Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media, Cell Lines, and Growth Conditions
2.2. Investigating the Auto-Aggregation Ability, Hydrophobicity, Adhesion Ability to HeLa Cells and Survivability in 0.01% H2O2 of Three Candidate Strains
2.3. Short-Chain Fatty Acids (SCFAs) and Lactic Acid Analysis in Cell-Free Supernatants (CFS)
2.4. Co-Aggregation Assay
2.5. Co-Culture Assay
2.6. Evaluation of Lactobacillus sp. for Antagonism of G. vaginalis Adhesion
2.7. Effects of LAB CFS on G. vaginalis Biofilm Formation and Preformation
2.8. Impact of Lactobacillus sp. CFS on G. vaginalis Gene Expression
2.9. Anti-Inflammatory Effects of Probiotic Bacteria on HeLa Cells
2.10. Statistical Analysis
3. Results
3.1. Auto-Aggregation Ability, Hydrophobicity, Adhesion Ability to HeLa Cells and Survivability in 0.01% H2O2 of Three Candidate Strains
3.2. SCFAs and Lactic Acid Levels in CFS
3.3. Interaction between Lactobacillus and G. vaginalis in Co-Aggregation, Co-Culture and Preventing Attachment
3.4. Impact of CFS on the Formation and Disruption of G. vaginalis Biofilms
3.5. Impact of CFS in Gene Expression in Planktonic and Biofilm Cells of G. vaginalis
3.6. Anti-Inflammatory Activities of Lactobacillus sp.
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohbot, J.M.; Daraï, E.; Bretelle, F.; Brami, G.; Daniel, C.; Cardot, J.M. Efficacy and safety of vaginally administered lyophilized Lactobacillus crispatus IP 174178 in the prevention of bacterial vaginosis recurrence. J. Gynecol. Obstet. Hum. Reprod. 2018, 47, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenyon, C.; Colebunders, R.; Crucitti, T. The global epidemiology of bacterial vaginosis: A systematic review. Am. J. Obstet. Gynecol. 2013, 209, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Hütt, P.; Lapp, E.; Štšepetova, J.; Smidt, I.; Taelma, H.; Borovkova, N.; Oopkaup, H.; Ahelik, A.; Rööp, T.; Hoidmets, D.; et al. Characterisation of probiotic properties in human vaginal lactobacilli strains. Microb. Ecol. Heal. Dis. 2016, 27. [Google Scholar] [CrossRef]
- Breshears, L.M.; Edwards, V.L.; Ravel, J.; Peterson, M.L. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol. 2015, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grewal, N.; Mahajan, A. The Effect of Supplementation of Standard Antibiotic Therapy with Oral Probiotics for Bacterial Vaginosis. Int. J. Med. Dent. Sci. 2018, 7, 1628. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.; Cerca, N. Influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis. J. Infect. Dis. 2015, 212, 1856–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swidsinski, A.; Verstraelen, H.; Loening-Baucke, V.; Swidsinski, S.; Mendling, W.; Halwani, Z. Presence of a Polymicrobial Endometrial Biofilm in Patients with Bacterial Vaginosis. PLoS ONE 2013, 8, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Schilling, J.; Mendling, W. Response of Gardnerella vaginalis biofilm to 5 days of moxifloxacin treatment. FEMS Immunol. Med. Microbiol. 2011, 61, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, J.; Paula, A.; Elisa, M.; Cerca, N. Anaerobe Lactobacillus crispatus represses vaginolysin expression by BV associated Gardnerella vaginalis and reduces cell cytotoxicity. Anaerobe 2018, 50, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Gelber, S.E.; Aguilar, J.L.; Lewis, K.L.T.; Ratner, A.J. Functional and phylogenetic characterization of vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J. Bacteriol. 2008, 190, 3896–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, R.G.; Randis, T.M.; Desai, P.; He, X.; Robinson, C.K.; Rath, J.; Glover, E.D.; Ratner, A.J.; Ravel, J.; Brotman, R.M. Higher levels of a cytotoxic protein, vaginolysin, in Lactobacillus-deficient community state types at the vaginal mucosa. Physiol. Behav. 2019, 176, 139–148. [Google Scholar] [CrossRef]
- Hardy, L.; Jespers, V.; Van Den Bulck, M.; Buyze, J.; Mwambarangwe, L.; Musengamana, V.; Vaneechoutte, M.; Crucitti, T. The presence of the putative Gardnerella vaginalis sialidase A gene in vaginal specimens is associated with bacterial vaginosis biofilm. PLoS ONE 2017, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lopes Dos Santos Santiago, G.; Deschaght, P.; El Aila, N.; Kiama, T.N.; Verstraelen, H.; Jefferson, K.K.; Temmerman, M.; Vaneechoutte, M. Gardnerella vaginalis comprises three distinct genotypes of which only two produce sialidase. Am. J. Obstet. Gynecol. 2011, 204, 450.e1–450.e7. [Google Scholar] [CrossRef]
- Cauci, S.; Culhane, J.F. High sialidase levels increase preterm birth risk among women who are bacterial vaginosispositive in early gestation. Am. J. Obstet. Gynecol. 2011, 204, 142.e1–142.e9. [Google Scholar] [CrossRef]
- Donders, G.G.; Zodzika, J.; Rezeberga, D. Treatment of bacterial vaginosis: What we have and what we miss. Expert Opin. Pharmacother. 2014, 15, 645–657. [Google Scholar] [CrossRef]
- Li, C.; Wang, T.; Li, Y.; Zhang, T.; Wang, Q.; He, J.; Wang, L.; Li, L.; Yang, N.; Fang, Y. Probiotics for the treatment of women with bacterial vaginosis: A systematic review and meta-analysis of randomized clinical trials. Eur. J. Pharmacol. 2019, 864, 172660. [Google Scholar] [CrossRef]
- Muzny, C.A.; Schwebke, J.R. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections. Clin. Infect. Dis. 2015, 61, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, C.R.; Wierzbicki, M.R.; French, A.L.; Morris, S.; Newmann, S.; Reno, H.; Green, L.; Miller, S.; Powell, J.; Parks, T.; et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N. Engl. J. Med. 2020, 382, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front. Physiol. 2015, 6, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortelli, B.A.; Lewis, W.G.; Allsworth, J.E.; Member-Meneh, N.; Foster, L.R.; Reno, H.E.; Peipert, J.F.; Fay, J.C.; Lewis, A.L. Associations between the vaginal microbiome and Candida colonization in women of reproductive age. Am. J. Obstet. Gynecol. 2020, 222, 471.e1–471.e9. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Alves, P.; Sousa, C.; Cereija, T.; França, Â. Using an in-vitro biofilm model to assess the virulence potential of Bacterial Vaginosis or non- Bacterial Vaginosis Gardnerella vaginalis isolates. Nat. Publ. Gr. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Saunders, S.; Bocking, A.; Challis, J.; Reid, G. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf. B Biointerfaces 2007, 55, 138–142. [Google Scholar] [CrossRef]
- Santos, C.M.A.; Pires, M.C.V.; Leão, T.L.; Silva, A.K.S.; Miranda, L.S.; Martins, F.S.; Silva, A.M.; Nicoli, J.R. Anti-inflammatory effect of two Lactobacillus strains during infection with Gardnerella vaginalis and Candida albicans in a Hela cell culture model. Microbiology 2018, 164, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Zhao, D.; Yin, Y.; Zhu, H.; Chen, D. Antibacterial Activity of Lactobacillus Strains Isolated from Mongolian Yogurt against Gardnerella vaginalis. BioMed Res Int. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pessoa, W.F.B.; Melgaço, A.C.C.; De Almeida, M.E.; Ramos, L.P.; Rezende, R.P.; Romano, C.C. In Vitro Activity of Lactobacilli with Probiotic Potential Isolated from Cocoa Fermentation against Gardnerella vaginalis. Biomed Res. Int. 2017, 2017, 3264194. [Google Scholar] [CrossRef] [Green Version]
- Rong, J.; Zheng, H.; Liu, M.; Hu, X.; Wang, T.; Zhang, X.; Jin, F.; Wang, L. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss Microbe-host interactions and microbial pathogenicity. BMC Microbiol. 2015, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrova, M.I.; Macklaim, J.M.; Wuyts, S.; Verhoeven, T.; Vanderleyden, J.; Gloor, G.B.; Lebeer, S.; Reid, G. Comparative genomic and phenotypic analysis of the vaginal probiotic Lactobacillus rhamnosus GR-1. Front. Microbiol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhu, H.; Gao, F.; Qian, Z.; Mao, W.; Yin, Y.; Tan, J.; Chen, D. Antidiabetic effects of selenium-enriched Bifidobacterium longum DD98 in the type 2 diabetes model of mice. Food Funct. 2020, 6528–6541. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.E.; Jeong, J.J.; Choi, S.Y.; Kim, H.; Han, M.J.; Kim, D.H. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 attenuate Gardnerella vaginalis-infected bacterial vaginosis in mice. Nutrients 2017, 9, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.; Kim, D.H.; Song, K.Y.; Seo, K.H. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens. J. Oral Microbiol. 2018, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasfi, R.; Abd El-Rahman, O.A.; Zafer, M.M.; Ashour, H.M. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J. Cell. Mol. Med. 2018, 22, 1972–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, S.M.; Kurrey, N.K.; Halami, P.M. In vitro anti-inflammatory activity among probiotic Lactobacillus species isolated from fermented foods. J. Funct. Foods 2018, 47, 19–27. [Google Scholar] [CrossRef]
- Tuo, Y.; Song, X.; Song, Y.; Liu, W.; Tang, Y.; Gao, Y.; Jiang, S.; Qian, F.; Mu, G. Screening probiotics from Lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. J. Dairy Sci. 2018, 101, 4822–4829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M.; Kim, W.S.; Kumura, H.; Shimazaki, K.I. Autoaggregation and surface hydrophobicity of bifidobacteria. World J. Microbiol. Biotechnol. 2008, 24, 1593–1598. [Google Scholar] [CrossRef]
- Raman, M.; Ambalam, P.; Doble, M. Probiotics and Bioactive Carbohydrates in Colon Cancer Management; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9788132225867. [Google Scholar]
- Patil, P.S. Antimicrobial activity of vaginal lactobacilli against Gardnerella vaginalis and pathogens. Int. J. Adv. Res. Biol. Sci. 2016, 3, 200–207. Available online: http://s-o-i.org/1.15/ijarbs-2016-3-5-29 (accessed on 7 May 2019).
- Walker, A.W. Microbiota of the Human Body. Implic. Health 2016, 902, 5–32. [Google Scholar] [CrossRef]
- Homayouni, A.; Bastani, P.; Ziyadi, S.; Mohammad-Alizadeh-Charandabi, S.; Ghalibaf, M.; Mortazavian, A.M.; Mehrabany, E.V. Effects of probiotics on the recurrence of bacterial vaginosis: A review. J. Low. Genit. Tract Dis. 2014, 18, 79–86. [Google Scholar] [CrossRef]
- Huang, H.; Song, L.; Zhao, W. Effects of probiotics for the treatment of bacterial vaginosis in adult women: A meta-analysis of randomized clinical trials. Arch. Gynecol. Obstet. 2014, 289, 1225–1234. [Google Scholar] [CrossRef]
- Mastromarino, P.; Vitali, B.; Mosca, L. Bacterial vaginosis: A review on clinical trials with probiotics. New Microbiol. 2013, 36, 229–238. [Google Scholar] [CrossRef]
- Nikolic, M.; Jovcic, B.; Kojic, M.; Topisirovic, L. Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. Eur. Food Res. Technol. 2010, 231, 925–931. [Google Scholar] [CrossRef]
- Tuo, Y.; Yu, H.; Ai, L.; Wu, Z.; Guo, B.; Chen, W. Aggregation and adhesion properties of 22 Lactobacillus strains. J. Dairy Sci. 2013, 96, 4252–4257. [Google Scholar] [CrossRef] [Green Version]
- Haya, J.; García, A.; López-Manzanara, C.; Balawi, M.; Haya, L. Importance of Lactic Acid in Maintaining Vaginal Health: A Review of Vaginitis and Vaginosis Etiopathogenic Bases and a Proposal for a New Treatment. Open J. Obstet. Gynecol. 2014, 4, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Aldunate, M.; Srbinovski, D.; Hearps, A.C.; Latham, C.F.; Ramsland, P.A.; Gugasyan, R.; Cone, R.A.; Tachedjian, G. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 2015, 6, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ołdak, A.; Zielińska, D.; Rzepkowska, A.; Kołozyn-Krajewska, D. Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. Biomed Res. Int. 2017, 2017, 6820369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhisingha, M.; Dumnil, J.; Pitaksutheepong, C. Selection of Potential Probiotic Lactobacillus with Inhibitory Activity against Salmonella and Fecal Coliform Bacteria. Probiotics Antimicrob. Proteins 2018, 10, 218–227. [Google Scholar] [CrossRef]
- Atassi, F.; Brassart, D.; Grob, P.; Graf, F.; Servin, A.L. Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol. Med. Microbiol. 2006, 48, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Bertuccini, L.; Russo, R.; Iosi, F.; Superti, F. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens. Int. J. Immunopathol. Pharmacol. 2017, 30, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Patel, A.; Ambalam, P.; Holst, O.; Ljungh, A.; Prajapati, J. Determination of an antimicrobial activity of Weissella confusa, Lactobacillus fermentum, and Lactobacillus plantarum against clinical pathogenic strains of Escherichia coli and Staphylococcus aureus in co-culture. Ann. Microbiol. 2016, 66, 1137–1143. [Google Scholar] [CrossRef]
- Tsai, C.C.; Lai, T.M.; Hsieh, Y.M. Evaluation of Lactobacilli for Antagonistic Activity Against the Growth, Adhesion and Invasion of Klebsiella pneumoniae and Gardnerella vaginalis. Indian J. Microbiol. 2019, 59, 81–89. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Zhang, Q.; Tian, F.; Wang, G.; Zhang, H.; Chen, W. Screening of lactobacilli with antagonistic activity against enteroinvasive Escherichia coli. Food Control 2013, 30, 563–568. [Google Scholar] [CrossRef]
- Petrova, M.I.; Lievens, E.; Verhoeven, T.L.A.; MacKlaim, J.M.; Gloor, G.; Schols, D.; Vanderleyden, J.; Reid, G.; Lebeer, S. The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.; Dell, M.; Zellar, M.P.; Cribby, S.; Martz, S.; Hong, E.; Fu, J.; Abbas, A.; Dang, T.; Miller, W.; et al. Disruption of urogenital biofilms by lactobacilli. Colloids Surf. B Biointerfaces 2011, 86, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; França, A.; Bradwell, K.R.; Serrano, M.G.; Jefferson, K.K.; Cerca, N. Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. NPJ Biofilms Microbiomes 2017, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Beck, B.R.; Park, G.S.; Lee, Y.H.; Im, S.; Jeong, D.Y.; Kang, J. Whole genome analysis of Lactobacillus plantarum strains isolated from kimchi and determination of probiotic properties to treat mucosal infections by Candida albicans and Gardnerella vaginalis. Front. Microbiol. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Yang, S.J.; Lee, J.E.; Lim, S.M.; Kim, Y.J.; Lee, N.K.; Paik, H.D. Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Sci. Biotechnol. 2019, 28, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.M.; Hyun, Y.J.; Myoung, K.S.; Ahn, Y.T.; Lee, J.H.; Huh, C.S.; Han, M.J.; Kim, D.H. Lactobacillus johnsonii HY7042 ameliorates Gardnerella vaginalis-induced vaginosis by killing Gardnerella vaginalis and inhibiting NF-κB activation. Int. Immunopharmacol. 2011, 11, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
Auto-Aggregation Ability (%) | Hydrophobicity (%) | ||
---|---|---|---|
Strain | |||
L. delbrueckii DM8909 | 51.50 ± 4.10 | 29.07 ± 0.45 | |
Lpb. plantarum ATCC14917 | 11.65 ± 1.49 | 50.97 ± 0.64 | |
Lpb. plantarum ZX27 | 8.10 ± 0.28 | 44.07 ± 0.15 | |
Adhesion to HeLa cells | Survivability in 0.01% H2O2 (%) | ||
Strain | Adhesion rate (%) | Amount of lactobacilli in each HeLa cell | |
DM8909 | 35.96 ± 6.81 | 593 ± 112 | 55.5 ± 2.55 |
ATCC14917 | 8.89 ± 1.03 | 147 ± 17 | 11.97 ± 9.53 |
ZX27 | 12.67 ± 0.78 | 209 ± 13 | 91.12 ± 6.06 |
Strain | SCFAs and Lactic Acid (mM) | ||||||
---|---|---|---|---|---|---|---|
Acetic Acid | Lactic Acid | Propionic Acid | Butyric Acid | Isobutyric Acid | Valeric Acid | Isovaleric Acid | |
DM8909 | 0.012 ± 0.001 | 6.513 ± 0.034 | 0.951 ± 0.005 | 0.977 ± 0.003 | 0.611 ± 0.002 | 0.431 ± 0.002 | 0.285 ± 0.011 |
ATCC14917 | 0.008 ± 0.001 | 6.954 ± 0.031 | 1.021 ± 0.003 | 1.06 ± 0.004 | 0.654 ± 0.005 | 0.464 ± 0.003 | 0.283 ± 0.008 |
ZX27 | 0.011 ± 0.001 | 7.06 ± 0.064 | 1.053 ± 0.003 | 1.12 ± 0.021 | 0.668 ± 0.008 | 0.469 ± 0.001 | 0.282 ± 0.007 |
Category | Target Gene (Symbol) | Fold change in Suspended Bacteriaa | Fold Change in Biofilmb | ||||
---|---|---|---|---|---|---|---|
DM8909 | ATCC14917 | ZX27 | DM8909 | ATCC14917 | ZX27 | ||
Pathogenic factor | HMPREF0424_0103 (vly) | 1.41 | 1.21 | 0.15* | 0.17* | 0.16* | 0.14* |
HMPREF0424_1109(sld) | 45.33* | 10.33* | 0.05* | 0.25* | 0.25* | 0.01* | |
Epithelial adhesion | HMPREF0424_0125 (pat) | 1.20 | 2.65* | 0.02* | 0.57 | 0.36* | 0.0001* |
Biofilm formation | HMPREF0424_0821 (gtf) | 2.08* | 0.29* | 0.07* | 0.27* | 0.25* | 0.17* |
Metabolism | HMPREF0424_1297 (stp) | 2.21* | 1.57 | 0.17* | 0.38* | 0.11* | 0.04* |
HMPREF0424_1253 (atm) | 1.51 | 0.87 | 0.19* | 2.08* | 0.89 | 0.17* | |
HMPREF0424_1189 (itm) | 1.87 | 0.97 | 0.08* | 0.72 | 0.72 | 0.07* | |
Antimicrobial resistance | HMPREF0424_0156 (bcrA) | 0.77 | 0.47* | 1.64 | 0.10* | 0.10* | 0.30* |
HMPREF0424_1122 (mds) | 0.93 | 0.45* | 1.83 | 0.17* | 0.17* | 0.39* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Zhu, H.; Zhao, D.; Yang, P.; Gao, F.; Lu, C.; Yin, Y.; Kan, S.; Chen, D. Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis. Microorganisms 2021, 9, 728. https://doi.org/10.3390/microorganisms9040728
Qian Z, Zhu H, Zhao D, Yang P, Gao F, Lu C, Yin Y, Kan S, Chen D. Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis. Microorganisms. 2021; 9(4):728. https://doi.org/10.3390/microorganisms9040728
Chicago/Turabian StyleQian, Zhixiang, Hui Zhu, Dan Zhao, Ping Yang, Fei Gao, Chunyi Lu, Yu Yin, Shidong Kan, and Daijie Chen. 2021. "Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis" Microorganisms 9, no. 4: 728. https://doi.org/10.3390/microorganisms9040728
APA StyleQian, Z., Zhu, H., Zhao, D., Yang, P., Gao, F., Lu, C., Yin, Y., Kan, S., & Chen, D. (2021). Probiotic Lactobacillus sp. Strains Inhibit Growth, Adhesion, Biofilm Formation, and Gene Expression of Bacterial Vaginosis-Inducing Gardnerella vaginalis. Microorganisms, 9(4), 728. https://doi.org/10.3390/microorganisms9040728