Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phylogenetic Analyses
2.2. Cultivation of Methermicoccus Shengliensis
2.3. Native Purification of MsMCR
2.4. High-Resolution Clear Native (hrCN) Polyacrylamide Gel Electrophoresis (PAGE)
2.5. Mass Spectrometry
2.6. Crystallization
2.7. X-ray Data Collection and Model Refinement/Validation
3. Results
3.1. Purification and Crystallization of MsMCR Obtained under Methoxydotrophic Methanogenesis
3.2. A Conserved Overall Structure and Active Site
3.3. The Smallest Post-Translational Modification Gallery Observed in Methanogens
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thauer, R.K.; Kaster, A.K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef]
- Ueno, Y.; Yamada, K.; Yoshida, N.; Maruyama, S.; Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 2006, 440, 516–519. [Google Scholar] [CrossRef]
- Wagner, T.; Watanabe, T.; Shima, S. Hydrogenotrophic methanogenesis. In Handbook of Hydrocarbon and Lipid Microbiology Series. Biogenesis of Hydrocarbons; Stams, A.J.M., Sousa, D.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kurth, J.M.; Op den Camp, H.J.M.; Welte, C.U. Several ways one goal-methanogenesis from unconventional substrates. Appl. Microbiol. Biotechnol. 2020, 104, 6839–6854. [Google Scholar] [CrossRef] [PubMed]
- Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.; Sakata, S. Methane production from coal by a single methanogen. Science 2016, 354, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Qiu, T.L.; Yin, X.B.; Wu, X.L.; Hu, G.Q.; Deng, Y.; Zhang, H. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2007, 57, 2964–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thauer, R.K. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019, 58, 5198–5220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongnate, T.; Sliwa, D.; Ginovska, B.; Smith, D.; Wolf, M.W.; Lehnert, N.; Raugei, S.; Ragsdale, S.W. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 2016, 352, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Cedervall, P.E.; Dey, M.; Li, X.H.; Sarangi, R.; Hedman, B.; Ragsdale, S.W.; Wilmot, C.M. Structural Analysis of a Ni-Methyl Species in Methyl-Coenzyme M Reductase from Methanothermobacter marburgensis. J. Am. Chem. Soc. 2011, 133, 5626–5628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cedervall, P.E.; Dey, M.; Pearson, A.R.; Ragsdale, S.W.; Wilmot, C.M. Structural Insight into Methyl-Coenzyme M Reductase Chemistry Using Coenzyme B Analogues. Biochemistry 2010, 49, 7683–7693. [Google Scholar] [CrossRef] [Green Version]
- Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M.; Thauer, R.K. Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science 1997, 278, 1457–1462. [Google Scholar] [CrossRef]
- Grabarse, W.; Mahlert, F.; Duin, E.C.; Goubeaud, M.; Shima, S.; Thauer, R.K.; Lamzin, V.; Ermler, U. On the mechanism of biological methane formation: Structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 2001, 309, 315–330. [Google Scholar] [CrossRef]
- Grabarse, W.; Mahlert, F.; Shima, S.; Thauer, R.K.; Ermler, U. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: Unusual amino acid modification, conservation and adaptation. J. Mol. Biol. 2000, 303, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Shima, S.; Krüger, M.; Weinert, T.; Demmer, U.; Kahnt, J.; Thauer, R.K.; Ermler, U. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 2012, 481, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Kahnt, J.; Ermler, U.; Shima, S. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation. Angew. Chem. Int. Ed. Engl. 2016, 55, 10630–10633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, T.; Wegner, C.E.; Kahnt, J.; Ermler, U.; Shima, S. Phylogenetic and structural comparisons of the three types of methyl coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol. 2017, 199. [Google Scholar] [CrossRef] [Green Version]
- Nayak, D.D.; Liu, A.D.; Agrawal, N.; Rodriguez-Carerro, R.; Dong, S.H.; Mitchell, D.A.; Nair, S.K.; Metcalf, W.W. Functional interactions between posttranslationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans. PLoS Biol. 2020, 18, e3000507. [Google Scholar] [CrossRef]
- Kahnt, J.; Buchenau, B.; Mahlert, F.; Krüger, M.; Shima, S.; Thauer, R.K. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J. 2007, 274, 4913–4921. [Google Scholar] [CrossRef]
- Deobald, D.; Adrian, L.; Schöne, C.; Rother, M.; Layers, G. Identification of a unique Radical SAM methyltransferase required for the sp(3)-C-methylation of an arginine residue of methyl-coenzyme M reductase. Sci. Rep. 2018, 8, 7404. [Google Scholar] [CrossRef]
- Nayak, D.D.; Mahanta, N.; Mitchell, D.A.; Metcalf, W.W. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 2017, 6, e29218. [Google Scholar] [CrossRef]
- Chen, H.; Gan, Q.; Fan, C. Methyl-Coenzyme M Reductase and Its Post-translational Modifications. Front. Microbiol. 2020, 11, 578356. [Google Scholar] [CrossRef]
- Scheller, S.; Goenrich, M.; Boecher, R.; Thauer, R.K.; Jaun, B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 2010, 465, 606–608. [Google Scholar] [CrossRef]
- Krüger, M.; Meyerdierks, A.; Glöckner, F.O.; Amann, R.; Widdel, F.; Kube, M.; Reinhardt, R.; Kahnt, R.; Bocher, R.; Thauer, R.K.; et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 2003, 426, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.; Fletcher, S.E.M.; Veidt, C.; Lassey, K.R.; Brailsford, G.W.; Bromley, T.M.; Dlugokencky, E.J.; Michel, S.E.; Miller, J.B.; Levin, I.; et al. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 2016, 352, 80–84. [Google Scholar] [CrossRef]
- Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar] [CrossRef]
- Scheller, S.; Ermler, U.; Shima, S. Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation. In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, Handbook of Hydrocarbon and Lipid Microbiology; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Duin, E.C.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.R.; Duval, S.; Rümbeli, R.; Stemmler, R.T.; Thauer, R.K.; et al. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. USA 2016, 113, 6172–6177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The Rapid Generation of Mutation Data Matrices from Protein Sequences. Comput. Appl. Biosci. 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Lemaire, O.N.; Infossi, P.; Ali Chaouche, A.; Espinosa, L.; Leimkühler, S.; Giudici-Orticoni, M.T.; Mejean, V.; Iobbi-Nivol, C. Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria. Sci. Rep. 2018, 8, 13576. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D 2019, 75, 861–877. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bricogne, G.; Blanc, E.; Brandl, M.; Flensburg, C.; Keller, P.; Paciorek, W.; Roversi, P.; Sharff, A.; Smart, O.S.; Vonrhein, C.; et al. Buster Version 2.10.4; Global Phasing Ltd.: Cambridge, UK, 2017. [Google Scholar]
- Chen, V.B.; Arendall, W.B., 3rd; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragsdale, S.W. Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step in Synthesis and the First Step in Anaerobic Oxidation of the Greenhouse Gas Methane. Metal Ions Life Sci. 2014, 14, 125–145. [Google Scholar] [CrossRef]
MCR from M. shengliensis | |
---|---|
Data collection | |
Wavelength (Å) | 0.97856 |
Space group | P212121 |
Resolution (Å) | 49.41–1.60 (1.69–1.60) |
Cell dimensions: a, b, c (Å) | 132.62 148.18 235.41 |
Rmerge (%) a | 9.1 (121.6) |
Rpim (%) a | 5.1 (66.1) |
CC1/2 a | 0.997 (0.356) |
I/σI a | 8.3 (1.0) |
Completeness a | 99.7 (99.3) |
Redundancy a | 4.2 (4.3) |
Number of unique reflections a | 602614 (87124) |
Refinement | |
Resolution (Å) | 48.36–1.60 |
Number of reflections | 602,442 |
Rwork/Rfree b (%) | 0.1725/0.1904 |
Number of atoms | |
Protein | 38,087 |
Ligands/ions | 405 |
Solvent | 4298 |
Mean B-value (Å2) | 35.0 |
Molprobity clash score, all atoms | 0.67 |
Ramachandran plot | |
Favored regions (%) | 97.71 |
Outlier regions (%) | 0.16 |
Rmsd c bond lengths (Å) | 0.007 |
Rmsd c bond angles (°) | 0.95 |
PDB ID code | 7NKG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurth, J.M.; Müller, M.-C.; Welte, C.U.; Wagner, T. Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications. Microorganisms 2021, 9, 837. https://doi.org/10.3390/microorganisms9040837
Kurth JM, Müller M-C, Welte CU, Wagner T. Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications. Microorganisms. 2021; 9(4):837. https://doi.org/10.3390/microorganisms9040837
Chicago/Turabian StyleKurth, Julia Maria, Marie-Caroline Müller, Cornelia Ulrike Welte, and Tristan Wagner. 2021. "Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications" Microorganisms 9, no. 4: 837. https://doi.org/10.3390/microorganisms9040837
APA StyleKurth, J. M., Müller, M. -C., Welte, C. U., & Wagner, T. (2021). Structural Insights into the Methane-Generating Enzyme from a Methoxydotrophic Methanogen Reveal a Restrained Gallery of Post-Translational Modifications. Microorganisms, 9(4), 837. https://doi.org/10.3390/microorganisms9040837