Lassa Virus Treatment Options
Abstract
:1. Introduction
2. Preclinical Models
3. Antiviral Approaches
3.1. Ribavirin (1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,4-triazole-3-carboxamide)
3.1.1. Mechanism of Action
3.1.2. Preclinical Studies
3.1.3. Clinical Studies
3.2. Favipiravir (T-705, 6-fluoro-3-hydroxypyrazine-2-carboxamide)
3.2.1. Mechanism of Action
3.2.2. Preclinical Studies
3.2.3. Clinical Studies
3.3. Stampidine (methyl 2-[[(4-bromophenoxy)-[[(2S,5R)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)-2,5-dihydrofuran-2-yl]methoxy]phosphoryl]amino]propanoate)
3.4. ST-193 (1-(4-methoxyphenyl)-N-[(4-propan-2-ylphenyl)methyl]benzimidazol-5-amine)
3.5. Immune Plasma
3.5.1. Preclinical Studies
3.5.2. Clinical Studies
3.6. Monoclonal Antibodies
3.6.1. Preclinical Studies
3.6.2. Clinical Studies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frame, J.D.; Baldwin, J.M., Jr.; Gocke, D.J.; Troup, J.M. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am. J. Trop. Med. Hyg. 1970, 19, 670–676. [Google Scholar] [CrossRef]
- Yun, N.E.; Walker, D.H. Pathogenesis of Lassa fever. Viruses 2012, 4, 2031–2048. [Google Scholar] [CrossRef] [PubMed]
- Cosset, F.L.; Marianneau, P.; Verney, G.; Gallais, F.; Tordo, N.; Pecheur, E.I.; ter Meulen, J.; Deubel, V.; Bartosch, B. Characterization of Lassa virus cell entry and neutralization with Lassa virus pseudoparticles. J. Virol. 2009, 83, 3228–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchmeier, M.J.; Peters, C.J.; de la Torre, C. Arenaviridae: The viruses and their replication. Fields Virol. 2007, 2, 1792–1827. [Google Scholar]
- Paolo Colangelo, E.V.; Leirs, H.; Tatard, C.; Denys, C.; Dobigny, G.; Duplantier, J.-M.; Brouat, C.; Granjon, L.; Lecompte, E. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol. J. Linn. Soc. 2013, 108, 901–916. [Google Scholar] [CrossRef] [Green Version]
- Olayemi, A.; Cadar, D.; Magassouba, N.; Obadare, A.; Kourouma, F.; Oyeyiola, A.; Fasogbon, S.; Igbokwe, J.; Rieger, T.; Bockholt, S.; et al. New Hosts of The Lassa Virus. Sci. Rep. 2016, 6, 25280. [Google Scholar] [CrossRef] [Green Version]
- Lassa Fever. Available online: https://www.cdc.gov/vhf/lassa/index.html (accessed on 1 January 2020).
- Childs, J.E.; Mills, J.N.; Glass, G.E. Rodent-Borne Hemorrhagic-Fever Viruses—A Special Risk for Mammalogists. J. Mammal. 1995, 76, 664–680. [Google Scholar] [CrossRef] [Green Version]
- Richmond, J.K.; Baglole, D.J. Lassa fever: Epidemiology, clinical features, and social consequences. BMJ 2003, 327, 1271–1275. [Google Scholar] [CrossRef]
- Akhmetzhanov, A.R.; Asai, Y.; Nishiura, H. Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180268. [Google Scholar] [CrossRef] [Green Version]
- Dan-Nwafor, C.C.; Ipadeola, O.; Smout, E.; Ilori, E.; Adeyemo, A.; Umeokonkwo, C.; Nwidi, D.; Nwachukwu, W.; Ukponu, W.; Omabe, E.; et al. A cluster of nosocomial Lassa fever cases in a tertiary health facility in Nigeria: Description and lessons learned, 2018. Int. J. Infect. Dis. 2019, 83, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Lassa Fever. Available online: https://www.who.int/news-room/fact-sheets/detail/lassa-fever (accessed on 16 September 2020).
- Fisher-Hoch, S.P.; Tomori, O.; Nasidi, A.; Perez-Oronoz, G.I.; Fakile, Y.; Hutwagner, L.; McCormick, J.B. Review of cases of nosocomial Lassa fever in Nigeria: The high price of poor medical practice. BMJ 1995, 311, 857–859. [Google Scholar] [CrossRef] [Green Version]
- Ogbu, O.; Ajuluchukwu, E.; Uneke, C.J. Lassa fever in West African sub-region: An overview. J. Vector Borne Dis. 2007, 44, 1–11. [Google Scholar]
- Macher, A.M.; Wolfe, M.S. Historical Lassa fever reports and 30-year clinical update. Emerg. Infect. Dis. 2006, 12, 835–837. [Google Scholar] [CrossRef]
- Cross, R.W.; Hastie, K.M.; Mire, C.E.; Robinson, J.E.; Geisbert, T.W.; Branco, L.M.; Ollmann Saphire, E.; Garry, R.F. Antibody therapy for Lassa fever. Curr. Opin. Virol. 2019, 37, 97–104. [Google Scholar] [CrossRef]
- Okokhere, P.; Colubri, A.; Azubike, C.; Iruolagbe, C.; Osazuwa, O.; Tabrizi, S.; Chin, E.; Asad, S.; Ediale, E.; Rafiu, M.; et al. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: A retrospective, observational cohort study. Lancet Infect. Dis. 2018, 18, 684–695. [Google Scholar] [CrossRef]
- Kofman, A.; Choi, M.J.; Rollin, P.E. Lassa Fever in Travelers from West Africa, 1969–2016. Emerg. Infect. Dis. 2019, 25, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang-Huau, T.L.; Feldmann, H.; Rosenke, K. Animal models for Lassa virus infection. Curr. Opin. Virol. 2019, 37, 112–117. [Google Scholar] [CrossRef]
- Sattler, R.A.; Paessler, S.; Ly, H.; Huang, C. Animal Models of Lassa Fever. Pathogens 2020, 9, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.H.; Wulff, H.; Lange, J.V.; Murphy, F.A. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull. World Health Organ. 1975, 52, 523–534. [Google Scholar]
- Jahrling, P.B.; Smith, S.; Hesse, R.A.; Rhoderick, J.B. Pathogenesis of Lassa virus infection in guinea pigs. Infect. Immun. 1982, 37, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.M.; Shaia, C.I.; Bearss, J.J.; Mattix, M.E.; Koistinen, K.A.; Honnold, S.P.; Zeng, X.; Blancett, C.D.; Donnelly, G.C.; Shamblin, J.D.; et al. Temporal Progression of Lesions in Guinea Pigs Infected With Lassa Virus. Vet. Pathol. 2017, 54, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Safronetz, D.; Rosenke, K.; Westover, J.B.; Martellaro, C.; Okumura, A.; Furuta, Y.; Geisbert, J.; Saturday, G.; Komeno, T.; Geisbert, T.W.; et al. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci. Rep. UK 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Ignat’ev, G.M.; Kaliberov, S.A.; Pereboeva, L.A.; Tverdokhlebov, A.B.; Kras’ko, A.G.; Godneva, A.T. Study of certain indicators of immunity upon infecting CBA/Calac line mice with Lassa virus. Vopr. Virusol. 1994, 39, 257–260. [Google Scholar] [PubMed]
- Hensley, L.E.; Smith, M.A.; Geisbert, J.B.; Fritz, E.A.; Daddario-DiCaprio, K.M.; Larsen, T.; Geisbert, T.W. Pathogenesis of Lassa fever in cynomolgus macaques. Virol. J. 2011, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Baize, S.; Marianneau, P.; Loth, P.; Reynard, S.; Journeaux, A.; Chevallier, M.; Tordo, N.; Deubel, V.; Contamin, H. Early and strong immune responses are associated with control of viral replication and recovery in lassa virus-infected cynomolgus monkeys. J. Virol. 2009, 83, 5890–5903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, J.T.; Robins, R.K.; Sidwell, R.W.; Simon, L.N. Design, synthesis, and broad spectrum antiviral activity of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem. 1972, 15, 1150–1154. [Google Scholar] [CrossRef]
- Snell, N.J. Ribavirin—Current status of a broad spectrum antiviral agent. Expert Opin. Pharmacother. 2001, 2, 1317–1324. [Google Scholar] [CrossRef]
- Loustaud-Ratti, V.; Debette-Gratien, M.; Jacques, J.; Alain, S.; Marquet, P.; Sautereau, D.; Rousseau, A.; Carrier, P. Ribavirin: Past, present and future. World J. Hepatol. 2016, 8, 123–130. [Google Scholar] [CrossRef]
- Rodriguez, W.J.; Parrott, R.H. Ribavirin aerosol treatment of serious respiratory syncytial virus infection in infants. Infect. Dis. Clin. N. Am. 1987, 1, 425–439. [Google Scholar] [CrossRef]
- Crumpacker, C.; Heagy, W.; Bubley, G.; Monroe, J.E.; Finberg, R.; Hussey, S.; Schnipper, L.; Lucey, D.; Lee, T.H.; McLane, M.F.; et al. Ribavirin treatment of the acquired immunodeficiency syndrome (AIDS) and the acquired-immunodeficiency-syndrome-related complex (ARC). A phase 1 study shows transient clinical improvement associated with suppression of the human immunodeficiency virus and enhanced lymphocyte proliferation. Ann. Intern. Med. 1987, 107, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.S.; Creticos, C.M.; Jackson, G.G.; Bernstein, J.M.; Hayden, F.G.; Schiff, G.M.; Bernstein, D.I. Oral ribavirin treatment of influenza A and B. Antimicrob. Agents Chemother. 1987, 31, 1285–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, G. Effects of ribavirin on measles. J. Indian Med. Assoc. 2011, 109, 666–667. [Google Scholar] [PubMed]
- Salazar, M.; Yun, N.E.; Poussard, A.L.; Smith, J.N.; Smith, J.K.; Kolokoltsova, O.A.; Patterson, M.J.; Linde, J.; Paessler, S. Effect of ribavirin on junin virus infection in guinea pigs. Zoonoses Public Health 2012, 59, 278–285. [Google Scholar] [CrossRef]
- McCormick, J.B.; King, I.J.; Webb, P.A.; Scribner, C.L.; Craven, R.B.; Johnson, K.M.; Elliott, L.H.; Belmont-Williams, R. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 1986, 314, 20–26. [Google Scholar] [CrossRef]
- Efficacy Trials of Lassa Therapeutics: Endpoints, Trial Design, Site Selection. Available online: https://www.who.int/blueprint/what/norms-standards/LassaTxeval_FinalmeetingReport.pdf?ua=1 (accessed on 16 September 2020).
- Eberhardt, K.A.; Mischlinger, J.; Jordan, S.; Groger, M.; Gunther, S.; Ramharter, M. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. Int. J. Infect. Dis. 2019, 87, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Final Report Analysis of a Clinical Trial Ribavirin and the Treatment of Lassa Fever; ISARIC, 7 February 1992; Birch and Davis Associates, Inc.: Silver Spring, MD, USA, 1992.
- Takaki, S.; Tsubota, A.; Hosaka, T.; Akuta, N.; Someya, T.; Kobayashi, M.; Suzuki, F.; Suzuki, Y.; Saitoh, S.; Arase, Y.; et al. Factors contributing to ribavirin dose reduction due to anemia during interferon alfa2b and ribavirin combination therapy for chronic hepatitis C. J. Gastroenterol. 2004, 39, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Soota, K.; Maliakkal, B. Ribavirin induced hemolysis: A novel mechanism of action against chronic hepatitis C virus infection. World J. Gastroenterol. 2014, 20, 16184–16190. [Google Scholar] [CrossRef]
- Cameron, C.E.; Castro, C. The mechanism of action of ribavirin: Lethal mutagenesis of RNA virus genomes mediated by the viral RNA-dependent RNA polymerase. Curr. Opin. Infect. Dis. 2001, 14, 757–764. [Google Scholar] [CrossRef]
- Braun-Sand, S.B.; Peetz, M. Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Med. Chem. 2010, 2, 81–92. [Google Scholar] [CrossRef]
- Jain, J.; Almquist, S.J.; Ford, P.J.; Shlyakhter, D.; Wang, Y.; Nimmesgern, E.; Germann, U.A. Regulation of inosine monophosphate dehydrogenase type I and type II isoforms in human lymphocytes. Biochem. Pharmacol. 2004, 67, 767–776. [Google Scholar] [CrossRef]
- Streeter, D.G.; Witkowski, J.T.; Khare, G.P.; Sidwell, R.W.; Bauer, R.J.; Robins, R.K.; Simon, L.N. Mechanism of action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc. Natl. Acad. Sci. USA 1973, 70, 1174–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crotty, S.; Maag, D.; Arnold, J.J.; Zhong, W.; Lau, J.Y.; Hong, Z.; Andino, R.; Cameron, C.E. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 2000, 6, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Moreno, H.; Gallego, I.; Sevilla, N.; de la Torre, J.C.; Domingo, E.; Martin, V. Ribavirin can be mutagenic for arenaviruses. J. Virol. 2011, 85, 7246–7255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo-Bustamante, P.; Nguyen, T.H.T.; Oestereich, L.; Gunther, S.; Guedj, J.; Graw, F. Determining Ribavirin’s mechanism of action against Lassa virus infection. Sci. Rep. 2017, 7, 11693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oestereich, L.; Rieger, T.; Ludtke, A.; Ruibal, P.; Wurr, S.; Pallasch, E.; Bockholt, S.; Krasemann, S.; Munoz-Fontela, C.; Gunther, S. Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. J. Infect. Dis. 2016, 213, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Stephen, E.L.; Jahrling, P.B. Experimental Lassa fever virus infection successfully treated with ribavirin. Lancet 1979, 1, 268–269. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Hesse, R.A.; Eddy, G.A.; Johnson, K.M.; Callis, R.T.; Stephen, E.L. Lassa virus infection of rhesus monkeys: Pathogenesis and treatment with ribavirin. J. Infect. Dis. 1980, 141, 580–589. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Peters, C.J.; Stephen, E.L. Enhanced Treatment of Lassa Fever by Immune Plasma Combined with Ribavirin in Cynomolgus Monkeys. J. Infect. Dis. 1984, 149, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Lingas, G.; Rosenke, K.; Safronetz, D.; Guedj, J. Lassa viral dynamics in non-human primates treated with favipiravir or ribavirin. PLoS Comput. Biol. 2021, 17. [Google Scholar] [CrossRef]
- Rosenke, K.; Feldmann, H.; Westover, J.B.; Hanley, P.W.; Martellaro, C.; Feldmann, F.; Saturday, G.; Lovaglio, J.; Scott, D.P.; Furuta, Y.; et al. Use of Favipiravir to Treat Lassa Virus Infection in Macaques. Emerg. Infect. Dis. 2018, 24, 1696–1699. [Google Scholar] [CrossRef]
- Asogun, D.A.; Adomeh, D.I.; Ehimuan, J.; Odia, I.; Hass, M.; Gabriel, M.; Olschlager, S.; Becker-Ziaja, B.; Folarin, O.; Phelan, E.; et al. Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation. PLoS Negl. Trop. Dis. 2012, 6. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, N.A.; Nwigwe, C.G.; Azuogu, B.N.; Onyire, B.N.; Nwonwu, E.U.; Ogbonnaya, L.U.; Onwe, F.I.; Ekaete, T.; Gunther, S.; Ukwaja, K.N. Containing a Lassa fever epidemic in a resource-limited setting: Outbreak description and lessons learned from Abakaliki, Nigeria (January–March 2012). Int. J. Infect. Dis. 2013, 17, E1011–E1016. [Google Scholar] [CrossRef] [Green Version]
- Dahmane, A.; van Griensven, J.; Van Herp, M.; Van den Bergh, R.; Nzomukunda, Y.; Prior, J.; Alders, P.; Jambai, A.; Zachariah, R. Constraints in the diagnosis and treatment of Lassa Fever and the effect on mortality in hospitalized children and women with obstetric conditions in a rural district hospital in Sierra Leone. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 126–132. [Google Scholar] [CrossRef]
- Shaffer, J.G.; Grant, D.S.; Schieffelin, J.S.; Boisen, M.L.; Goba, A.; Hartnett, J.N.; Levy, D.C.; Yenni, R.E.; Moses, L.M.; Fullah, M.; et al. Lassa Fever in Post-Conflict Sierra Leone. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Buba, M.I.; Dalhat, M.M.; Nguku, P.M.; Waziri, N.; Mohammad, J.O.; Bomoi, I.M.; Onyiah, A.P.; Onwujei, J.; Balogun, M.S.; Bashorun, A.T.; et al. Mortaliy Among Confirmed Lassa Fever Cases During the 2015-2016 Outbreak in Nigeria. Am. J. Public Health 2018, 108, 262–264. [Google Scholar] [CrossRef]
- Furuta, Y.; Egawa, H. Nitrogenous Heterocyclic Carboxamide Derivatives or Salts thereof and Antiviral Agents Containing Both. WIPO Patent WO2000010569A1, 2 March 2000. [Google Scholar]
- Titova, Y.A.; Fedorova, O.V. Favipiravir—A Modern Antiviral Drug: Synthesis and Modifications. Chem. Heterocycl. Compd. (N. Y.) 2020, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 449–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowen, B.B.; Wong, M.H.; Jung, K.H.; Sanders, A.B.; Mendenhall, M.; Bailey, K.W.; Furuta, Y.; Sidwell, R.W. In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob. Agents Chemother. 2007, 51, 3168–3176. [Google Scholar] [CrossRef] [Green Version]
- Oestereich, L.; Ludtke, A.; Wurr, S.; Rieger, T.; Munoz-Fontela, C.; Gunther, S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir. Res. 2014, 105, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Morrey, J.D.; Taro, B.S.; Siddharthan, V.; Wang, H.; Smee, D.F.; Christensen, A.J.; Furuta, Y. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents. Antivir. Res. 2008, 80, 377–379. [Google Scholar] [CrossRef] [Green Version]
- Kaptein, S.J.F.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; Ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.; Barthelemy, K.; et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc. Natl. Acad. Sci. USA 2020, 117, 26955–26965. [Google Scholar] [CrossRef]
- Shiraki, K.; Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020, 209, 107512. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India 2020, 76, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005, 49, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Z.; Smith, L.K.; Rajwanshi, V.K.; Kim, B.; Deval, J. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLoS ONE 2013, 8, e68347. [Google Scholar] [CrossRef]
- Baranovich, T.; Wong, S.S.; Armstrong, J.; Marjuki, H.; Webby, R.J.; Webster, R.G.; Govorkova, E.A. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J. Virol. 2013, 87, 3741–3751. [Google Scholar] [CrossRef] [Green Version]
- Mendenhall, M.; Russell, A.; Smee, D.F.; Hall, J.O.; Skirpstunas, R.; Furuta, Y.; Gowen, B.B. Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic Fever. PLoS Negl. Trop. Dis. 2011, 5, e1342. [Google Scholar] [CrossRef] [PubMed]
- Gowen, B.B.; Smee, D.F.; Wong, M.H.; Hall, J.O.; Jung, K.H.; Bailey, K.W.; Stevens, J.R.; Furuta, Y.; Morrey, J.D. Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin. PLoS ONE 2008, 3, e3725. [Google Scholar] [CrossRef]
- Gowen, B.B.; Julander, J.G.; London, N.R.; Wong, M.H.; Larson, D.; Morrey, J.D.; Li, D.Y.; Bray, M. Assessing changes in vascular permeability in a hamster model of viral hemorrhagic fever. Virol. J. 2010, 7, 240. [Google Scholar] [CrossRef] [Green Version]
- Raabe, V.N.; Kann, G.; Ribner, B.S.; Morales, A.; Varkey, J.B.; Mehta, A.K.; Lyon, G.M.; Vanairsdale, S.; Faber, K.; Becker, S.; et al. Favipiravir and Ribavirin Treatment of Epidemiologically Linked Cases of Lassa Fever. Clin. Infect. Dis. 2017, 65, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Gowen, B.B.; Bray, M. Progress in the experimental therapy of severe arenaviral infections. Future Microbiol. 2011, 6, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Uckun, F.M.; Petkevich, A.S.; Vassilev, A.O.; Tibbles, H.E.; Titov, L. Stampidine prevents mortality in an experimental mouse model of viral hemorrhagic fever caused by lassa virus. BMC Infect. Dis. 2004, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.A.; Dai, D.; Hosack, V.T.; Tan, Y.; Bolken, T.C.; Hruby, D.E.; Amberg, S.M. Identification of a broad-spectrum arenavirus entry inhibitor. J. Virol. 2008, 82, 10768–10775. [Google Scholar] [CrossRef] [Green Version]
- Madu, I.G.; Files, M.; Gharaibeh, D.N.; Moore, A.L.; Jung, K.H.; Gowen, B.B.; Dai, D.; Jones, K.F.; Tyavanagimatt, S.R.; Burgeson, J.R.; et al. A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog. 2018, 14, e1007439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cashman, K.A.; Smith, M.A.; Twenhafel, N.A.; Larson, R.A.; Jones, K.F.; Allen, R.D., 3rd; Dai, D.; Chinsangaram, J.; Bolken, T.C.; Hruby, D.E.; et al. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antivir. Res. 2011, 90, 70–79. [Google Scholar] [CrossRef]
- Brown, B.L.; McCullough, J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus. Apher. Sci. 2020, 59, 102790. [Google Scholar] [CrossRef] [PubMed]
- Simon, J. Emil Behring’s medical culture: From disinfection to serotherapy. Med. Hist. 2007, 51, 201–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marano, G.; Vaglio, S.; Pupella, S.; Facco, G.; Catalano, L.; Liumbruno, G.M.; Grazzini, G. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016, 14, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Libster, R.; Perez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.M.; Koepsell, S.A. The use of convalescent plasma to treat emerging infectious diseases: Focus on Ebola virus disease. Curr. Opin. Hematol. 2015, 22, 521–526. [Google Scholar] [CrossRef]
- Enria, D.A.; Briggiler, A.M.; Sanchez, Z. Treatment of Argentine hemorrhagic fever. Antivir. Res. 2008, 78, 132–139. [Google Scholar] [CrossRef]
- Leifer, E.; Gocke, D.J.; Bourne, H. Lassa fever, a new virus disease of man from West Africa. II. Report of a laboratory-acquired infection treated with plasma from a person recently recovered from the disease. Am. J. Trop. Med. Hyg. 1970, 19, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.J. Lassa immune serum. Bull. World Health Organ. 1977, 55, 435–439. [Google Scholar]
- Keane, E.; Gilles, H.M. Lassa fever in Panguma Hospital, Sierra Leone, 1973–1976. Br. Med. J. 1977, 1, 1399–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frame, J.D.; Verbrugge, G.P.; Gill, R.G.; Pinneo, L. The use of Lassa fever convalescent plasma in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 319–324. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Frame, J.D.; Rhoderick, J.B.; Monson, M.H. Endemic Lassa fever in Liberia. IV. Selection of optimally effective plasma for treatment by passive immunization. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 380–384. [Google Scholar] [CrossRef]
- Cummins, D.; Bennett, D.; Machin, S.J. Exchange transfusion of a patient with fulminant Lassa fever. Postgrad. Med. J. 1991, 67, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B. Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 1983, 12, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Jahrling, P.B.; Peters, C.J. Passive antibody therapy of Lassa fever in cynomolgus monkeys: Importance of neutralizing antibody and Lassa virus strain. Infect. Immun. 1984, 44, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Mire, C.E.; Cross, R.W.; Geisbert, J.B.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Heinrich, M.L.; Rowland, M.M.; Goba, A.; Momoh, M.; et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat. Med. 2017, 23, 1146–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SYNAGIS® (Palivizumab) Injection, for Intramuscular Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/103770s5185lbl.pdf (accessed on 15 February 2021).
- FDA Approves First Treatment for Ebola Virus. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-ebola-virus (accessed on 15 February 2021).
- Marston, H.D.; Paules, C.I.; Fauci, A.S. Monoclonal Antibodies for Emerging Infectious Diseases—Borrowing from History. N. Engl. J. Med. 2018, 378, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.M.; Burton, D.R. Passive immunotherapy of viral infections: ‘Super-antibodies’ enter the fray. Nat. Rev. Immunol. 2018, 18, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.E.; Hastie, K.M.; Cross, R.W.; Yenni, R.E.; Elliott, D.H.; Rouelle, J.A.; Kannadka, C.B.; Smira, A.A.; Garry, C.E.; Bradley, B.T.; et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat. Commun. 2016, 7, 11544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, R.W.; Mire, C.E.; Branco, L.M.; Geisbert, J.B.; Rowland, M.M.; Heinrich, M.L.; Goba, A.; Momoh, M.; Grant, D.S.; Fullah, M.; et al. Treatment of Lassa virus infection in outbred guinea pigs with first-in-class human monoclonal antibodies. Antivir. Res. 2016, 133, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Warner, B.M.; Safronetz, D.; Stein, D.R. Current research for a vaccine against Lassa hemorrhagic fever virus. Drug. Des. Dev. Ther. 2018, 12, 2519–2527. [Google Scholar] [CrossRef] [PubMed]
- Mari Saez, A.; Cherif Haidara, M.; Camara, A.; Kourouma, F.; Sage, M.; Magassouba, N.; Fichet-Calvet, E. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 2018, 12, e0006829. [Google Scholar] [CrossRef] [Green Version]
Animal Model | Challenge | Treatment Regimen | Survival | Reference |
---|---|---|---|---|
Ribavirin | ||||
Rhesus Macaque | SQ 10,000 PFU LASV | (1) Loading dose 50 mg/kg 0 dpi + 10 mg/kg three times daily to day 18 IM (N = 4) | (1) 100% | [50] |
(2) Loading dose 5 dpi + 10 mg/kg three times daily to day 18 IM (N = 4) | (2) 100% | |||
(3) Controls (N = 10) | (3) 60% | |||
Rhesus Macaque | SQ 1.2 × 106 PFU LASV Josiah | (1) Loading dose 50 mg/kg 0 dpi + 10 mg/kg three times daily to day 18 SQ (N = 4) | (1) 100% | [51] |
(2) Loading dose 50 mg/kg 5 dpi + 10 mg/kg three times daily to day 18 SQ (N = 4) | (2) 100% | |||
(3) Controls (N = 1(0) | (3) 60% | |||
Cynomolgus Macaque | SQ 1.2 × 106 PFU LASV Josiah | (1) Loading dose 150 mg/kg 0 dpi + 15 mg/kg twice daily to day 18 IM (N = 4) | (1) 100% | [52] |
(2) Loading dose 150 mg/kg 4 dpi + 15 mg/kg twice daily to day 18 IM (N = 4) | (2) 100% | |||
(3) Loading dose 150 mg/kg 7 dpi + 15 mg/kg twice daily to day 18 IM (N = 8) | (3) 50% | |||
(4) Loading dose 300 mg/kg 7 dpi + 30 mg/kg twice daily to day 18 IM (N = 4) | (4) 25% | |||
(5) Loading dose 450 mg/kg 7 dpi + 45 mg/kg twice daily to day 18 IM (N = 6) | (5) 0% | |||
(6) Untreated controls (N = 1(4) | (6) 0% | |||
Cynomolgus Macaque | IM 1 × 104 TCID50 LASV Josiah | (1) 30 mg/kg loading dose 4 dpi + 10 mg/kg every 8 h SQ (N = 4) | (1) 0% | [53,54] |
(2) 30 mg/kg loading dose + 30 mg/kg once daily SQ | (2) 0% | |||
(3) Placebo controls | (3) 0% | |||
Favipiravir | ||||
Cynomolgus Macaque | IM 1 × 104 TCID50 LASV Josiah | (1) 300 mg/kg IV loading dose 4 dpi + 300 mg/kg per day SQ treatments for 13 more days (N = 4) | (1) 100% | [53,54] |
(2) Placebo treated starting 4 dpi to death (N = 4) | (2) 0% | |||
Cynomolgus Macaque | IM 1 × 104 TCID50 LASV Josiah | (1) 300 mg/kg IV loading dose 4 dpi + 50 mg/kg every 8 h SQ treatments for 13 more days (N = 4) | (1) 0% | [53,54] |
(2) Placebo treated 4 dpi to death (N = 8) | (2) 0% |
Animal Model | Challenge | Treatment Regimen | Survival | Reference |
---|---|---|---|---|
Immune Plasma | ||||
Cynomolgus Macaque | SQ 1.0 × 106.1 PFU LASV Josiah | Plasma from Rhesus Macaque convalescent 180–240 days | [94] | |
(1) 1 mL/kg LNI 4.1, IFA 1280 plasma given 0, 3, and 6 dpi IV (N = 8) | (1) 88% | |||
(2) 1 mL/kg LNI 2.6, IFA 320 plasma given 0, 3, and 6 dpi IV (N = 3) | (2) 0% | |||
(3) 3 mL/kg LNI 2.6, IFA 320 plasma given 0, 3, and 6 dpi IV (N = 4) | (3) 100% | |||
(4) 3 mL/kg LNI 1.5, IFA 80 plasma given 0, 3, and 6 dpi IV (N = 3) | (4) 0% | |||
(5) 3 mL/kg LNI 1.5, IFA 80 plasma given 0, 3, 6, 9, and 12 dpi IV (N = 3) | (5) 0% | |||
(6) 3 mL/kg LNI 0.5, IFA 20 plasma given 0, 3, and 6 dpi IV (N = 3) | (6) 0% | |||
(7) Untreated controls (N = 20) | (7) 5% | |||
Cynomolgus Macaque | SQ 1.0 × 106.1 PFU LASV Josiah | Plasma from human 2–3 years convalescent | [94] | |
(1) 3 mL/kg LNI 1.6 plasma given 0, 3, and 6 dpi IV (N = 4) | (1) 0% | |||
(2) 12 mL/kg LNI 1.6 plasm given 0, 3, and 6 dpi IV (N = 4) | (2) 0% | |||
(3) Control plasma (N = 4) | (3) 0% | |||
Cynomolgus Macaque | SQ 1.0 × 106 PFU LASV Macenta | Plasma from human 2–3 years convalescent | [94] | |
(1) 3 mL/kg LNI 2.8 plasma given 0, 3, and 6 dpi IV (N = 4) | (1) 75% | |||
(2) 12 mL/kg LNI 2.8 plasm given 0, 3, and 6 dpi IV (N = 4) | (2) 100% | |||
(3) Untreated controls (N = 4) | (3) 0% | |||
Cynomolgus Macaque | SQ 1.0 × 106.1 PFU LASV Josiah | Plasma from Rhesus Macaque convalescent 180–240 days | [52] | |
(1) 1 mL/kg 4.1 LNI plasma given 0, 3, and 6 dpi IV (N = 8) | (1) 88% | |||
(2) 1 mL/kg 4.1 LNI plasma given 4, 7, and 10 dpi IV (N = 3) | (2) 66% | |||
(3) 1 mL/kg 4.1 LNI plasma given 7, 10, and 13 dpi IV (N = 6) | (3) 17% | |||
(4) Untreated controls (N = 14) | (4) 7% | |||
HuMAb 8.9F | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) 15 mg/kg on 0, 4, and 8 dpi (N = 4) | (1) 100% | [95] |
(2) Pooled controls (N = 7) | (2) 0% | |||
HuMAb 12.1F | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) 15 mg/kg on 0, 4 and 8 dpi (N = 3) | (1) 100% | [95] |
(2) Pooled controls (N = 7) | (2) 0% | |||
HuMAb 37.7H | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) 15 mg/kg on 0, 4, and 8 dpi (N = 3) | (1) 100% | [95] |
(2) Pooled controls (N = 7) | (2) 0% | |||
HuMAb 37.2D | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) 15 mg/kg on 0, 4 and 8 dpi (N = 4) | (1) 100% | [95] |
(2) 6 mg/kg on 0, 4, and 8 dpi IV (N = 2) | (2) 100% | |||
(3) Pooled controls (N = 7) | (3) 0% | |||
HuMAb 19.7E | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) 15 mg/kg on 0 and 5 dpi IV (N = 4) | (1) 75% | [95] |
(2) Pooled controls (N = 7) | (2) 0% | |||
HuMAb 19.7E + 37.2D | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) Total dose 15 mg/kg on 0, 4, and 8 dpi IV (N = 4) | (1) 100% | [95] |
Equal mixture | ||||
(2) Pooled controls (N = 6) | (2) 0% | |||
HuMAb 8.9F + 12.1F + 37.2D | ||||
Cynomolgus Macaque | IM 3500 PFU target dose LASV Josiah | (1) 15 mg/kg on 3, 6, and 9 dpi IV (N = 4) | (1) 100% | [95] |
(2) 15 mg/kg on 6, 9, and 12 dpi IV (N = 4) | (2) 100% | |||
(3) 15 mg/kg on 8, 11, and 14 dpi IV (N = 5) | (3) 100% | |||
(4) Pooled controls (N = 6) | (4) 0% | |||
15 mg/kg of each MAb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, F.; Jarvis, M.A.; Feldmann, H.; Rosenke, K. Lassa Virus Treatment Options. Microorganisms 2021, 9, 772. https://doi.org/10.3390/microorganisms9040772
Hansen F, Jarvis MA, Feldmann H, Rosenke K. Lassa Virus Treatment Options. Microorganisms. 2021; 9(4):772. https://doi.org/10.3390/microorganisms9040772
Chicago/Turabian StyleHansen, Frederick, Michael A. Jarvis, Heinz Feldmann, and Kyle Rosenke. 2021. "Lassa Virus Treatment Options" Microorganisms 9, no. 4: 772. https://doi.org/10.3390/microorganisms9040772
APA StyleHansen, F., Jarvis, M. A., Feldmann, H., & Rosenke, K. (2021). Lassa Virus Treatment Options. Microorganisms, 9(4), 772. https://doi.org/10.3390/microorganisms9040772