayanan, K.; Reyes-Herrera, I.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. Water administration of the medium-chain fatty acid caprylic acid produced variable efficacy against enteric Campylobacter colonization in broilers1,2. Poult. Sci. 2011, 90, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Kittler, S.; Fischer, S.; Abdulmawjood, A.; Glünder, G.; Klein, G. Effect of Bacteriophage Application on Campylobacter jejuni Loads in Commercial Broiler Flocks. Appl. Environ. Microbiol. 2013, 79, 7525–7533. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, K.; Awad, W.A.; Mohnl, M.; Porta, R.; Biarnés, M.; Böhm, J.; Schatzmayr, G. Evaluating the efficacy of an avian-specific probiotic to reduce the colonization ofCampylobacter jejuni in broiler chickens. Poult. Sci. 2012, 91, 1825–1832. [Google Scholar] [CrossRef]
- Saint-Cyr, M.J.; Haddad, N.; Taminiau, B.; Poezevara, T.; Quesne, S.; Amelot, M.; Daube, G.; Chemaly, M.; Dousset, X.; Guyard-Nicodème, M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food Microbiol. 2017, 247, 9–17. [Google Scholar] [CrossRef]
- Stern, N.J.; Eruslanov, B.V.; Pokhilenko, V.D.; Kovalev, Y.N.; Volodina, L.L.; Perelygin, V.V.; Mitsevich, E.V.; Mitsevich, I.P.; Borzenkov, V.N.; Levchuk, V.P.; et al. Bacteriocins reduce Campylobacter jejuni colonization while bacteria producing bacteriocins are ineffective. Microb. Ecol. Heal. Dis. 2008, 20, 74–79. [Google Scholar] [CrossRef]
- Buckley, A.M.; Wang, J.; Hudson, D.L.; Grant, A.J.; Jones, M.A.; Maskell, D.J.; Stevens, M.P. Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry. Vaccine 2010, 28, 1094–1105. [Google Scholar] [CrossRef]
- Łaniewski, P.; Lis, M.; Wyszyńska, A.; Majewski, P.; Godlewska, R.; Jagusztyn-Krynicka, E.K. Assessment of chicken protection against Campylobacter jejuni infection by immunization with avirulent Salmonella enterica sv. Typhimurium strain producing Campylobacter CjaD/Pal protein. Vaccine Dev. Ther. 2012, 43. [Google Scholar] [CrossRef] [Green Version]
- Layton, S.L.; Morgan, M.J.; Cole, K.; Kwon, Y.M.; Donoghue, D.J.; Hargis, B.M.; Pumford, N.R. Evaluation of Salmonella-vectored Campylobacter peptide epitopes for reduction of Campylobacter jejuni in broiler chickens. Clin. Vaccine Immunol. 2011, 18, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickaby, B.; Eng, N.F.; Flint, A.; Stintzi, A.; Diaz-Mitoma, F. The Application of a Proteoliposome Adjuvant System in the Development of a Campylobacter jejuni Vaccine. Procedia Vaccinol. 2015, 9, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.; John, B.; Mu, M.; Van, T.T.H.; Taki, A.; Coloe, P.J.; Smooker, P.M. Strategies to Reduce Campylobacter Colonisation in Chickens. Procedia Vaccinol. 2013, 7, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Neal-McKinney, J.M.; Samuelson, D.R.; Eucker, T.P.; Nissen, M.S.; Crespo, R.; Konkel, M.E. Reducing Campylobacter jejuni Colonization of Poultry via Vaccination. PLoS ONE 2014, 9, e114254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyszyńska, A.; Raczko, A.; Lis, M.; Jagusztyn-Krynicka, E.K. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 2004, 22, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.D.; Oakes, R.D.; Redhead, K.; Crouch, C.F.; Francis, M.J.; Tomley, F.M.; Blake, D.P. Eimeria species parasites as novel vaccine delivery vectors: Anti-Campylobacter jejuni protective immunity induced by Eimeria tenella-delivered CjaA. Vaccine 2012, 30, 2683–2688. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xu, F.; Lin, J. Development and Evaluation of CmeC Subunit Vaccine against Campylobacter jejuni. J. Vaccines Vaccin. 2010, 1, 1. [Google Scholar]
- Rice, B.E.; Rollins, D.M.; Mallinson, E.T.; Carr, L.; Joseph, S.W. Campylobacter jejuni in broiler chickens: Colonization and humoral immunity following oral vaccination and experimental infection. Vaccine 1997, 15, 1922–1932. [Google Scholar] [CrossRef]
- Łaniewski, P.; Kuczkowski, M.; Chrząstek, K.; Woźniak, A.; Wyszyńska, A.; Wieliczko, A.; Jagusztyn-Krynicka, E.K. Evaluation of the immunogenicity of Campylobacter jejuni CjaA protein delivered by Salmonella enterica sv. Typhimurium strain with regulated delayed attenuation in chickens. World J. Microbiol. Biotechnol. 2013, 30, 281–292. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.G.D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Willer, T.; Pielsticker, C.; Gerzova, L.; Rychlik, I.; Rautenschlein, S. Differences in host breed and diet influence colonization by Campylobacter jejuni and induction of local immune responses in chicken. Gut Pathog. 2016, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, S.; Chaloner, G.; Kemmett, K.; Davidson, N.; Williams, N.; Kipar, A.; Humphrey, T.; Wigley, P. Campylobacter jejuni Is Not Merely a Commensal in Commercial Broiler Chickens and Affects Bird Welfare. mBio 2014, 5, e01364-14. [Google Scholar] [CrossRef] [Green Version]
- Rosenquist, H.; Nielsen, N.L.; Sommer, H.M.; Nørrung, B.; Christensen, B.B. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 2003, 83, 87–103. [Google Scholar] [CrossRef]
- De la Cruz, M.; Conrado, I.; Nault, A.; Perez, A.; Dominguez, L.; Alvarez, J. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Res. Veter. Sci. 2017, 114, 86–94. [Google Scholar] [CrossRef]
- Osterholm, M.T.; Kelley, N.S.; Sommer, A.; Belongia, A.E. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 36–44. [Google Scholar] [CrossRef]
- Lund, M.; Nordentoft, S.; Pedersen, K.; Madsen, M. Detection of Campylobacter spp. in Chicken Fecal Samples by Real-Time PCR. J. Clin. Microbiol. 2004, 42, 5125–5132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, G.A.; Szilagyi, P.G. Vaccine Epidemiology: Efficacy, Effectiveness, and the Translational Research Roadmap. J. Infect. Dis. 2010, 201, 1607–1610. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-M.; Chen, T.H.-H.; Wang, C.-H. Efficacy of Avian Influenza Vaccine in Poultry: A Meta-analysis. Avian Dis. 2010, 54, 1197–1209. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 11: Assessing risk. Crit. Care 2004, 8, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Engels, E.A.; E Falagas, M.; Lau, J.; Bennish, M.L. Typhoid fever vaccines: A meta-analysis of studies on efficacy and toxicity. BMJ 1998, 316, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Basta, N.E.; Halloran, M.E.; Matrajt, L.; Longini, I.M. Estimating Influenza Vaccine Efficacy From Challenge and Community-based Study Data. Am. J. Epidemiol. 2008, 168, 1343–1352. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 1 February 2021).
- Adams, L.J.; Zeng, X.; Lin, J. Development and Evaluation of Two Live Salmonella-Vectored Vaccines for Campylobacter Control in Broiler Chickens. Foodborne Pathog. Dis. 2019, 16, 399–410. [Google Scholar] [CrossRef]
- Liu, X.; Adams, L.J.; Zeng, X.; Lin, J. Evaluation of in ovo vaccination of DNA vaccines for Campylobacter control in broiler chickens. Vaccine 2019, 37, 3785–3792. [Google Scholar] [CrossRef]
- Nothaft, H.; Perez-Munoz, M.E.; Gouveia, G.J.; Duar, R.M.; Wanford, J.J.; Lango-Scholey, L.; Panagos, C.G.; Srithayakumar, V.; Plastow, G.S.; Coros, C.; et al. Co-administration of the Campylobacter jejuni N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens. Appl. Environ. Microbiol. 2017, 83, e01523-17. [Google Scholar] [CrossRef] [Green Version]
- Annamalai, T.; Pina-Mimbela, R.; Kumar, A.; Binjawadagi, B.; Liu, Z.; Renukaradhya, G.J.; Rajashekara, G. Evaluation of nanoparticle-encapsulated outer membrane proteins for the control of Campylobacter jejuni colonization in chickens. Poult. Sci. 2013, 92, 2201–2211. [Google Scholar] [CrossRef]
- Gorain, C.; Singh, A.; Bhattacharyya, S.; Kundu, A.; Lahiri, A.; Gupta, S.; Mallick, A.I. Mucosal delivery of live Lactococcus lactis expressing functionally active JlpA antigen induces potent local immune response and prevent enteric colonization of Campylobacter jejuni in chickens. Vaccine 2020, 38, 1630–1642. [Google Scholar] [CrossRef]
- Hodgins, D.C.; Barjesteh, N.; Paul, M.S.; Ma, Z.; A Monteiro, M.; Sharif, S. Evaluation of a polysaccharide conjugate vaccine to reduce colonization by Campylobacter jejuni in broiler chickens. BMC Res. Notes 2015, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, M.; Guyard-Nicodème, M.; Vigouroux, E.; Poezevara, T.; Beven, V.; Quesne, S.; Bigault, L.; Amelot, M.; Dory, D.; Chemaly, M. Promising new vaccine candidates against Campylobacter in broilers. PLoS ONE 2017, 12, e0188472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, M.; Guyard-Nicodème, M.; Vigouroux, E.; Poezevara, T.; Béven, V.; Quesne, S.; Amelot, M.; Parra, A.; Chemaly, M.; Dory, D. A DNA prime/protein boost vaccine protocol developed against Campylobacter jejuni for poultry. Vaccine 2018, 36, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Tominaga, A.; Ueda, M.; Ohshima, R.; Kobayashi, M.; Tsukada, M.; Yokoyama, E.; Takehara, K.; Deguchi, K.; Honda, T.; et al. Irrelevance between the Induction of Anti-Campylobacter Humoral Response by a Bacterin and the Lack of Protection against Homologous Challenge in Japanese Jidori Chickens. J. Veter Med. Sci. 2012, 74, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Radomska, K.A.; Vaezirad, M.M.; Verstappen, K.M.; Wösten, M.M.S.M.; Wagenaar, J.A.; Van Putten, J.P.M. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni. PLoS ONE 2016, 11, e0164837. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Nisaa, K.; Bhattacharyya, S.; Mallick, A.I. Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens. Mol. Immunol. 2019, 111, 182–197. [Google Scholar] [CrossRef]
- Taha-Abdelaziz, K.; Hodgins, D.C.; Alkie, T.N.; Quinteiro-Filho, W.; Yitbarek, A.; Astill, J.; Sharif, S. Oral administration of PLGA-encapsulated CpG ODN and Campylobacter jejuni lysate reduces cecal colonization by Campylobacter jejuni in chickens. Vaccine 2018, 36, 388–394. [Google Scholar] [CrossRef]
- Theoret, J.R.; Cooper, K.K.; Zekarias, B.; Roland, K.L.; Law, B.F.; Curtiss, R., 3rd; Joens, L.A. The Campylobacter jejuni Dps homologue is important for in vitro biofilm formation and cecal colonization of poultry and may serve as a protective antigen for vaccination. Clin. Vaccine Immunol. 2012, 19, 1426–1431. [Google Scholar] [PubMed] [Green Version]
- Wang, C.; Zhou, H.; Guo, F.; Yang, B.; Su, X.; Lin, J.; Xu, F. Oral Immunization of Chickens with Lactococcus lactis Expressing cjaA Temporarily Reduces Campylobacter jejuni Colonization. Foodborne Pathog. Dis. 2020, 17, 366–372. [Google Scholar] [CrossRef]
- Yang, Y.; Wolfenden, A.; Mandal, R.K.; Faulkner, O.; Hargis, B.; Kwon, Y.M.; Bielke, L. Evaluation of recombinant Salmonella vaccines to provide cross-serovar and cross-serogroup protection. Poult. Sci. 2017, 96, 4352–4360. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, T.; DiRita, V.J. Cj1496c Encodes a Campylobacter jejuni Glycoprotein That Influences Invasion of Human Epithelial Cells and Colonization of the Chick Gastrointestinal Tract. Infect. Immun. 2006, 74, 4715–4723. [Google Scholar] [CrossRef] [Green Version]
- Konkel, M.E.; Gray, S.A.; Kim, B.J.; Garvis, S.G.; Yoon, J. Identification of the EnteropathogensCampylobacter jejuni and Campylobacter coli Based on the cadF Virulence Gene and Its Product. J. Clin. Microbiol. 1999, 37, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konkel, M.E.; Kim, B.J.; Rivera-Amill, V.; Garvis, S.G. Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol. 1999, 32, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Joe, A.; Lynett, J.; Hani, E.K.; Sherman, P.C.; Chan, V.L. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 2001, 39, 1225–1236. [Google Scholar] [CrossRef]
- Keo, T.; Collins, J.; Kunwar, P.; Blaser, M.J.; Iovine, N.M. Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence 2011, 2, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Michel, L.O.; Zhang, Q. CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni. Antimicrob. Agents Chemother. 2002, 46, 2124–2131. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Thomas, G.H.; Horler, R.; Brannigan, J.A.; Blagova, E.; Levdikov, V.M.; Fogg, M.J.; Wilson, K.S.; Wilkinson, A.J. An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Mol. Microbiol. 2005, 57, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konkel, M.E.; Larson, C.L.; Flanagan, R.C. Campylobacter jejuni FlpA Binds Fibronectin and Is Required for Maximal Host Cell Adherence. J. Bacteriol. 2009, 192, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Fernando, U.; Biswas, D.; Allan, B.; Willson, P.; Potter, A.A. Influence of Campylobacter jejuni fliA, rpoN and flgK genes on colonization of the chicken gut. Int. J. Food Microbiol. 2007, 118, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Neal-McKinney, J.M.; Konkel, M.E. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front. Cell. Infect. Microbiol. 2012, 2, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachamkin, I.; Yang, X.H.; Stern, N.J. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: Analysis with flagellar mutants. Appl. Environ. Microbiol. 1993, 58, 1269–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassenaar, T.M.; Van Der Zeijst, B.A.M.; Ayling, R.; Newell, D.G. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol. 1993, 139, 1171–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, J.; Hong, G.; Davies, C.; Elmi, A.; Sima, F.; Stratakos, A.; Stef, L.; Pet, I.; Hachani, A.; Corcionivoschi, N.; et al. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front. Microbiol. 2019, 10, 2864. [Google Scholar] [CrossRef] [PubMed]
- Lertpiriyapong, K.; Gamazon, E.R.; Feng, Y.; Park, D.S.; Pang, J.; Botka, G.; Graffam, M.E.; Ge, Z.; Fox, J.G. Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization. PLoS ONE 2012, 7, e42842. [Google Scholar] [CrossRef] [Green Version]
- Alemka, A.; Nothaft, H.; Zheng, J.; Szymanski, C.M. N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness. Infect. Immun. 2013, 81, 1674–1682. [Google Scholar] [CrossRef] [Green Version]
- Karlyshev, A.V.; Everest, P.; Linton, D.; A Cawthraw, S.; Newell, D.G.; Wren, B.W. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 2004, 150, 1957–1964. [Google Scholar] [CrossRef] [Green Version]
- Chart, H.; Frost, J.A.; Conway, D.; Rowe, B. Outer membrane characteristics of Campylobacter jejuni grown in chickens. FEMS Microbiol. Lett. 1996, 145, 469–472. [Google Scholar] [CrossRef]
- Godlewska, R.; Wisniewska, K.; Pietras, Z.; Jagusztyn-Krynicka, E.K. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: Function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol. Lett. 2009, 298, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konkel, M.E.; A Joens, L. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect. Immun. 1989, 57, 2984–2990. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.A.; Meinersmann, R.J. A Genetic Hybrid of the Campylobacter jejuni flaA Gene with LT-B of Escherichia coli and Assessment of the Efficacy of the Hybrid Protein as an Oral Chicken Vaccine. Avian Dis. 1995, 39, 812. [Google Scholar] [CrossRef]
- Godlewska, R.; Kuczkowski, M.; Wyszyńska, A.; Klim, J.; Derlatka, K.; Woźniak-Biel, A.; Jagusztyn-Krynicka, E.K. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs. Appl. Microbiol. Biotechnol. 2016, 100, 8855–8864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobierecka, P.A.; Wyszyńska, A.K.; Gubernator, J.; Kuczkowski, M.; Wiśniewski, O.; Maruszewska, M.; Wojtania, A.; Derlatka, K.E.; Adamska, I.; Godlewska, R.; et al. Chicken Anti-Campylobacter Vaccine–Comparison of Various Carriers and Routes of Immunization. Front. Microbiol. 2016, 7, 740. [Google Scholar] [CrossRef] [PubMed]
- Chintoan-Uta, C.; Cassady-Cain, R.L.; Al-Haideri, H.; Watson, E.; Kelly, D.J.; Smith, D.G.; Sparks, N.H.; Kaiser, P.; Stevens, M.P. Superoxide dismutase SodB is a protective antigen against Campylobacter jejuni colonisation in chickens. Vaccine 2015, 33, 6206–6211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobierecka, P.A.; Olech, B.; Ksiazek, M.; Derlatka, K.; Adamska, I.; Majewski, P.M.; Jagusztyn-Krynicka, E.K.; Wyszynska, A.K. Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis. Front. Microbiol. 2016, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.E.; Thomas, R.; Williams, M.; Zalasiewicz, J.; Edgeworth, M.; Miller, H.; Coles, B.; Foster, A.; Burton, E.J.; Marume, U. The broiler chicken as a signal of a human reconfigured biosphere. R. Soc. Open Sci. 2018, 5, 180325. [Google Scholar] [CrossRef] [Green Version]
- Souillard, R.; Répérant, J.-M.; Experton, C.; Huneau-Salaun, A.; Coton, J.; Balaine, L.; Le Bouquin, S. Husbandry Practices, Health, and Welfare Status of Organic Broilers in France. Animals 2019, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacharme-Lora, L.; Chaloner, G.; Gilroy, R.; Humphrey, S.; Gibbs, K.; Jopson, S.; Wright, E.; Reid, W.; Ketley, J.; Humphrey, T.; et al. B lymphocytes play a limited role in clearance of Campylobacter jejuni from the chicken intestinal tract. Sci. Rep. 2017, 7, srep45090. [Google Scholar] [CrossRef] [PubMed]
- El-Shibiny, A.; Connerton, P.L.; Connerton, I.F. Enumeration and Diversity of Campylobacters and Bacteriophages Isolated during the Rearing Cycles of Free-Range and Organic Chickens. Appl. Environ. Microbiol. 2005, 71, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pumtang-On, P.; Mahony, T.J.; Hill, R.A.; Pavic, A.; Vanniasinkam, T. Investigation of Campylobacter colonization in three Australian commercial free-range broiler farms. Poult. Sci. 2020, 100891. [Google Scholar] [CrossRef] [PubMed]
- Sahin, O.; Luo, N.; Huang, S.; Zhang, Q. Effect of Campylobacter-Specific Maternal Antibodies on Campylobacter jejuni Colonization in Young Chickens. Appl. Environ. Microbiol. 2003, 69, 5372–5379. [Google Scholar] [CrossRef] [Green Version]
- Wesley, R.D.; Lager, K.M. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus. Veter Microbiol. 2006, 118, 67–75. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, B.; Chang, H.; Zhang, R.; Lu, F.; Wang, F.; Fang, F.; Chen, Z. Intranasal Immunization of Mice to Avoid Interference of Maternal Antibody against H5N1 Infection. PLoS ONE 2016, 11, e0157041. [Google Scholar] [CrossRef]
- Bublot, M.; Pritchard, N.; Le Gros, F.-X.; Goutebroze, S. Use of a Vectored Vaccine against Infectious Bursal Disease of Chickens in the Face of High-Titred Maternally Derived Antibody. J. Comp. Pathol. 2007, 137, S81–S84. [Google Scholar] [CrossRef]
Database | Term Search Outcome |
---|---|
PubMed Central | “Campylobacter”[All Fields] AND “Vaccine”[All Fields] AND “Chicken”[All Fields] AND (“1970/01/01”[PDat]: “2020/12/31”[PDat]) |
Elsevier ScienceDirect | “Campylobacter” AND “Vaccine” AND “Chicken” |
Scopus | TITLE-ABS-KEY (“Campylobacter” AND “Vaccine” AND “Chicken”) AND (LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2010) OR LIMIT-TO (PUBYEAR, 2009) OR LIMIT-TO (PUBYEAR, 2008) OR LIMIT-TO (PUBYEAR, 2007) OR LIMIT-TO (PUBYEAR, 2006) OR LIMIT-TO (PUBYEAR, 2005) OR LIMIT-TO (PUBYEAR, 2004) OR LIMIT-TO (PUBYEAR, 2003) OR LIMIT-TO (PUBYEAR, 2002) OR LIMIT-TO (PUBYEAR, 2001) OR LIMIT-TO (PUBYEAR, 2000) OR LIMIT-TO (PUBYEAR, 1999) OR LIMIT-TO (PUBYEAR, 1998) OR LIMIT-TO (PUBYEAR, 1997) OR LIMIT-TO (PUBYEAR, 1996) OR LIMIT-TO (PUBYEAR, 1995) OR LIMIT-TO (PUBYEAR, 1994) OR LIMIT-TO (PUBYEAR, 1993) OR LIMIT-TO (PUBYEAR, 1992) OR LIMIT-TO (PUBYEAR, 1991) OR LIMIT-TO (PUBYEAR, 1990) OR LIMIT-TO (PUBYEAR, 1989) OR LIMIT-TO (PUBYEAR, 1988) OR LIMIT-TO (PUBYEAR, 1987) OR LIMIT-TO (PUBYEAR, 1986) OR LIMIT-TO (PUBYEAR, 1985) OR LIMIT-TO (PUBYEAR, 1984) OR LIMIT-TO (PUBYEAR, 1983) OR LIMIT-TO (PUBYEAR, 1982) OR LIMIT-TO (PUBYEAR, 1981) OR LIMIT-TO (PUBYEAR, 1980) OR LIMIT-TO (PUBYEAR, 1979) OR LIMIT-TO (PUBYEAR, 1978) OR LIMIT-TO (PUBYEAR, 1977) OR LIMIT-TO (PUBYEAR, 1976) OR LIMIT-TO (PUBYEAR, 1975) OR LIMIT-TO (PUBYEAR, 1974) OR LIMIT-TO (PUBYEAR, 1973) OR LIMIT-TO (PUBYEAR, 1972) OR LIMIT-TO (PUBYEAR, 1971) OR LIMIT-TO (PUBYEAR, 1970)) |
Process | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Screening | Primary: 1. Vaccine studies conducted in chickens 2. Primary research studies containing vaccinated and unvaccinated groups 1 3. Information of vaccines and vaccination protocols provided (vaccine formulas, antigen candidate, vaccine dosage, number of vaccination, route of vaccine administration, age of chickens or embryonic eggs when vaccination, challenge strain, age of chickens at the challenge, sample size, and chicken breed) 4. Evaluation and data of vaccine efficacy provided 5. English language | Primary: 1. Review articles and guidelines 2. Non-vaccine studies, non-challenge studies, or in vitro studies 3. Non-chicken model studies 4. Non-Campylobacter vaccine studies 5. Non-English language 6. No author name provided 7. Unable to access the full text of papers |
Eligibility | Secondary: 1. Vaccine studies conducted in broiler chickens 2. Studies described the levels of C. jejuni loads in cecal contents (log10 CFU/gram or CFU/gram) and/or numbers of the individual (colonized 2 and non-colonized 3) broiler chickens after vaccinations and challenge | Secondary: 1. Vaccines conducted in layer chickens 2. Co-administration studies other than vaccine studies 2. Studies evaluated immune response alone without an effect of C. jejuni colonization after challenge 3. Studies evaluated the adjuvant efficacy alone or non-C. jejuni antigens 4. Studies evaluated vaccine efficacy using samples other than ceca (i.e., ileum and cloaca) 5. Studies conducted in some challenged chickens after vaccination (defined as a seeder-bird colonization model) 6. Studies that were unable to estimate C. jejuni loads and/or the number of colonized broilers from figures |
Vaccine Antigen | Role of Antigen in Promoting C. jejuni Colonization of Host | Reference |
---|---|---|
Bacterin | Killed-whole bacterial cells (multiple antigens) used for immunization | Okamura et al. [52] |
C. jejuni glycoprotein Cj1496 | Invasion | Kakuda and DiRita [59] |
Campylobacter adhesion protein to fibronectin (CadF) | Adhesion | Konkel et al. [60] |
Campylobacter invasion antigen B (CiaB) | Invasion | Konkel [61] |
Campylobacter surface-exposed lipoprotein A (JlpA) | Adhesion | Jin et al. [62] |
Capsular polysaccharide (CPS) | Serum resistance | Keo et al. [63] |
Component of multidrug efflux pump (CmeC) | Multidrug efflux system | Lin et al. [64] |
Cysteine ABC transporter substrate-binding protein (CjaA) | Campylobacter solute-binding protein and a component of the ABC transport system | Muller et al. [65] |
DNA binding protein for biofilm formation (Dps) | Biofilm formation | Theoret et al. [56] |
Fibronectin-like protein A (FlpA) | Adhesion | Konkel et al. [66] |
Flagellar hook-associated protein (FlgK) | Motility | Fernando et al., [67] and Neal-McKinney and Konkel [68] |
Flagellar hook-basal body complex protein (FlgE-1) | Motility and deliver Campylobacter invasion antigens (Cia proteins) to host cells | Neal-McKinney and Konkel [68] |
Flagellin | Motility | Nachamkin et al. [69] |
Flagellin A protein (FlaA) | Motility, adherence, and invasion | Wassenaar et al. [70] |
Flagellin protein family (FlgL) | Deliver Campylobacter invasion antigens (Cia proteins) to host cells | Neal-McKinney and Konkel [68] |
Hemolysin co-regulated protein (Hcp) | Secretion tube and effector protein in Campylobacter jejuni Type VI secretion system (T6SS) for adhesion and invasion | Liaw et al. [71] and Lertpiriyapong et al. [72] |
Hypothetical protein (YP_999817.1) | Not fully described | Meunier et al. [50] |
Hypothetical protein (YP_999838.1) | Protein-protein interactions | Meunier et al. [50] |
N-linked protein glycosylation (N-glycan) | Protect C. jejuni surface proteins from gut protease and attachment to host cells | Alemka et al. [73] and Karlyshev et al. [74] |
Outer membrane proteins | Adhesion and invasion | Chart et al. [75] |
Peptidoglycan-associated essential protein (PAL; Omp18; CjaD) | Maintenance cell wall | Godlewska et al. [76] |
Whole-cell lysate | Adhesion and invasion | Konkel and Joens [77] |
YP_001000437.1 | Activation/secretion of hemolysin | Meunier et al. [50] |
Trial No | Vaccine Formulations, Antigens, and Regimens | Age of Chickens at the End of Study (Days) | Reductions of C. jejuni (log10) Colonization in Cecal Contents after Challenge 1 | % Colonized Broilers in the Vaccinated Group (Proportion) | % Colonized Broilers in the Control Group (Proportion) | Relative Risk 6 (95% CI) | Efficacy (%) 7 against Colonization | Reference | |
---|---|---|---|---|---|---|---|---|---|
Significant (Yes/No) | Reduction Levels (Mean log10 CFU/gram 2) Reported | ||||||||
1 | Crude cell lysate vaccine with 125 µg of total outer membrane proteins (OMP) encapsulated with ploy lactide-co-glycolide nanoparticles (OMP-NP), orally with booster | 42 | No | 0.4 log 10 reduction 3 | 87.5 (7/8) | 57.1 (4/7) | 1.53 (0.76 and 3.06) | No effect | [47] |
2 | 125 µg of crude cell lysate vaccine with OMP, orally with booster | 42 | No | 0.8 log10 reduction 3,4 | 62.5 (5/8) | 57.1 (4/7) 4 | 1.09 (0.47 and 2.52) | No effect | [47] |
3 | 125 µg of crude cell lysate vaccine with OMPs-NP, subcutaneously with booster | 42 | Yes | 5.7 log 10 reductions 3 | 0.0 (0/8) | 57.1 (4/7) | 0.10 (0.01 and 1.56) | 90 | [47] |
4 | 125 µg of crude cell lysate vaccine with OMP, orally with booster | 42 | Yes | 5.7 log 10 reductions3,4 | 0.0 (0/8) | 57.1 (4/7) 4 | 0.10 (0.01 and 1.56) | 90 | [47] |
5 | 25 µg of crude cell lysate vaccine with OMP-NP, subcutaneously with booster | 42 | No | 1.2 log 10 reductions 3 | 62.5 (5/8) | 57.1 (4/7) | 1.09 (0.47 and 2.52) | No effect | [47] |
6 | 250 µg of crude cell lysate vaccine with OMP-NP, orally with booster | 42 | No | 0.9 log 10 reductions 3 | 37.5 (3/8) | 57.1 (4/7) | 0.66 (0.22 and 1.97) | 34 | [47] |
7 | 25 µg of crude cell lysate vaccine with OMP, orally with booster | 42 | No | 1.6 log 10 reductions3,4 | 66.7 (NI) | 57.1 (4/7) 4 | Unable to calculate | Unable to calculate | [47] |
8 | 250 µg of crude cell lysate vaccine with OMP, orally with booster | 42 | No | 1.0 log 10 reduction 3,4 | 50.0 (4/8) | 57.1 (4/7) 4 | 0.88 (0.34 and 2.25) | 13 | [47] |
9 | 109 CFU of L. lactis NZ9000 strain vectored vaccine expressing C. jejuni surface-exposed lipoprotein A (JlpA), intragastrically with booster | 35 | Yes Yes Yes | 0.79 log10 reduction in Trial#1 0.47 log10 reduction in Trial#2 0.482 log10 reduction in Trial#3 | 100.0 (15/15) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [48] |
10 | Subunit vaccine with 50 µg of recombinant JlpA emulsified in Freund’s incomplete adjuvant, subcutaneously with booster | 35 | NoYesYes | 0.11 log10 in Trial#1 0.69 log10 in Trial#2 0.49 log10 in Trial#3 | 100.0 (15/15) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [48] |
14 | DNA vaccine (prime) with 300 µg of purified DNA of Campylobacter hemolysin activation/secretion protein (YP_001000437.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP_001000437.1 protein emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | Yes | 3.61 log10 reduction upon heterologous challenge | 87.5 (14/16) | 100.0 (15/15) | 0.88 (0.73 and 1.05) | 13 | [50] |
15 | DNA vaccine (prime) with 300 µg of purified DNA of YP_001000437.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP_001000437.1 protein emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | 1.92 log10 GenEq/g reductions upon heterologous challenge | 80.0 (12/15) | 93.8 (15/16) | 0.85 (0.64 and 1.13) | 15 | [50] |
16 | DNA vaccine (prime) with 300 µg of purified DNA of flagellin protein family (FlgL) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgL emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | Yes | 2.03 log10 reductions upon heterologous challenge | 100.0 (15/15) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [50] |
17 | DNA vaccine (prime) with 300 µg of purified DNA of FlgL cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgL emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | 1.06 log10 GenEq/g reductions upon heterologous challenge | 75.0 (12/16) | 93.8 (15/16) | 0.80 (0.59 and 1.09) | 20 | [50] |
18 | DNA vaccine (prime) with 300 µg of purified DNA of hypothetical protein (YP99838.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP99838.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | Yes | 2.08 log10 reductions upon heterologous challenge | 100.0 (14/14) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [50] |
19 | DNA vaccine (prime) with 300 µg of purified DNA of YP99838.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of YP99838.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | No reduction upon heterologous challenge | 100.0 (14/14) | 93.8 (15/16) | 1.07 (0.94 and 1.21) | No effect | [50] |
20 | DNA vaccine (prime) with 300 µg of purified DNA of hypothetical protein (YP99817.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP99817.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | Yes | 4.27 log10 reductions upon heterologous challenge | 92.3 (12/13) | 100.0 (15/15) | 0.92 (0.79 and 1.08) | 8 | [50] |
21 | DNA vaccine (prime) with 300 µg of purified DNA of YP99817.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant YP99817.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | No reduction upon heterologous challenge | 93.8 (15/16) | 93.8 (15/16) | 1.00 (0.84 and 1.20) | No effect | [50] |
22 | DNA vaccine with 300 µg of purified DNA of YP99817.1 cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007, intramuscularly with booster | 42 | No | No reduction upon heterologous challenge | 100.0 (15/15) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [50] |
23 | Subunit vaccine with 100 µg of recombinant YP99817.1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | No reduction upon heterologous challenge | 100.0 (15/15) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [50] |
24 | DNA vaccine (prime) with 300 µg of purified DNA of flagellar hook-basal body complex protein (FlgE-1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgE-1 emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | 2.20 log10 reductions a wide range of individual colonized broilers was presented in Figure 2A of the original paper upon heterologous challenge | 91.7 (11/12) | 100.0 (15/15) | 0.92 (0.77 and 1.09) | 8 | [50] |
25 | DNA vaccine (prime) with 300 µg of purified DNA of flagellar hook-associated protein (FlgK) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlgK emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | 1.72 log10 reductions but a wide range of individual colonized broilers was presented in Figure 2A of the original paper upon heterologous challenge | 100.0 (14/14) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [50] |
26 | DNA vaccine (prime) with 300 µg of multiple DNA proteins (a combination of purified YP_001000437.1, FlgL, FlgK, FliE-1, YP99817.1, and YP99838.1) cloned into pcDNA3 plasmids mixed with 50 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant multiple proteins (YP_001000437.1, FlgL, FlgK, FliE-1, YP99817.1, and YP99838.1) emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | 0.12 log10 reduction (No decrease of C. jejuni colonization reported in the original paper) upon heterologous challenge | 100.0 (9/9) | 100.0 (15/15) | 1.00 (1.00 and 1.00) | No effect | [50] |
27 | DNA vaccine with 100 µg of purified DNA of flagellin A protein (FlaA) cloned into pcDNA3 plasmid mixed with 25 µg of CpG ODN2007, subcutaneously with booster | 42 | No | 0.1 geometric mean log10 reduction 3 | 100.0 (15/15) | 100.0 (15/15) | 1.15 (0.95 and 1.41) | No effect | [51] |
28 | DNA vaccine with 100 µg of purified DNA of FlaA cloned into pcDNA3 plasmid mixed with 25 µg of CpG ODN2007, intramuscularly with booster | 42 | No | 0.2 median log10 reductions3 | 75.0 (12/16) | 87.5 (14/16) | 0.86 (0.61 and 1.20) | 14 | [51] |
29 | DNA vaccine (prime) with 150 µg of purified DNA of FlaA into pcDNA3 plasmid mixed with 25 µg of CpG ODN2007 and subunit vaccine (boost) with 100 µg of recombinant FlaA emulsified with MONTANIDE™ ISA70 VG, intramuscularly with booster | 42 | No | No reduction | 100.0 (16/16) | 87.5 (14/16) | 1.14 (0.95 and 1.38) | No effect | [51] |
30 | Subunit vaccine with 240 µg of recombinant Campylobacter adhesion protein to fibronectin (CadF) 8 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | 27 | Not reported | 1.71 median log10 reductions 5 | 100.0 (11/11) | 100.0 (12/12) | 1.00 (1.00 and 1.00) | No effect | [25] |
31 | Subunit vaccine with 240 µg recombinant FlaA 8 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | 27 | Not reported | 3.35 median log10 reductions 5 | 91.7 (11/12) | 100.0 (12/12) | 0.92 (0.77 and 1.09) | 8 | [25] |
32 | Subunit vaccine with 240 µg recombinant fibronectin-like protein A (FlpA1) mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | 27 | Not reported | 3.11 median log10 reductions 5 | 90.0 (9/10) | 100.0 (12/12) | 0.90 (0.73 and 1.11) | 10 | [25] |
33 | Subunit vaccine with 240 µg recombinant a component of multidrug efflux pump (CmeC) 8 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | 27 | Not reported | No effect of reduction due to the widest range in the level of colonization observed by the authors from the original paper (even 1.37 median log10 reduction calculated from the supplement table provided 5) | 100.0 (12/12) | 100.0 (12/12) | 1.00 (1.00 and 1.00) | No effect | [25] |
34 | Subunit vaccine of 240 µg a fusion protein of recombinant CadF-FlaA-FlpA 9 mixed with MONTANIDE™ ISA 70 VG, intramuscularly with booster | 27 | Not reported | 3.16 median log10 reductions 5 | 77.8 (7/9) | 100.0 (12/12) | 0.78 (0.55 and 1.10) | 22 | [25] |
35 | 108 cells of E. coli wzy::kan strain vectored vaccine expressing C. jejuni protein glycosylation (N-glycan), orally with booster | 35 | Yes Yes | 3.30 median log10 reductions3 in Trial#1 upon heterologous challenge 2.00 median log10 reductions 3 in Trial#2 upon heterologous challenge | 60.0 (9/15) | 100.0 (15/15) | 0.60 (0.40 and 0.91) | 40 | [46] |
38 | Subunit vaccine with 40 µg of recombinant NHC flagellin mixed with 0.4 M urea, 10 mM Tris pH 9.0, 20% glycerol, 5 mM sucrose, in ovo | 25 | No | 0.5 log10 reduction 3 | 88.9 (8/9) | 90.0 (9/10) | 0.99 (0.72 and 1.35) | 1 | [53] |
39 | Subunit vaccine with 20 µg of recombinant NHC flagellin mixed with 0.4 M urea, 10 mM Tris pH 9.0, 20% glycerol, 5 mM sucrose, in ovo | 25 | No | No reduction | 90.0 (9/10) | 90.0 (9/10) | 1.00 (0.75 and 1.34) | No effect | [53] |
50 | Subunit vaccine with 50 µg of recombinant hemolysin co-regulated protein (rHcp) mixed with Freund’s incomplete adjuvant, orally with booster | 35 | Yes | 0.5 log10 reduction | 100.0 (12/12) | 100.0 (12/12) | 1.00 (1.00 and 1.00) | No effect | [54] |
51 | Subunit vaccine with 50 µg of rHcp entrapped in chitosan-Sodium tripolyphosphate nanoparticles (CS-TPP NPs) (CS-TPP-rhcp), orally with booster | 35 | Yes | 1.0 log10 reduction | 100.0 (12/12) | 100.0 (12/12) | 1.00 (1.00 and 1.00) | No effect | [54] |
52 | Cell lysate vaccine with 4.3 µg of C. jejuni cell lysates, orally | 37 | Yes Yes | 2.14 log10 reductions in Trial#1 1.92 log10 reductions in Trial#2 | 100.0 (20/20) | 100.0 (19/19) | 1.00 (1.00 and 1.00) | No effect | [55] |
53 | Cell lysate vaccine with 21 µg of C. jejuni cell lysates, orally | 37 | No | 0.7 log reduction 3 | 100.0 (10/10) | 100.0 (9/9) | 1.00 (1.00 and 1.00) | No effect | [55] |
54 | Cell lysate vaccine with 4.3 µg of C. jejuni cell lysates combined with 5 µg of E-CpG, orally | 37 | Yes No | 2.42 log10 reductions (compared with PBS as reported in the original paper) 1.42 log10 reductions 3 (compared with E-CpG alone) in this review as it was presented in the figure of the original paper | 100.0 (9/9) | 100.0 (10/10) | 1.00 (1.00 and 1.00) | No effect | [55] |
55 | Subunit vaccine with 0.2 mg of recombinant DNA binding protein for biofilm formation (Dps) mixed with Freund’s complete adjuvant, subcutaneously with boosters | 44 | No | No reduction | 100.0 (13/13) | 100.0 (12/12) | 1.00 (1.00 and 1.00) | No effect | [56] |
56 | Salmonella Typhimurium strain χ9088 vectored vaccine (OD600, 0.5 mL) expressing Dps, orally with boosters | 36 | Yes | 2.48 (geometric mean) log10 reductions | 100.0 (14/14) | 100.0 (10/10) | 1.00 (1.00 and 1.00) | No effect | [56] |
57 | 2 × 1010 CFU of Lactobacillus lactis NZ3900 vectored vaccine expressing cysteine ABC transporter substrate-binding protein (CjaA) fused to heat-labile enterotoxin B subunit (LTB) of E. coli (CjaA-LT-B), orally with boosters | 42 | No | No reduction | 100.0 (6/6) | 100.0 (6/6) | 1.00 (1.00 and 1.00) | No effect | [57] |
58 | 2 × 1010 CFU of Lactobacillus lactis NZ3900 vectored vaccine expressing CjaA, orally with boosters | 42 | No | No reduction | 100.0 (6/6) | 100.0 (6/6) | 1.00 (1.00 and 1.00) | No effect | [57] |
59 | 108 cells of avirulent Salmonella Typhimurium χ3987 strain vectored vaccine (108 cells) expressing CjaA, orally with boosters | 40 | Yes | 6.0 log10 reductions (reported in the original paper) upon heterologous challenge | 0.0 (0/4) | 100.0 (3/3) | 0.11 (0.01 and 1.63) | 89 | [26] |
63 | Subunit vaccine with 1 mg of CjaA-LT-B mixed with sodium carbonate, orally with booster | 35 | No reported | Not reported | 27.6 (40/145) | 49.3 (70/142) | 0.56 (0.41 and 0.76) | 44 | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pumtang-on, P.; Mahony, T.J.; Hill, R.A.; Vanniasinkam, T. A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens. Microorganisms 2021, 9, 397. https://doi.org/10.3390/microorganisms9020397
Pumtang-on P, Mahony TJ, Hill RA, Vanniasinkam T. A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens. Microorganisms. 2021; 9(2):397. https://doi.org/10.3390/microorganisms9020397
Chicago/Turabian StylePumtang-on, Pongthorn, Timothy J. Mahony, Rodney A. Hill, and Thiru Vanniasinkam. 2021. "A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens" Microorganisms 9, no. 2: 397. https://doi.org/10.3390/microorganisms9020397
APA StylePumtang-on, P., Mahony, T. J., Hill, R. A., & Vanniasinkam, T. (2021). A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens. Microorganisms, 9(2), 397. https://doi.org/10.3390/microorganisms9020397