Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Small Compound Library
2.2. HTS Assay for Bacterial PhoA Secretion In Vivo
2.3. HTS Screening
2.4. Solubility Assay
2.5. Cytotoxicity Assay
2.6. Antimicrobial Activity Test
3. Results
3.1. Development of an In Vivo HTS Assay for E. coli Protein Secretion
3.2. HTS Results
3.3. Solubility and Cytotoxicity Testing of the HSI Compounds
3.4. Effect of HSI Compounds on the Viability of E. coli Strains
3.5. Effect of the Compounds on the Viability of Gram-Positive Bacteria and the WHO Top Critical Pathogens
3.6. Effect of HSI Compounds on the Viability and Secretion of E. coli Strains with Compromised outer Membranes
3.7. Effect of Compounds on SecA ATPase In Vitro
3.8. Chemical Characterization of Derived PhoA Secretion Inhibitors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Rojas, A.; Rodríguez-Beltrán, J.; Couce, A.; Blázquez, J. Antibiotics and antibiotic resistance: A bitter fight against evolution. Int. J. Med. Microbiol. 2013, 303, 293–297. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- European Comission. EU Action on Antimicrobial Resistance. 2015. Available online: https://ec.europa.eu/health/amr/antimicrobial-resistance_en (accessed on 15 December 2020).
- Calvert, M.B.; Jumde, V.R.; Titz, A. Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections. Beilstein J. Org. Chem. 2018, 14, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- Tsirigotaki, A.; Chatzi, K.E.; Koukaki, M.; De Geyter, J.; Portaliou, A.G.; Orfanoudaki, G.; Sardis, M.F.; Trelle, M.B.; Jørgensen, T.J.; Karamanou, S.; et al. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure 2018, 26, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Tsirigotaki, A.; De Geyter, J.; Šoštaric, N.; Economou, A.; Karamanou, S. Protein export through the bacterial Sec pathway. Nat. Rev. Genet. 2017, 15, 21–36. [Google Scholar] [CrossRef]
- Smitha Rao, C.V.; De Waelheyns, E.; Economou, A.; Anné, J. Antibiotic targeting of the bacterial secretory pathway. Biochim. Biophys. Acta Bioenergy 2014, 1843, 1762–1783. [Google Scholar] [CrossRef] [Green Version]
- Zückert, W.R. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond. Biochim. Biophys. Acta Bioenergy 2014, 1843, 1509–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Aulakh, S.; Paetzel, M. The Bacterial Outer Membrane Beta-Barrel Assembly Machinery. Protein Sci. 2012, 21, 751–768. [Google Scholar] [CrossRef] [Green Version]
- Loos, M.S.; Ramakrishnan, R.; Vranken, W.; Tsirigotaki, A.; Tsare, E.-P.; Zorzini, V.; De Geyter, J.; Yuan, B.; Tsamardinos, I.; Klappa, M.; et al. Structural Basis of the Subcellular Topology Landscape of Escherichia coli. Front. Microbiol. 2019, 10, 1670. [Google Scholar] [CrossRef] [PubMed]
- Galan, J.E.; Collmer, A. Type Iii Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells. Science 1999, 284, 1322–1328. [Google Scholar]
- Portaliou, A.G.; Tsolis, K.C.; Loos, M.S.; Zorzini, V.; Economou, A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem. Sci. 2016, 41, 175–189. [Google Scholar] [CrossRef]
- Deng, W.; Marshall, N.C.; Rowland, J.L.; McCoy, J.M.; Worrall, L.J.; Santos, A.S.; Strynadka, N.C.J.; Finlay, B.B. Assembly, Structure, Function and Regulation of Type Iii Secretion Systems. Nat. Rev. Microbiol. 2016, 15, 323–337. [Google Scholar] [CrossRef]
- Barkalita, L.; Portaliou, A.G.; Loos, M.S.; Yuan, B.; Karamanou, S.; Economou, A. A Reporter System for Fast Quantitative Monitoring of Type 3 Protein Secretion in Enteropathogenic E. coli. Microorganism 2020, 8, 1786. [Google Scholar] [CrossRef]
- Holland, I.B. Translocation of Bacterial Proteins—An Overview. Biochim. Biophys. Acta 2004, 1694, 5–16. [Google Scholar] [CrossRef]
- Stathopoulos, C.; Hendrixson, D.R.; Thanassi, D.G.; Hultgren, S.J.; St Geme, J.W.; Curtiss, R., 3rd. Secretion of Virulence Determinants by the General Secretory Pathway in Gram-Negative Pathogens: An Evolving Story. Microbes Infect. 2000, 2, 1061–1072. [Google Scholar] [CrossRef]
- Natale, P.; Brüser, T.; Driessen, A.J. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—Distinct translocases and mechanisms. Biochim. Biophys. Acta (BBA) Biomembr. 2008, 1778, 1735–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, G.J.; Quadri, S.A.; Shannon-Alferes, B.J.; Van Voorhis, W.C.; Rosen, H. A Mechanism-Based Whole-Cell Screening Assay to Identify Inhibitors of Protein Export in Escherichia coli by the Sec Pathway. J. Biomol. Screen. 2012, 17, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Vasil, M.L.; Tomaras, A.P.; Pritchard, A.E. Identification and Evaluation of Twin-Arginine Translocase Inhibitors. Antimicrob. Agents Chemother. 2012, 56, 6223–6234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugie, Y.; Inagaki, S.; Kato, Y.; Nishida, H.; Pang, C.-H.; Saito, T.; Sakemi, S.; Dib-Hajj, F.; Mueller, J.P.; Sutcliffe, J.; et al. CJ-21,058, a new SecA inhibitor isolated from a fungus. J. Antibiot. 2002, 55, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segers, K.; Anné, J. Traffic Jam at the Bacterial Sec Translocase: Targeting the SecA Nanomotor by Small-Molecule Inhibitors. Chem. Biol. 2011, 18, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-J.; Wang, H.; Gao, F.-B.; Li, M.; Yang, H.; Wang, B.; Tai, P.C. Fluorescein Analogues Inhibit SecA ATPase: The First Sub-micromolar Inhibitor of Bacterial Protein Translocation. ChemMedChem 2012, 7, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, S.I.; Peters, D.S.; Smith, P.A.; Craney, A.; Dix, M.M.; Cravatt, B.F.; Romesberg, F.E. Inhibition of Protein Secretion in Escherichia Coli and Sub-Mic Effects of Arylomycin Antibiotics. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Parish, C.A.; de la Cruz, M.; Smith, S.K.; Zink, D.; Baxter, J.; Tucker-Samaras, S.; Collado, J.; Platas, G.; Bills, G.; Diez, M.T.; et al. Antisense-Guided Isolation and Structure Elucidation of Pannomycin, a Substituted Cis-Decalin from Geomyces Pannorum. J. Nat. Prod. 2009, 72, 59–62. [Google Scholar] [CrossRef] [PubMed]
- De Waelheyns, E.; Segers, K.; Sardis, M.F.; Anné, J.; Nicolaes, G.A.F.; Economou, A. Identification of small-molecule inhibitors against SecA by structure-based virtual ligand screening. J. Antibiot. 2015, 68, 666–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, D.B.; Cabelli, R.J.; Dolan, K.M.; Jarosik, G.P. Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA 1990, 87, 8227–8231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, M.W.; Montgomery, M.G.; Leslie, A.G.W.; Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 2006, 103, 8646–8649. [Google Scholar] [CrossRef] [Green Version]
- Kuo, D.; Weidner, J.; Griffin, P.; Shah, S.K.; Knight, W.B. Determination of the Kinetic Parameters of Escherichia coli Leader Peptidase Activity Using a Continuous Assay: The pH Dependence and Time-Dependent Inhibition by.beta.-Lactams Are Consistent with a Novel Serine Protease Mechanism. Biochemistry 1994, 33, 8347–8354. [Google Scholar] [CrossRef]
- Hu, X.E.; Kim, N.K.; Grinius, L.; Morris, C.M.; Wallace, C.D.; Mieling, G.E.; DeMuth, T.P.J. Synthesis of (5S)-Tricyclic Penems as Novel and Potent Inhibitors of Bacterial Signal Peptidases. ChemInform 2003, 34, 1732–1738. [Google Scholar] [CrossRef]
- Kulanthaivel, P.; Kreuzman, A.J.; Strege, M.A.; Belvo, M.D.; Smitka, T.A.; Clemens, M.; Swartling, J.R.; Minton, K.L.; Zheng, F.; Angleton, E.L.; et al. Novel Lipoglycopeptides as Inhibitors of Bacterial Signal Peptidase I. J. Biol. Chem. 2004, 279, 36250–36258. [Google Scholar] [CrossRef] [Green Version]
- Busche, T.; Tsolis, K.C.; Koepff, J.; Rebets, Y.; Rückert, C.; Hamed, M.B.; Bleidt, A.; Wiechert, W.; Lopatniuk, M.; Yousra, A.; et al. Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion. Front. Microbiol. 2018, 9, 1174. [Google Scholar] [CrossRef]
- Choi, U.; Lee, C.-R. Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria. J. Microbiol. Biotechnol. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Ito, H.; Ura, A.; Oyamada, Y.; Yoshida, H.; Yamagishi, J.-I.; Narita, S.-I.; Matsuyama, S.-I.; Tokuda, H. A New Screening Method to Identify Inhibitors of the Lol (Localization of lipoproteins) System, a Novel Antibacterial Target. Microbiol. Immunol. 2007, 51, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Pathania, R.; Zlitni, S.; Barker, C.; Das, R.; Gerritsma, D.A.; Lebert, J.; Awuah, E.; Melacini, G.; Capretta, F.A.; Brown, E.D. Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat. Chem. Biol. 2009, 5, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.A.; Allison, S.E.; Zlitni, S.; Nguyen, N.D.; Das, R.; Melacini, G.; Capretta, A.A.; Brown, E.D. Degradation of MAC13243 and studies of the interaction of resulting thiourea compounds with the lipoprotein targeting chaperone LolA. Bioorg. Med. Chem. Lett. 2013, 23, 2426–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urfer, M.; Bogdanovic, J.; Monte, F.L.; Moehle, K.; Zerbe, K.; Omasits, U.; Ahrens, C.H.; Pessi, G.; Eberl, L.; Robinson, J.A. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli. J. Biol. Chem. 2016, 291, 1921–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derman, A.I.; Beckwith, J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J. Bacteriol. 1991, 173, 7719–7722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriakov, J.; Lee, S.H.; Jacobs, W.R., Jr. Identification of a Regulated Alkaline Phosphatase, a Cell Surface-Associated Lipoprotein, in Mycobacterium smegmatis. J. Bacteriol. 2003, 185, 4983–4991. [Google Scholar] [CrossRef] [Green Version]
- Manoil, C.; Mekalanos, J.J.; Beckwith, J. Alkaline phosphatase fusions: Sensors of subcellular location. J. Bacteriol. 1990, 172, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Wanner, B.L.; Wilmes, M.R.; Young, D.C. Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J. Bacteriol. 1988, 170, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Chatzi, K.E.; Sardis, M.F.; Tsirigotaki, A.; Koukaki, M.; Šoštarić, N.; Konijnenberg, A.; Sobott, F.; Kalodimos, C.G.; Karamanou, S.; Economou, A. Preprotein mature domains contain translocase targeting signals that are essential for secretion. J. Cell Biol. 2017, 216, 1357–1369. [Google Scholar] [CrossRef]
- Grandke, J.; Oberleitner, L.; Resch-Genger, U.; Garbe, L.-A.; Rudolf, J.S. Quality Assurance in Immunoassay Performance–Carbamazepine Immunoassay Format Evaluation and Application on Surface and Waste Water. Anal. Methods 2013, 5, 3754–3760. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, I.; Edwards, B.; Voyta, J.C. 1,2-Dioxetanes: Novel chemiluminescent enzyme substrates. Applications to immunoassays. J. Biolumin. Chemilumin. 1989, 4, 99–111. [Google Scholar] [CrossRef]
- Okada, M.; Yoshihiro, A.; Tadashi, N.; Akira, Y. Chemiluminescence Assays Using Stabilized Dioxetane Derivatives. U.S. Patent 5,094,939, 10 March 1992. [Google Scholar]
- Huang, L.; Xuan, Y.; Koide, Y.; Ms, T.Z.; Tanaka, M.; Hamblin, M.R. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria. Lasers Surg. Med. 2012, 44, 490–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichstein, H.C.; Soule, M.H. Studies of the Effect of Sodium Azide on Microbic Growth and Respiration: Ii. The Action of Sodium Azide on Bacterial Catalase. J. Bacteriol. 1944, 47, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, G.J.; Weller, S.M.; Jones, J.C.; Weaver, T.; Fan, E.; Van Voorhis, W.C.; Rosen, H. The Bacterial Sec Pathway of Protein Export: Screening and Follow-Up. J. Biomol. Screen. 2015, 20, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Gouridis, G.; Karamanou, S.; Koukaki, M.; Economou, A. In Vitro Assays to Analyze Translocation of the Model Secretory Preprotein Alkaline Phosphatase. Adv. Struct. Saf. Stud. 2010, 619, 157–172. [Google Scholar] [CrossRef]
- Jackson, A.A.; Hinkley, T.C.; Talbert, J.N.; Nugen, S.R.; Sela, D.A. Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect Escherichia coli. Analyst 2016, 141, 5543–5548. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C. Poor Aqueous Solubility—an Industry Wide Problem in Drug Discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Balibar, C.J.; Grabowicz, M. Mutant Alleles of Lptd Increase the Permeability of Pseudomonas Aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics. Antimicrob. Agents Chemother. 2016, 60, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Sampson, B.A.; Misra, R.; Benson, S.A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 1989, 122, 491–501. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.E.; Polsa, N.; Eikarat, N.; Kollars, T.M., Jr.; Sattabongkot, J. Prevention of Sporogony of Plasmodium Vivax in Anopheles Dirus Mosquitoes by Transmission-Blocking Antimalarials. Am. J. Trop. Med. Hyg. 2001, 65, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Sharma, Y.K.; Saran, R.; Singh, M.K.; Yadav, B.S. Comparative Vibrational Spectroscopic Studies of 7-Chloro-4-Hydroxy-3-Quinolinecarboxylic Acid Based on Density Functional Theory. IOSR J. Appl. Phys. Yadav 2012, 1, 27–37. [Google Scholar] [CrossRef]
- Reuman, M.; Daum, S.J.; Singh, B.; Wentland, M.P.; Perni, R.B.; Pennock, P.; Carabateas, P.M.; Gruett, M.D.; Saindane, M.T.; Dorff, P.H.; et al. Synthesis and Antibacterial Activity of Some Novel 1-Substituted 1,4-Dihydro-4-oxo-7-pyridinyl-3-quinolinecarboxylic Acids. Potent Antistaphylococcal Agents. J. Med. Chem. 1995, 38, 2531–2540. [Google Scholar] [CrossRef]
- Wentland, M.P.; Bailey, D.M.; Cornett, J.B.; Dobson, R.A.; Powles, R.G.; Wagner, R.B. Novel amino-substituted 3-quinolinecarboxylic acid antibacterial agents: Synthesis and structure-activity relationships. J. Med. Chem. 1984, 27, 1103–1108. [Google Scholar] [CrossRef]
- Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [Green Version]
- Augustus, A.M.; Celaya, T.; Husain, F.; Humbard, M.; Misra, R. Antibiotic-Sensitive TolC Mutants and Their Suppressors. J. Bacteriol. 2004, 186, 1851–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodall, E.C.A.; Robinson, A.; Johnston, I.G.; Jabbari, S.; Turner, K.A.; Cunningham, A.F.; Lund, P.A.; Cole, J.A.; Henderson, I.R. The Essential Genome of Escherichia coli K-12. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ding, S.; Shen, J.; Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep. 2018, 36, 573–592. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Li, X.; Zhu, M.; Wang, B.; Liu, J.; Chen, H. Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur. J. Med. Chem. 2017, 127, 159–165. [Google Scholar] [CrossRef]
- Tunitskaya, V.; Khomutov, A.; Kochetkov, S.; Kotovskaya, S.; Charushin, V. Inhibition of DNA Gyrase by Levofloxacin and Related Fluorine-Containing Heterocyclic Compounds. Acta Nat. 2011, 3, 94–99. [Google Scholar] [CrossRef]
- Domagala, J.M.; Hanna, L.D.; Heifetz, C.L.; Hutt, M.P.; Mich, T.F.; Sanchez, J.P.; Solomon, M. New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J. Med. Chem. 1986, 29, 394–404. [Google Scholar] [CrossRef]
- Chu, X.-M.; Wang, C.; Liu, W.; Liang, L.-L.; Gong, K.-K.; Zhao, C.-Y.; Sun, K.-L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem. 2019, 161, 101–117. [Google Scholar] [CrossRef]
- Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities. Chem. Biol. Drug Des. 2013, 81, 557–576. [Google Scholar] [CrossRef]
- Cui, J.; Jin, J.; Hsieh, Y.-H.; Yang, H.; Ke, B.; Damera, K.; Tai, P.C.; Wang, B. Design, Synthesis and Biological Evaluation of Rose Bengal Analogues as SecA Inhibitors. ChemMedChem 2013, 8, 1384–1393. [Google Scholar] [CrossRef]
Parent and Daughter Molecules | Secretion Inhibitor | Inhibition of PhoA Secretion IC50 [µM] | Bacterial Viability IC50 [µM] | Toxicity of Mammalian Cells (HEK293T) LD50 [µM] | Aqueous Solubility | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HTS | Lab-Scale | Lab-Scale (ΔtolC strain) | E. coli | B. subtilis ATCC6633 | µM | µg/mL | |||||
BL21 | MC4100 | BW25113 | |||||||||
CC#01 * | 237 | NA | 4 | 4 | >100 | nt | nt | nt | |||
CC#02 ** | 24.5 | NM | NM | NM | 18.8 | 60.2 | 16.7 | 4.1 | |||
Structure family 1 | |||||||||||
HTS hit | HSI#03 | 5.1 | 44.1 | 21.0 | NM | 40–100 | NM | NM | 60.2 | 150 | 40.0 |
Structure family 2 | |||||||||||
HTS hit | HSI#07 | 19.0 | 26.4 | 19.9 | NM | NM | NM | NM | 60.2 | 150 | 32.4 |
Analog | HSI#12 | 11.5 | 11.2 | 26.0 | 60 | NM | 39.7 | NM | 60.2 | 50.0 | 11.8 |
Analog | HSI#14 | 13.4 | 14.6 | 11.5 | >100 | NM | 31.3 | NM | 60.2 | 150.0 | 33.5 |
Structure family 3 | |||||||||||
HTS hit | HSI#09 | 8.9 | 9.6 | 0.91 | 40–100 | 40–100 | 5.4 | 22.5 | 20.1 | 16.7 | 5.3 |
Analog | HSI#06 | 5.8 | 5.3 | 0.33 | 6.1 | 8.7 | 26.4 | 2.4 | 20.1 | 16.7 | 5.7 |
Structure family 4 | |||||||||||
HTS hit | HSI#01 | 11.9 | 12.5 | 1.4 | NM | NM | NM | 37.6 | 6.7 | 50 | 12.5 |
Analog | HSI#05 | 32.0 | 7 | 0.94 | NM | NM | NM | 27.8 | 6.7 | 16.7 | 4.8 |
Analog | HSI#10 | 20.0 | 19.6 | 0.99 | NM | NM | NM | 26.0 | 6.7 | 16.7 | 4.4 |
Structure family 5 | |||||||||||
HTS hit | HSI#11 | 3.0 | NM | - | NM | NM | NM | NM | 60.2 | 150.0 | 23.4 |
Structure family 6 | |||||||||||
HTS hit | HSI#13 | 14.3 | NM | - | NM | NM | NM | NM | 60.2 | 150.0 | 57.7 |
Analog | HSI#08 | 17.0 | NM | 32.6 | NM | NM | NM | NM | 60.2 | 150.0 | 54.4 |
Structure family 7 | |||||||||||
HTS hit | HSI#04 | 21.6 | >50 | 7.8 | NM | NM | NM | NM | 60.2 | 150.0 | 37.6 |
Structure family 8 | |||||||||||
HTS hit | HSI#02 | 56.7 | NM | 14.9 | NM | NM | NM | NM | 20.1 | 16.7 | 5.2 |
Pathogen List | Pathogen Used in this Study | Bacterial Viability (IC50, µM) | |||||
---|---|---|---|---|---|---|---|
CC#02 ** | HSI#01 | HSI#05 | HSI#10 | HSI#09 | HSI#06 | ||
Priority 1: Critical Multidrug-resistant and extensively-resistant Mycobacterium tuberculosis | |||||||
Mycobacterium tuberculosis | Mycobacterium abscessus ATCC19977 | NM | 33.8 | 17.9 | 21.8 | 43.5 | 1.1 |
Pseudomonas aeruginosa, carbapenem-resistant | |||||||
Pseudomonas aeruginosa | Pseudomonas aeruginosa 3/88 | NM | NM | NM | NM | NM | 6.3 |
Enterobacteriaceae, carbapenem-resistant, 3rd generation cephalosporin-resistant | |||||||
Klebsiella pneumoniae | Klebsiella pneumoniae ATCC 27799 | NM | 80-100 | NM | NM | 80-100 | 8.7 |
Entheropathogenic E. coli | Entheropathogenic E. coli O127:H6 strain E2348/69 | NM | NM | NM | NM | NM | >90 |
Enterobacter cloacae | Enterobacter cloacae | NM | NM | NM | NM | 50 | 7.8 |
Proteus vulgaris | Proteus vulgaris | NM | 80-100 | NM | NM | 34 | 2.9 |
Providencia stuartii | Providencia stuartii | NM | NM | NM | NM | NM | NM |
Morganella morganii | Morganella morganii | NM | NM | NM | NM | 70 | 6.4 |
Serratia marcescens | Serratia marcescens | NM | NM | NM | NM | NM | 22.7 |
Priority 2: High | |||||||
Enterococcus faecium | Enterococcus faecium ATCC 804B | 28.0 | 34.5 | 9.4 | 23.5 | 6.9 | 0.9 |
Staphylococcus aureus | Staphylococcus aureus ATC6538P | 13.8 | 14.8 | 4.1 | 7.8 | 6.0 | 1.0 |
Campylobacter spp | Campylobacter jejuni | NM | NM | NM | NM | NM | NM |
Salmonella spp | Salmonella typhimurium | NM | NM | NM | NM | 80-100 | 12.4 |
Priority 3: Medium | |||||||
Streptococcus pneumoniae | Streptococcus pneumoniae | 113.3 | 77.8 | 29.7 | 60.9 | 12.6 | 0.4 |
Haemophilus influenzae | Haemophilus influenzae | NM | NM | NM | NM | NM | NM |
Shigella spp | Shigella sonnei | NM | NM | NM | NM | 50 | 6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, M.B.; Burchacka, E.; Angus, L.; Marchand, A.; De Geyter, J.; Loos, M.S.; Anné, J.; Klaassen, H.; Chaltin, P.; Karamanou, S.; et al. Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms 2021, 9, 592. https://doi.org/10.3390/microorganisms9030592
Hamed MB, Burchacka E, Angus L, Marchand A, De Geyter J, Loos MS, Anné J, Klaassen H, Chaltin P, Karamanou S, et al. Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms. 2021; 9(3):592. https://doi.org/10.3390/microorganisms9030592
Chicago/Turabian StyleHamed, Mohamed Belal, Ewa Burchacka, Liselotte Angus, Arnaud Marchand, Jozefien De Geyter, Maria S. Loos, Jozef Anné, Hugo Klaassen, Patrick Chaltin, Spyridoula Karamanou, and et al. 2021. "Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen" Microorganisms 9, no. 3: 592. https://doi.org/10.3390/microorganisms9030592
APA StyleHamed, M. B., Burchacka, E., Angus, L., Marchand, A., De Geyter, J., Loos, M. S., Anné, J., Klaassen, H., Chaltin, P., Karamanou, S., & Economou, A. (2021). Effective Small Molecule Antibacterials from a Novel Anti-Protein Secretion Screen. Microorganisms, 9(3), 592. https://doi.org/10.3390/microorganisms9030592