Prevalence and Multidrug Resistance Pattern of Methicillin Resistant S. aureus Isolated from Frozen Chicken Meat in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of S. aureus
2.3. Antimicrobial Susceptibility Testing
2.4. Screening of Methicillin-Resistant S. aureus (MRSA)
2.5. Detection of Methicillin Resistance Gene
2.6. Data Analyses
3. Results
3.1. Prevalence and Distribution of Methicillin-Resistant S. aureus and Methicillin-Susceptible S. aureus
3.2. Antimicrobial Resistance Pattern
3.3. Prevalence of mecA Gene
3.4. Phenotypic and Genotypic Association of Antimicrobial Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le Loir, Y.; Baron, F.; Gautier, M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003, 2, 63–76. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Aydin, A.; Sudagidan, M.; Muratoglu, K. Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. Int. J. Food Microbiol. 2011, 148, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achi, O.; Madubuike, C. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from retail ready to eat foods in Nigeria. Res. J. Microbiol. 2007, 2, 516–523. [Google Scholar]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Okorie-Kanu, O.J.; Anyanwu, M.U.; Ezenduka, E.V.; Mgbeahuruike, A.C.; Thapaliya, D.; Gerbig, G.; Ugwuijem, E.E.; Okorie-Kanu, C.O.; Agbowo, P.; Olorunleke, S. Molecular epidemiology, genetic diversity and antimicrobial resistance of Staphylococcus aureus isolated from chicken and pig carcasses, and carcass handlers. PLoS ONE 2020, 15, e0232913. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, H.; Fricker, C.; Brown, R.S.; Majury, A.; Liss, S. Antibiotic resistance genes as an emerging environmental contaminant. Environ. Rev. 2016, 24, 205–218. [Google Scholar] [CrossRef]
- Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; De, A.; Noeckler, B.N.; Maradona, M.P.; Roberts, T.; Vågsholm, I. Assessment of the public health significance of meticillin resistant Staphylococcus aureus (MRSA) in animals and foods. EFSA J. 2009, 993, 1–73. [Google Scholar]
- Huijsdens, X.W.; van Dijke, B.J.; Spalburg, E.; van Santen-Verheuvel, M.G.; Heck, M.E.O.C.; Pluister, G.N.; Voss, A.; Wannet, W.J.B.; de Neeling, A.J. Community-acquired MRSA and pig-farming. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abolghait, S.K.; Fathi, A.G.; Youssef, F.M.; Algammal, A.M. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int. J. Food Microbiol. 2020, 328, 108669. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y. Staphylococcus aureus isolated from retail meat and meat products in China: Incidence, antibiotic resistance and genetic diversity. Front. Microbiol. 2018, 9, 2767. [Google Scholar] [CrossRef] [PubMed]
- WHO. Developing and maintaining food safety control systems for Africa: Current status and prospects for change. In Proceedings of the Second FAO/WHO Global Forum of Food Safety Regulators, Bangkok, Thailand, 12–14 October 2004; pp. 12–14. [Google Scholar]
- Ito, T.; Hiramatsu, K.; Tomasz, A.; De Lencastre, H.; Perreten, V.; Holden, M.T.; Coleman, D.C.; Goering, R.; Giffard, P.M.; Skov, R.L. Guidelines for reporting novel mecA gene homologues. Antimicrob. Agents Chemother. 2012, 56, 4997–4999. [Google Scholar] [CrossRef] [Green Version]
- IWG-SCC. Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [Green Version]
- Kitai, S.; Shimizu, A.; Kawano, J.; Sato, E.; Nakano, C.; Uji, T.; Kitagawa, H. Characterization of methicillin-resistant Staphylococcus aureus isolated from retail raw chicken meat in Japan. J. Vet. Med. Sci. 2005, 67, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Kluytmans, J.A.J.W. Methicillin-resistant Staphylococcus aureus in food products: Cause for concern or case for complacency? Clin. Microbiol. Infect. 2010, 16, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Boost, M.V.; Wong, A.; Ho, J.; O’Donoghue, M. Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from retail meats in Hong Kong. Foodborne Pathog. Dis. 2013, 10, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-W. Handbook of Frozen Food Processing and Packaging, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Rahman, M.A.; Rahman, A.K.M.A.; Islam, M.A.; Alam, M.M. Multidrug resistant Staphylococcus aureus isolated from milk, chicken meat, beef and egg in Bangladesh. Res. Agric. Livest. Fish. 2018, 5, 175–183. [Google Scholar] [CrossRef]
- Akhi, M.A.; Das, N.C.; Banik, A.; Abony, M.; Juthi, M.; Uddin, M.E. Detection of drug-resistant S. aureus from poultry samples collected from different areas of Bangladesh. Microbiol. Res. J. Int. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Datta, S.; Akter, A.; Shah, I.; Fatema, K.; Islam, T.; Bandyopadhyay, A.; Khan, Z.; Biswas, D. Microbiological quality assessment of raw meat and meat products, and antibiotic susceptibility of isolated Staphylococcus aureus. Agric. Food Anal. Bacteriol. 2012, 2, 187–194. [Google Scholar]
- Alam, S.T. Antibiogram of pre-processed raw chicken meat from different supershops of Dhaka city, Bangladesh. J. Allied Health Sci. 2015, 2, 45–52. [Google Scholar]
- Islam, M.A.; Parveen, S.; Rahman, M.; Huq, M.; Nabi, A.; Khan, Z.U.M.; Ahmed, N.; Wagenaar, J.A. Occurrence and characterization of methicillin resistant Staphylococcus aureus in processed raw foods and ready-to-eat foods in an urban setting of a developing country. Front. Microbiol. 2019, 10, 503. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 6888-1:1999/AMD 1:2003. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species); ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Dashti, A.; Jadaon, M.; Abdulsamad, A.; Dashti, H. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Kuwait Med. J. 2009, 41, 117–122. [Google Scholar]
- Wilson, I.G.; Cooper, J.E.; Gilmour, A. Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: Use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl. Environ. Microbiol. 1991, 57, 1793–1798. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative Staphylococci. J. Clin. Microbiol. 2004, 42, 4947–4955. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, NJ, USA, 2018; pp. 1–260. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; EUCAST: Basel, Switzerland, 2018; pp. 1–95. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, A.; Aron, D.C.; Donskey, C.J. Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients. BMC Infect. Dis. 2007, 7, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, C.M.; Stefani, L.M.; Lucheis, S.B.; Okano, W.; Cruz, J.C.M.; Souza, G.V.; Casagrande, T.A.C.; Bastos, P.A.S.; Pinheiro, R.R.; Arruda, M.M.; et al. Methicillin-resistant Staphylococcus aureus in poultry and poultry meat: A meta-analysis. J. Food Prot. 2018, 81, 1055–1062. [Google Scholar] [CrossRef]
- Zehra, A.; Gulzar, M.; Singh, R.; Kaur, S.; Gill, J.P.S. Prevalence, multidrug resistance and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in retail meat from Punjab, India. J. Glob. Antimicrob. Resist. 2019, 16, 152–158. [Google Scholar] [CrossRef]
- Ou, C.; Shang, D.; Yang, J.; Chen, B.; Chang, J.; Jin, F.; Shi, C. Prevalence of multidrug-resistant Staphylococcus aureus isolates with strong biofilm formation ability among animal-based food in Shanghai. Food Control 2020, 112, 107106. [Google Scholar] [CrossRef]
- Basak, S.; Singh, P.; Rajurkar, M. Multidrug resistant and extensively drug resistant bacteria: A study. J. Pathog. 2016. [Google Scholar] [CrossRef] [Green Version]
- Masud, A.A.; Rousham, E.K.; Islam, M.A.; Alam, M.-U.; Rahman, M.; Mamun, A.A.; Sarker, S.; Asaduzzaman, M.; Unicomb, L. Drivers of antibiotic use in poultry production in Bangladesh: Dependencies and dynamics of a patron-client relationship. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Al Amin, M.; Hoque, M.N.; Siddiki, A.Z.; Saha, S.; Kamal, M.M. Antimicrobial resistance situation in animal health of Bangladesh. Vet. World 2020, 13, 2713–2727. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic use in poultry production and its effects on bacterial resistance. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2018; pp. 33–51. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Frielinghaus, L.; Grobusch, M.P.; Köck, R.; Becker, K.; Issifou, S.; Kremsner, P.G.; Peters, G.; Mellmann, A. The risk to import ESBL-producing Enterobacteriaceae and Staphylococcus aureus through chicken meat trade in Gabon. BMC Microbiol. 2014, 14, 286. [Google Scholar] [CrossRef] [Green Version]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef]
- Choi, S.; Moon, S.M.; Park, S.-J.; Lee, S.C.; Jung, K.H.; Sung, H.-s.; Kim, M.-N.; Jung, J.; Kim, M.J.; Kim, S.-H. Antagonistic effect of colistin on vancomycin activity against methicillin-resistant Staphylococcus aureus in in vitro and in vivo studies. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Nwaogaraku, C.; Smith, S.; Badaki, J. Non detection of mecA gene in methicillin resistant Staphylococcus aureus isolates from pigs. Afr. J. Clin. Exp. Microbiol. 2019, 20, 159–163. [Google Scholar] [CrossRef]
- Marek, A.; Pyzik, E.; Stępień-Pyśniak, D.; Urban-Chmiel, R.; Jarosz, L.S. Association between the methicillin resistance of Staphylococcus aureus isolated from slaughter poultry, their toxin gene profiles and prophage patterns. Curr. Microbiol. 2018, 75, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
Variables | Total No. of Samples | No. (%) of S. aureus-Positive Isolates | MRSA, No. (%) | MSSA, No. (%) |
---|---|---|---|---|
Brands | ||||
Brand 1 | 23 | 14 (60.9) | 7 (50.0) a | 7 (50.0) a |
Brand 2 | 40 | 19 (47.5) | 7 (36.8) a | 12 (63.2) a |
Brand 3 | 28 | 15 (53.6) | 6 (40.0) a | 9 (60.0) a |
Brand 4 | 8 | 7 (11.3) | 3 (42.9) a | 4 (57.1) a |
Brand 5 | 2 | 1 (50.0) | 0 | 1 (100.0) b |
Brand 6 | 2 | 1 (50.0) | 0 | 1 (100.0) b |
Brand 7 | 5 | 5 (100.0) | 0 | 5 (100.0) b |
Brand 8 | 3 | 0 | 0 | 0 |
Brand 9 | 2 | 0 | 0 | 0 |
Divisions | ||||
Dhaka | 82 | 47 (57.3) | 18 (38.3) a | 29 (61.7) a |
Chattogram | 10 | 6 (60.0) | 4 (66.7) b | 2 (33.3) c |
Sylhet | 11 | 3 (27.3) | 1 (33.3) a | 2 (66.7) a |
Mymensingh | 5 | 5 (100.0) | 0 | 5 (100.0) b |
Rajshahi | 5 | 1 (20.0) | 0 | 1 (100.0) b |
Chicken types | ||||
Broiler | 82 | 42 (51.2) | 19 (45.2) a | 23 (54.8) b |
Cockerel | 31 | 20 (64.5) | 4 (20.0) b | 16 (80.0) a |
Production types | ||||
Organic | 10 | 8 (80.0) | 4 (50.0) a | 4 (50.0) a |
Non-organic | 103 | 54 (52.4) | 19 (35.2) a | 35 (64.8) a |
Meat types | ||||
Breast | 27 | 13 (48.1) | 5 (38.5) a,b | 8 (61.5) a |
Drumstick | 30 | 14 (46.7) | 5 (35.7) a,b | 9 (64.3) a |
Leg | 3 | 3 (100.0) | 3 (100.0) c | 0 |
Wing | 19 | 9 (47.4) | 4 (44.4) a | 5 (55.6) a |
Whole chicken pool sample | 34 | 23 (67.6) | 6 (26.1) b | 17 (73.9) a |
Total | 113 | 62 (54.9) | 23 (37.1) | 39 (62.9) |
Variables | No. (%) of Isolates Resistant to Multiple Antimicrobial Classes | |||||
---|---|---|---|---|---|---|
MRSA | MSSA | |||||
3–5 | 6–8 | 9–12 | 3–5 | 6–8 | 9–12 | |
Brands | ||||||
Brand 1 | 0 | 1 (14.3) b | 6 (85.7) a | 1 (14.3) b | 5 (71.4) a | 1 (14.3) b |
Brand 2 | 0 | 4 (57.1) b | 3 (42.9) b | 5 (41.7) c | 7 (58.3) a,b | 0 |
Brand 3 | 0 | 4 (66.7) b | 2 (33.3) b | 4 (44.4) c | 5 (55.6) a,b | 0 |
Brand 4 | 0 | 3 (100.0) a | 0 | 3 (75.0) a | 1 (25.0) b,c | 0 |
Brand 5 | 0 | 0 | 0 | 0 | 1 (100.0) d | 0 |
Brand 6 | 0 | 0 | 0 | 1 (100.0) a | 0 | 0 |
Brand 7 | 0 | 0 | 0 | 0 | 2 (40.0)b | 3 (60.0)a |
Divisions | ||||||
Dhaka | 0 | 11 (61.1) a | 7 (38.9) b | 11 (37.9) b | 17 (58.6) b | 1 (3.4) b |
Chattogram | 0 | 1 (25.0) b | 3 (75.0) a | 0 | 2 (100.0) a | 0 |
Sylhet | 0 | 0 | 1 (100.0) a | 2 (100.0) a | 0 | 0 |
Mymensingh | 0 | 0 | 0 | 0 | 2 (40.0) b | 3 (60.0) a |
Rajshahi | 0 | 0 | 0 | 1 (100.0) a | 0 | 0 |
Chicken types | ||||||
Broiler | 0 | 11 (57.9) a | 8 (42.1) b | 10 (43.5) a | 13 (56.5) a | 0 |
Cockerel | 0 | 1 (25.0) b | 3 (75.0) a | 4 (25.0) b | 8 (50.0) a | 4 (25.0) a |
Production types | ||||||
Organic | 0 | 3 (75.0) a | 1 (25.0) b | 3 (75.0) a | 1 (25.0) b | 0 |
Non-organic | 0 | 9 (47.4) b | 10 (52.6) a | 11 (31.4) b | 20 (57.1) a | 4 (11.4) a |
Meat types | ||||||
Breast | 0 | 3 (60.0) a,b | 2 (40.0) a,b | 4 (50.0) a | 4 (50.0) b | 0 |
Drumstick | 0 | 3 (60.0) a,b | 2 (40.0) a,b | 4 (44.4) a | 5 (55.6) b | 0 |
Leg | 0 | 0 | 3 (100.0) c | 0 | 0 | 0 |
Wing | 0 | 3 (75.0) a | 1 (25.0) a | 1 (20.0) b | 4 (80.0) a | 0 |
Whole chicken | 0 | 3 (50.0) b | 3 (50.0) b | 5 (29.4) ab | 8 (47.1) b | 4 (23.5) a |
Total | 0 | 12 (52.2) | 11 (47.8) | 14 (35.9) | 21 (53.8) | 4 (10.3) |
Antimicrobials | NP | ARG | P+/G+ | P+/G− | P−/G+ | P−/G− | NG | OR | 95% CI | p-Value a |
---|---|---|---|---|---|---|---|---|---|---|
MRSA | ||||||||||
Cefotaxime | 7 | mecA | 6 | 1 | 4 | 12 | 10 | 18.0 | 1.6–198.5 | 0.02 |
Norfloxacin | 14 | mecA | 9 | 5 | 1 | 8 | 10 | 14.4 | 1.4–150.8 | 0.03 |
Ciprofloxacin | 12 | mecA | 8 | 4 | 2 | 9 | 10 | 9.0 | 1.3–63.0 | 0.03 |
Gatifloxacin | 15 | mecA | 9 | 6 | 1 | 7 | 10 | 10.5 | 1.0–108.6 | 0.05 |
Pefloxacin | 11 | mecA | 8 | 3 | 2 | 10 | 10 | 13.3 | 1.8–100.1 | 0.01 |
Ofloxacin | 12 | mecA | 8 | 4 | 2 | 9 | 10 | 9.0 | 1.3–63.0 | 0.03 |
Azithromycin | 15 | mecA | 9 | 6 | 1 | 7 | 10 | 10.5 | 1.0–108.6 | 0.05 |
MSSA | ||||||||||
Penicillin-G | 31 | mecA | 10 | 21 | 7 | 1 | 17 | 0.1 | 0.01–0.6 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvin, M.S.; Ali, M.Y.; Talukder, S.; Nahar, A.; Chowdhury, E.H.; Rahman, M.T.; Islam, M.T. Prevalence and Multidrug Resistance Pattern of Methicillin Resistant S. aureus Isolated from Frozen Chicken Meat in Bangladesh. Microorganisms 2021, 9, 636. https://doi.org/10.3390/microorganisms9030636
Parvin MS, Ali MY, Talukder S, Nahar A, Chowdhury EH, Rahman MT, Islam MT. Prevalence and Multidrug Resistance Pattern of Methicillin Resistant S. aureus Isolated from Frozen Chicken Meat in Bangladesh. Microorganisms. 2021; 9(3):636. https://doi.org/10.3390/microorganisms9030636
Chicago/Turabian StyleParvin, Mst. Sonia, Md. Yamin Ali, Sudipta Talukder, Azimun Nahar, Emdadul Haque Chowdhury, Md. Tanvir Rahman, and Md. Taohidul Islam. 2021. "Prevalence and Multidrug Resistance Pattern of Methicillin Resistant S. aureus Isolated from Frozen Chicken Meat in Bangladesh" Microorganisms 9, no. 3: 636. https://doi.org/10.3390/microorganisms9030636
APA StyleParvin, M. S., Ali, M. Y., Talukder, S., Nahar, A., Chowdhury, E. H., Rahman, M. T., & Islam, M. T. (2021). Prevalence and Multidrug Resistance Pattern of Methicillin Resistant S. aureus Isolated from Frozen Chicken Meat in Bangladesh. Microorganisms, 9(3), 636. https://doi.org/10.3390/microorganisms9030636