CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Construction of EPEC Null Mutants and Tagged Strains
2.3. Plasmid Construction
2.4. Protein Solubility Assay
2.5. Purification of Trimeric Complexes
2.6. Pull-Down Assays
2.7. Bacterial Two-Hybrid Assay
2.8. Yeast Two-Hybrid Assay
2.9. Type III Secretion Assay
2.10. Cell Fractionation
2.11. Immunoblotting
2.12. Protein Stability Assay
2.13. Structural Modeling of the SepL/SepD/CesL Complex
2.14. Coiled-Coil Prediction
3. Results
3.1. CesL Differentially Regulates Translocator and Effector Protein Secretion
3.2. Pairwise Protein–Protein Interactions of CesL with SepD and SepL
3.3. Stability of Both CesL and SepL Is Affected in the Absence of Each Other
3.4. CesL Is Not Secreted and Localizes to the Membrane Independently of SepD and SepL
3.5. CesL Interacts with Both Components of the Export Gate
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.W.; Whipp, S.C.; Argenzio, R.A.; Levine, M.M.; Giannella, R.A. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 1983, 41, 1340–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.D.; Frankel, G. Enteropathogenic Escherichia coli: Unravelling pathogenesis. FEMS Microbiol. Rev. 2005, 29, 83–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Egan, M.; Critelli, B.; Kouse, A.; Kalman, D.; Upreti, C. The Evasive enemy: Insights into the virulence and epidemiology of the emerging attaching and effacing pathogen Escherichia albertii. Infect. Immun. 2019, 87. [Google Scholar] [CrossRef] [Green Version]
- Gaytan, M.O.; Martinez-Santos, V.I.; Soto, E.; Gonzalez-Pedrajo, B. Type Three secretion system in attaching and effacing pathogens. Front. Cell. Infect. Microbiol. 2016, 6, 129. [Google Scholar] [CrossRef] [Green Version]
- Slater, S.L.; Sagfors, A.M.; Pollard, D.J.; Ruano-Gallego, D.; Frankel, G. The type III secretion system of pathogenic Escherichia coli. Curr. Top. Microbiol. Immunol. 2018, 416, 51–72. [Google Scholar] [CrossRef]
- Yerushalmi, G.; Litvak, Y.; Gur-Arie, L.; Rosenshine, I. Dynamics of expression and maturation of the type III secretion system of enteropathogenic Escherichia coli. J. Bacteriol. 2014, 196, 2798–2806. [Google Scholar] [CrossRef] [Green Version]
- McDaniel, T.K.; Jarvis, K.G.; Donnenberg, M.S.; Kaper, J.B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 1995, 92, 1664–1668. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.A.T.; Ooka, T.; Hernandes, R.T.; Yamamoto, D.; Hayashi, T. Escherichia albertii Pathogenesis. EcoSal Plus 2020, 9. [Google Scholar] [CrossRef]
- Deng, W.; Yu, H.B.; de Hoog, C.L.; Stoynov, N.; Li, Y.; Foster, L.J.; Finlay, B.B. Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Mol. Cell. Proteom. 2012, 11, 692–709. [Google Scholar] [CrossRef] [Green Version]
- Dean, P.; Kenny, B. The effector repertoire of enteropathogenic E. coli: Ganging up on the host cell. Curr. Opin. Microbiol. 2009, 12, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Marshall, N.C.; Rowland, J.L.; McCoy, J.M.; Worrall, L.J.; Santos, A.S.; Strynadka, N.C.J.; Finlay, B.B. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 2017, 15, 323–337. [Google Scholar] [CrossRef]
- Diepold, A.; Armitage, J.P. Type III secretion systems: The bacterial flagellum and the injectisome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [Green Version]
- Abby, S.S.; Rocha, E.P. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 2012, 8, e1002983. [Google Scholar] [CrossRef] [Green Version]
- Pal, R.R.; Baidya, A.K.; Mamou, G.; Bhattacharya, S.; Socol, Y.; Kobi, S.; Katsowich, N.; Ben-Yehuda, S.; Rosenshine, I. Pathogenic E. Coli extracts nutrients from infected host cells utilizing injectisome components. Cell 2019, 177, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Hueck, C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 1998, 62, 379–433. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Diepold, A. A unified nomenclature for injectisome-type type III secretion systems. Curr. Top. Microbiol. Immunol. 2020, 427, 1–10. [Google Scholar] [CrossRef]
- Andrade, A.; Pardo, J.P.; Espinosa, N.; Perez-Hernandez, G.; Gonzalez-Pedrajo, B. Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Arch. Biochem. Biophys. 2007, 468, 121–127. [Google Scholar] [CrossRef]
- Romo-Castillo, M.; Andrade, A.; Espinosa, N.; Monjaras Feria, J.; Soto, E.; Diaz-Guerrero, M.; Gonzalez-Pedrajo, B. EscO, a functional and structural analog of the flagellar FliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. J. Bacteriol. 2014, 196, 2227–2241. [Google Scholar] [CrossRef] [Green Version]
- Soto, E.; Espinosa, N.; Diaz-Guerrero, M.; Gaytan, M.O.; Puente, J.L.; Gonzalez-Pedrajo, B. Functional Characterization of EscK (Orf4), a Sorting Platform Component of the Enteropathogenic Escherichia coli Injectisome. J. Bacteriol. 2017, 199. [Google Scholar] [CrossRef] [Green Version]
- Biemans-Oldehinkel, E.; Sal-Man, N.; Deng, W.; Foster, L.J.; Finlay, B.B. Quantitative proteomic analysis reveals formation of an EscL-EscQ-EscN type III complex in enteropathogenic Escherichia coli. J. Bacteriol. 2011, 193, 5514–5519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlen, L.; Johnson, S.; Zeitler, A.; Baurle, S.; Deme, J.C.; Caesar, J.J.E.; Debo, R.; Fisher, J.; Wagner, S.; Lea, S.M. The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion. Nat. Commun. 2020, 11, 1296. [Google Scholar] [CrossRef] [PubMed]
- Abrusci, P.; Vergara-Irigaray, M.; Johnson, S.; Beeby, M.D.; Hendrixson, D.R.; Roversi, P.; Friede, M.E.; Deane, J.E.; Jensen, G.J.; Tang, C.M.; et al. Architecture of the major component of the type III secretion system export apparatus. Nat. Struct. Mol. Biol. 2013, 20, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Morado, D.R.; Margolin, W.; Rohde, J.R.; Arizmendi, O.; Picking, W.L.; Picking, W.D.; Liu, J. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl. Acad. Sci. USA 2015, 112, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Butan, C.; Lara-Tejero, M.; Li, W.; Liu, J.; Galan, J.E. High-resolution view of the type III secretion export apparatus in situ reveals membrane remodeling and a secretion pathway. Proc. Natl. Acad. Sci. USA 2019, 116, 24786–24795. [Google Scholar] [CrossRef]
- Ogino, T.; Ohno, R.; Sekiya, K.; Kuwae, A.; Matsuzawa, T.; Nonaka, T.; Fukuda, H.; Imajoh-Ohmi, S.; Abe, A. Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli. J. Bacteriol. 2006, 188, 2801–2811. [Google Scholar] [CrossRef] [Green Version]
- Sekiya, K.; Ohishi, M.; Ogino, T.; Tamano, K.; Sasakawa, C.; Abe, A. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 2001, 98, 11638–11643. [Google Scholar] [CrossRef] [Green Version]
- Ide, T.; Laarmann, S.; Greune, L.; Schillers, H.; Oberleithner, H.; Schmidt, M.A. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell. Microbiol. 2001, 3, 669–679. [Google Scholar] [CrossRef]
- Chatterjee, A.; Caballero-Franco, C.; Bakker, D.; Totten, S.; Jardim, A. pore-forming activity of the Escherichia coli type III secretion system protein EspD. J. Biol. Chem. 2015, 290, 25579–25594. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.A.; Deng, W.; Puente, J.L.; Frey, E.A.; Yip, C.K.; Strynadka, N.C.; Finlay, B.B. CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 2005, 57, 1762–1779. [Google Scholar] [CrossRef]
- Takaya, A.; Takeda, H.; Tashiro, S.; Kawashima, H.; Yamamoto, T. Chaperone-mediated secretion switching from early to middle substrates in the type III secretion system encoded by Salmonella pathogenicity island 2. J. Biol. Chem. 2019, 294, 3783–3793. [Google Scholar] [CrossRef] [Green Version]
- Serapio-Palacios, A.; Finlay, B.B. Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. Curr. Opin. Microbiol. 2020, 54, 67–76. [Google Scholar] [CrossRef]
- Diepold, A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr. Top. Microbiol. Immunol. 2020, 427, 35–66. [Google Scholar] [CrossRef]
- Portaliou, A.G.; Tsolis, K.C.; Loos, M.S.; Zorzini, V.; Economou, A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem. Sci. 2016, 41, 175–189. [Google Scholar] [CrossRef]
- Monjaras Feria, J.; Garcia-Gomez, E.; Espinosa, N.; Minamino, T.; Namba, K.; Gonzalez-Pedrajo, B. Role of EscP (Orf16) in injectisome biogenesis and regulation of type III protein secretion in enteropathogenic Escherichia coli. J. Bacteriol. 2012, 194, 6029–6045. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Li, Y.; Hardwidge, P.R.; Frey, E.A.; Pfuetzner, R.A.; Lee, S.; Gruenheid, S.; Strynakda, N.C.; Puente, J.L.; Finlay, B.B. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect. Immun. 2005, 73, 2135–2146. [Google Scholar] [CrossRef] [Green Version]
- Armentrout, E.I.; Rietsch, A. The Type III Secretion Translocation Pore Senses Host Cell Contact. PLoS Pathog. 2016, 12, e1005530. [Google Scholar] [CrossRef] [Green Version]
- Torruellas, J.; Jackson, M.W.; Pennock, J.W.; Plano, G.V. The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol. Microbiol. 2005, 57, 1719–1733. [Google Scholar] [CrossRef]
- Martinez-Argudo, I.; Blocker, A.J. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol. Microbiol. 2010, 78, 1365–1378. [Google Scholar] [CrossRef] [Green Version]
- Roehrich, A.D.; Guillossou, E.; Blocker, A.J.; Martinez-Argudo, I. Shigella IpaD has a dual role: Signal transduction from the type III secretion system needle tip and intracellular secretion regulation. Mol. Microbiol. 2013, 87, 690–706. [Google Scholar] [CrossRef] [Green Version]
- Kubori, T.; Galan, J.E. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J. Bacteriol. 2002, 184, 4699–4708. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.Y.; Nie, P.; Yu, H.B.; Xie, H.X. Regulation of Type III Secretion of Translocon and Effector Proteins by the EsaB/EsaL/EsaM Complex in Edwardsiella tarda. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [Green Version]
- Ferracci, F.; Schubot, F.D.; Waugh, D.S.; Plano, G.V. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol. Microbiol. 2005, 57, 970–987. [Google Scholar] [CrossRef]
- Yang, H.; Shan, Z.; Kim, J.; Wu, W.; Lian, W.; Zeng, L.; Xing, L.; Jin, S. Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 2599–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botteaux, A.; Sory, M.P.; Biskri, L.; Parsot, C.; Allaoui, A. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 2009, 71, 449–460. [Google Scholar] [CrossRef]
- Yu, X.J.; McGourty, K.; Liu, M.; Unsworth, K.E.; Holden, D.W. pH sensing by intracellular Salmonella induces effector translocation. Science 2010, 328, 1040–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandhavanant, S.; Matsuda, S.; Hiyoshi, H.; Iida, T.; Kodama, T. Vibrio parahaemolyticus senses intracellular K(+) to translocate type III secretion system 2 effectors effectively. MBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Portaliou, A.G.; Tsolis, K.C.; Loos, M.S.; Balabanidou, V.; Rayo, J.; Tsirigotaki, A.; Crepin, V.F.; Frankel, G.; Kalodimos, C.G.; Karamanou, S.; et al. Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J. 2017, 36, 3517–3531. [Google Scholar] [CrossRef] [PubMed]
- Gaytan, M.O.; Monjaras Feria, J.; Soto, E.; Espinosa, N.; Benitez, J.M.; Georgellis, D.; Gonzalez-Pedrajo, B. Novel insights into the mechanism of SepL-mediated control of effector secretion in enteropathogenic Escherichia coli. Microbiologyopen 2018, 7, e00571. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.J.; Grabe, G.J.; Liu, M.; Mota, L.J.; Holden, D.W. SsaV Interacts with SsaL to Control the Translocon-to-Effector Switch in the Salmonella SPI-2 Type Three Secretion System. MBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.C.; Zmina, S.E.; Stopford, C.M.; Toska, J.; Rietsch, A. Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG. Proc. Natl. Acad. Sci. USA 2014, 111, 6863. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.K.; Blocker, A.J. MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of Shigella flexneri. PLoS ONE 2016, 11, e0155141. [Google Scholar] [CrossRef] [Green Version]
- Coombes, B.K.; Brown, N.F.; Valdez, Y.; Brumell, J.H.; Finlay, B.B. Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J. Biol. Chem. 2004, 279, 49804–49815. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Puente, J.L.; Gruenheid, S.; Li, Y.; Vallance, B.A.; Vazquez, A.; Barba, J.; Ibarra, J.A.; O’donnell, P.; Metalnikov, P.; et al. Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proc. Natl. Acad. Sci. USA 2004, 101, 3597–3602. [Google Scholar] [CrossRef] [Green Version]
- Day, J.B.; Plano, G.V. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol. 1998, 30, 777–788. [Google Scholar] [CrossRef]
- Yu, X.J.; Liu, M.; Holden, D.W. SsaM and SpiC interact and regulate secretion of Salmonella pathogenicity island 2 type III secretion system effectors and translocators. Mol. Microbiol. 2004, 54, 604–619. [Google Scholar] [CrossRef]
- Kresse, A.U.; Beltrametti, F.; Muller, A.; Ebel, F.; Guzman, C.A. Characterization of SepL of enterohemorrhagic Escherichia coli. J. Bacteriol. 2000, 182, 6490–6498. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, C.B.; Creasey, E.A.; Knutton, S.; Elliott, S.; Crowther, L.J.; Luo, W.; Albert, M.J.; Kaper, J.B.; Frankel, G.; Donnenberg, M.S. SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD. Mol. Microbiol. 2004, 52, 1613–1625. [Google Scholar] [CrossRef]
- Younis, R.; Bingle, L.E.; Rollauer, S.; Munera, D.; Busby, S.J.; Johnson, S.; Deane, J.E.; Lea, S.M.; Frankel, G.; Pallen, M.J. SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. J. Bacteriol. 2010, 192, 6093–6098. [Google Scholar] [CrossRef] [Green Version]
- Tsai, N.P.; Wu, Y.C.; Chen, J.W.; Wu, C.F.; Tzeng, C.M.; Syu, W.J. Multiple functions of l0036 in the regulation of the pathogenicity island of enterohaemorrhagic Escherichia coli O157:H7. Biochem. J. 2006, 393, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Shaulov, L.; Gershberg, J.; Deng, W.; Finlay, B.B.; Sal-Man, N. The Ruler Protein EscP of the Enteropathogenic Escherichia coli Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL. MBio 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dmitrova, M.; Younes-Cauet, G.; Oertel-Buchheit, P.; Porte, D.; Schnarr, M.; Granger-Schnarr, M. A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol. Gen. Genet. 1998, 257, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.M.; Bergquist, E.J.; Nalin, D.R.; Waterman, D.H.; Hornick, R.B.; Young, C.R.; Sotman, S. Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1978, 1, 1119–1122. [Google Scholar] [CrossRef]
- Gauthier, A.; Puente, J.L.; Finlay, B.B. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect. Immun. 2003, 71, 3310–3319. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, K.; Ohto, Y.; Aizawa, S.; Macnab, R.M.; Iino, T. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J. Bacteriol. 1994, 176, 2272–2281. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Hartin, R.J. Quick transformation in Salmonella typhimurium LT2. Biotechniques 1990, 8, 43–45. [Google Scholar]
- McDonald, P.N. Two-hybrid systems. Methods and protocols. Introduction. Methods Mol. Biol. 2001, 177, v–viii. [Google Scholar]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Uzzau, S.; Figueroa-Bossi, N.; Rubino, S.; Bossi, L. Epitope tagging of chromosomal genes in Salmonella. Proc. Natl. Acad. Sci. USA 2001, 98, 15264–15269. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.T.; Karkhoff-Schweizer, R.R.; Kutchma, A.J.; Schweizer, H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212, 77–86. [Google Scholar] [CrossRef]
- Ohnishi, K.; Fan, F.; Schoenhals, G.J.; Kihara, M.; Macnab, R.M. The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: Putative components for flagellar assembly. J. Bacteriol. 1997, 179, 6092–6099. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Pedrajo, B.; Minamino, T.; Kihara, M.; Namba, K. Interactions between C ring proteins and export apparatus components: A possible mechanism for facilitating type III protein export. Mol. Microbiol. 2006, 60, 984–998. [Google Scholar] [CrossRef]
- Tsai, S.P.; Hartin, R.J.; Ryu, J. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol. 1989, 135, 2561–2567. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Lab. Press: Cold Spring Harbor, NY, USA, 1972; p. 466. [Google Scholar]
- Peterson, G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 1977, 83, 346–356. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat Methods 2015, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Schubot, F.D.; Jackson, M.W.; Penrose, K.J.; Cherry, S.; Tropea, J.E.; Plano, G.V.; Waugh, D.S. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J. Mol. Biol. 2005, 346, 1147–1161. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41, W384–W388. [Google Scholar] [CrossRef] [Green Version]
- Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci. 1996, 21, 375–382. [Google Scholar] [CrossRef]
- Bustamante, V.H.; Santana, F.J.; Calva, E.; Puente, J.L. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol. Microbiol. 2001, 39, 664–678. [Google Scholar] [CrossRef]
- Elliott, S.J.; Hutcheson, S.W.; Dubois, M.S.; Mellies, J.L.; Wainwright, L.A.; Batchelor, M.; Frankel, G.; Knutton, S.; Kaper, J.B. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol. Microbiol. 1999, 33, 1176–1189. [Google Scholar] [CrossRef]
- Abe, A.; de Grado, M.; Pfuetzner, R.A.; Sanchez-Sanmartin, C.; Devinney, R.; Puente, J.L.; Strynadka, N.C.; Finlay, B.B. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol. Microbiol. 1999, 33, 1162–1175. [Google Scholar] [CrossRef] [PubMed]
- Burkinshaw, B.J.; Souza, S.A.; Strynadka, N.C. Structural analysis of SepL, an enteropathogenic Escherichia coli type III secretion-system gatekeeper protein. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2015, 71, 1300–1308. [Google Scholar] [CrossRef]
- Zarivach, R.; Deng, W.; Vuckovic, M.; Felise, H.B.; Nguyen, H.V.; Miller, S.I.; Finlay, B.B.; Strynadka, N.C. Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature 2008, 453, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Thomassin, J.L.; He, X.; Thomas, N.A. Role of EscU auto-cleavage in promoting type III effector translocation into host cells by enteropathogenic Escherichia coli. BMC Microbiol. 2011, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Grin, I.; Malmsheimer, S.; Singh, N.; Torres-Vargas, C.E.; Westerhausen, S. Bacterial type III secretion systems: A complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol. Lett. 2018, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbaz, N.; Socol, Y.; Katsowich, N.; Rosenshine, I. Control of Type III Secretion System Effector/Chaperone Ratio Fosters Pathogen Adaptation to Host-Adherent Lifestyle. MBio 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Herzog, E.; Joseph, S.S.; Avery, A.K.; Coba, J.A.; Wolf, K.; Fields, K.A.; Plano, G.V. Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. J. Bacteriol. 2011, 193, 3490–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazi, A.D.; Charova, S.N.; Panopoulos, N.J.; Kokkinidis, M. Coiled-coils in type III secretion systems: Structural flexibility, disorder and biological implications. Cell. Microbiol. 2009, 11, 719–729. [Google Scholar] [CrossRef]
- Wang, D.; Roe, A.J.; McAteer, S.; Shipston, M.J.; Gally, D.L. Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol. Microbiol. 2008, 69, 1499–1512. [Google Scholar] [CrossRef]
- Monjaras Feria, J.V.; Lefebre, M.D.; Stierhof, Y.D.; Galan, J.E.; Wagner, S. Role of autocleavage in the function of a type III secretion specificity switch protein in Salmonella enterica serovar Typhimurium. MBio 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Zilkenat, S.; Franz-Wachtel, M.; Stierhof, Y.D.; Galan, J.E.; Macek, B.; Wagner, S. Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach. Mol. Cell. Proteomics 2016, 15, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Terahara, N.; Inoue, Y.; Kodera, N.; Morimoto, Y.V.; Uchihashi, T.; Imada, K.; Ando, T.; Namba, K.; Minamino, T. Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Science Adv. 2018, 4, eaao7054. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Ogawa, Y.; Kinoshita, M.; Terahara, N.; Shimada, M.; Kodera, N.; Ando, T.; Namba, K.; Kitao, A.; Imada, K.; et al. Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure 2019, 27, 965–976. [Google Scholar] [CrossRef]
- Minamino, T.; Inoue, Y.; Kinoshita, M.; Namba, K. FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus. J. Bacteriol. 2020, 202. [Google Scholar] [CrossRef]
- Ngo, T.D.; Perdu, C.; Jneid, B.; Ragno, M.; Novion Ducassou, J.; Kraut, A.; Coute, Y.; Stopford, C.; Attree, I.; Rietsch, A.; et al. The PopN Gate-keeper Complex Acts on the ATPase PscN to Regulate the T3SS Secretion Switch from Early to Middle Substrates in Pseudomonas aeruginosa. J. Mol. Biol. 2020, 432, 166690. [Google Scholar] [CrossRef]
- Ruano-Gallego, D.; Alvarez, B.; Fernandez, L.A. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells. ACS Synth. Biol. 2015, 4, 1030–1041. [Google Scholar] [CrossRef] [Green Version]
Strain or Plasmid | Description 1 | Reference or Source |
---|---|---|
E. coli | ||
TOP10 | Strain used for cloning; Smr | Invitrogen |
XL1-Blue | Strain used for plasmid propagation and DNA purification; Tcr | Stratagene |
BL21 (DE3) pLysS | Strain used for expression of pET19b based plasmids; Cmr | Novagen |
SU202 | Reporter strain for LexA-based two-hybrid assays; Cmr Kmr | [62] |
EPEC E2348/69 | Wild-type EPEC strain O127:H6; Smr | [63] |
ΔescN | E2348/69 carrying an in-frame deletion of escN; Smr | [64] |
ΔcesL | E2348/69 cesL deletion mutant. Codons 49 to 106 were replaced by the aphT cassette; Smr Kmr | This study |
ΔcesL2::km | E2348/69 cesL deletion mutant. Codons 20 to 106 were replaced by the aphT cassette; Smr Kmr | This study |
ΔcesL2 | Derived from ΔcesL2::km, the kanamycin cassette was removed; Smr | This study |
ΔsepD | E2348/69 carrying an in-frame deletion of sepD; Smr | Gift of the Puente JL Lab |
ΔsepL | E2348/69 carrying an in-frame deletion of sepL; Smr | Gift of the Puente JL Lab |
ΔcesL ΔsepD | E2348/69 cesL and sepD double deletion mutant; Smr Kmr | This study |
ΔcesL ΔsepL | E2348/69 cesL and sepL double deletion mutant; Smr Kmr | This study |
sepL-FLAG | E2348/69 expressing 3×FLAG-tagged SepL; Smr Kmr | [49] |
sepL-FLAG ΔcesL | E2348/69 expressing 3×FLAG-tagged SepL and carrying a deletion of cesL; Smr Kmr | This study |
sepL-FLAG ΔsepD | E2348/69 expressing 3×FLAG-tagged SepL and carrying an in-frame deletion of sepD; Smr Kmr | This study |
cesL-FLAG | E2348/69 expressing 3×FLAG-tagged cesL; Smr Kmr | This study |
cesL-FLAG ΔsepL | E2348/69 expressing 3×FLAG-tagged CesL and carrying an in-frame deletion of sepL; Smr Kmr | This study |
cesL-FLAG ΔsepD | E2348/69 expressing 3×FLAG-tagged CesL and carrying an in-frame deletion of sepD; Smr Kmr | This study |
Salmonella | ||
SJW1368 | Strain used for expression of pTrc99A-based plasmids; flagellar master operon mutant, Δ(cheW-flhD) | [65] |
JR501 | Strain used to convert E. coli derived plasmids to Salmonella compatibility | [66] |
Saccharomyces cerevisiae | ||
PJ69-4a/α | MATa/α trp1-901 leu2-3, 112 ura3-52 his3-200 gal4Δ gal80Δ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ | [67] |
pKD4 | Template plasmid for amplification of the kanamycin resistance cassette | [68] |
pKD46 | λ-Red recombinase system plasmid with an inducible araB promoter; Apr | [68] |
pSUB11 | Template plasmid for amplification of the 3x-FLAG epitope and kanamycin resistant cassette; Apr Kmr | [69] |
pFLP2 | Plasmid used for expression of the Flp recombinase; Apr | [70] |
pTrc99A | Expression vector with an inducible trc promoter; Apr | Amersham-Pharmacia |
pTrc99A_FF4 | Modified pTrc99A expression vector with an inducible trc promoter; Apr | [71] |
pMTcL | cesL cloned into pTrc99A_FF4 (NdeI- BamHI) | This study |
pMTHcL | his-cesL cloned into pTrc99A (NcoI-BamHI) | This study |
pATpD | sepD cloned into pTrc99A_FF4 | [49] |
pMTpL | sepL gene cloned into pTrc99A_FF4 | [49] |
pMTBISpDcL | sepD and his-cesL cloned into pTrc99A_FF4 | [49] |
pMTBISpDpL | sepD and his-sepL cloned into pTrc99A_FF4 | This study |
pMTBISpLcL | sepL and his-cesL cloned into pTrc99A_FF4 | This study |
pMTBISpLpD | sepL and his-sepD cloned into pTrc99A_FF4 | This study |
pMTBISpDpLΔ75 | sepD and his-sepL lacking codons 1 to 225 cloned into pTrc99A_FF4 | This study |
pET19b | Plasmid used for expression of His tagged proteins under the control of an inducible T7 promoter, Apr | Novagen |
pAEpD | sepD cloned into pET19b (NdeI-BamHI) | This study |
pMEcL | cesL cloned into pET19b | [49] |
pMEpL | sepL cloned into pET19b (NdeI-BamHI) | This study |
pMEpLΔ75 | sepL lacking codons 1 to 225 cloned into pET19b (NdeI-BamHI) | This study |
pMEpLΔ81-94 | sepL lacking codons 240 to 282 cloned into pET19b (NdeI and BamHI) | This study |
pKEeDN | escD codons 1 to 120 cloned into pET19b | [49] |
pKEeVC | escV codons 335 to 675 cloned into pET19b | [49] |
pJEeUC | escU codons 215 to 345 cloned into pET19b | [35] |
pACTrc | pACYC184 expression vector derivative; pTrc promoter, p15A origin of replication, lacIq; Cmr | [72] |
pMATpD | sepD gene cloned into pACTrc (NdeI-BamHI) | This study |
pMATpL | sepL gene cloned into pACTrc | [49] |
pMATpLΔ30 | sepL lacking codons 1 to 90 cloned into pACTrc (NdeI-BamHI) | This study |
pMATpLΔ81-94 | sepL lacking codons 240 to 282 cloned into pACTrc (NdeI-BamHI) | This study |
pMATcL | cesL cloned into pACTrc (NdeI- BamHI) | This study |
pMATcL2HA | cesL-2HA cloned into pACTrc (HindIII-BamHI) | This study |
pMATcLCΔ10 | cesL lacking codons 107-117 cloned into pACTrc (NdeI-BamHI) | This study |
pMAL-c2X | Plasmid used for expression of MBP-tagged proteins under the control of the tac promoter; Apr | New England Biolabs |
pMLcL | cesL gene cloned into pMAL-c2X (BamHI-HindIII) | This study |
pMLcLCΔ10 | cesL lacking codons 107-117 cloned into pMAL-c2X (BamHI-PstI) | This study |
pTOPO-2HA | pCR2.1-TOPO derivative carrying C. rodentium espG (HindIII-XhoI) tagged with 2-HA epitopes; Kmr Apr | [36] |
pMHcL | cesL with its native RBS cloned into pTOPO-2HA (HindIII-XhoI) | This study |
pJHeH | espH with its native RBS cloned into pTOPO-2HA (HindIII-XhoI) | [35] |
pGBKT7 | Y2H vector containing GAL4 DNA binding domain; TRP1 nutritional marker | Clontech |
pOGBpD | sepD gene cloned into pGBKT7 (NdeI-BamHI) | This study |
pGBKT7-53 | pGBKT7 encoding a fusion of the GAL4 DNA binding domain with murine p53 | Clontech |
pGBKT7-Lam | pGBKT7 encoding a fusion of the GAL4 DNA binding domain with human lamin C | Clontech |
pGADT7 | Y2H vector containing GAL4 activation domain; LEU2 nutritional marker | Clontech |
pMGADpL | sepL cloned into pGADT7 (NdeI-BamHI) | This study |
pOGADpLΔ81-94 | sepL lacking codons 81-94 cloned into pGADT7 (NdeI-BamHI) | This study |
pMGADcL | cesL gene cloned into pGADT7 (NdeI-BamHI) | This study |
pMGADcLCΔ10 | cesL lacking codons 107-117 cloned into pGADT7 (NdeI-BamHI) | This study |
pGADT7-T | pGADT7 encoding a fusion of the GAL4 activation domain with the simian virus 40 (SV40) large T antigen | Clontech |
pSR658 | Encodes LexA DNA binding domain (WT). ColE1 origin of replication; Tcr | Gift of the Puente JL Lab |
pMR58cL | cesL cloned into pSR658 (XhoI-KpnI) | This study |
pMR58pD | sepD cloned into pSR658 (XhoI-KpnI) | This study |
pMR58tir | tir cloned into pSR658 (XhoI-KpnI) | This study |
pSR659 | Encodes LexA DNA binding domain (Mut). p15A origin of replication; Apr | Gift of the Puente JL Lab |
pMR59cT | cesT cloned into pSR659 (KpnI-BamHI) | This study |
pMR59pD | sepD cloned into pSR659 (XhoI-KpnI) | This study |
pMR59pL | sepL cloned into pSR659 (BamHI-XhoI) | This study |
Oligonucleotide | Sequence 5′ to 3′ |
---|---|
delcesLSRS_Fw | AACCGTGTTGAAATTGATTTTAATGGGTTTTCTTTTTTTATTGAAATAATTGATAATAATGTGTAGGCTGGAGCTGCTTCGAAGTTCCTATA |
delcesL_Rv | ATTTAAGAGTTTATTCATGATGTCATCCTGCGAACGCGCTCAATAATCTGAATATCCTCCTTAGTTCCTA |
delcesL_Fw | TTTTAGTTAAAAGAAATGTTGAAGAGTTTTTAAGATTGTTGGGAAATGATGTGTAGGCTGGAGCTGCTTC |
sepL-3FLAG_Fw | ATACATTATTAATGATTGGTAAAGTGATAGATTATAAGGAGGATGTTATGGACTACAAAGACCATGACGG |
sepL-3FLAG_Rv | CCTCTTCATAATCTTTCTTAGCATGACAAAAACTATAAAAAAAAACAATAATGAATATCCTCCTTAGTTC |
cesL-3FLAG_Fw | GAATACTTTTCAACAGCATGTGCAGATTATTGAGCGCGTTCGCAGGATGACATCAGACTACAAAGACCATGACGG |
cesL-3FLAG_Rv | AAGATCGTGATATGACTCTGCTTTTTTAAATATATTTAAGAGTTTATTCATATGAATATCCTCCTTAGTTC |
sepLNdeI_Fw | AGTTTCATATGGCTAATGGTATTG |
sepLNdeIΔ30_Fw | GCAATTACATATGCAAAAAAATTC |
sepLNdeΔ75_Fw | GAATTTAATCATATGCCCGCATCT |
sepLBamHI_Rv | CTATAAAAAAAAGGATCCTCACAT |
sepLΔ81-94-A_Rv | ACCGATAGTGATAAAATAAAAGAA |
sepLΔ81-94-B_Fw | ATCACTATCGGTTGTCGTGCCTTC |
cesLBamHI_Fw | AGCCTGGGATCCAATCTTTTAGT |
cesLHindIII_Rv | ATTTAAAAGCTTATTCATGATGTC |
cesLMalPstI_Rv | ACGCGCTGCAGTTACTGCACATGC |
cesLNdeI_Fw | AGAGCCTGCATATGAATCTTTTAG |
cesLCΔ10_Rv | GGATCCTCACTGCACATGCTGTTG |
cesLHA_Fw | TACTGTAAGCTTTATCCAATACGC |
cesLHA_Rv | TTAAGAGTTCTCGAGTGATGTCAT |
sepDXhoI_Fw | ACGGGTACTCGAGATGAACAATA |
sepDKpn_Rv | ACTTATTGGTACCATTACACAATTC |
tirXhoI_Fw | AAAGGATCTCGAGATGCCTATTGG |
tirKpn_Rv | CTCACAGGTACCTTTAAACGAAAC |
cesLXhoI_Fw | CAGAGCCTCGAGATGAATCTTTTA |
cesLKpnI_Rv | ATTTAAGGGTACCTTCATGATGTC |
sepLBamHIFw | ATTACGTGAGGATCCATGGCTAAT |
sepLXhoIstop_Rv | AAAACTCGAGATCACATAACATCC |
cesTBamHI_Fw | AAGAGAAGGATCCATGTCATCAAG |
cesTKpnI_Rv | CTAATAAGGTACCTTTATCTTCCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Guerrero, M.; Gaytán, M.O.; Soto, E.; Espinosa, N.; García-Gómez, E.; Marcos-Vilchis, A.; Andrade, A.; González-Pedrajo, B. CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome. Microorganisms 2021, 9, 1047. https://doi.org/10.3390/microorganisms9051047
Díaz-Guerrero M, Gaytán MO, Soto E, Espinosa N, García-Gómez E, Marcos-Vilchis A, Andrade A, González-Pedrajo B. CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome. Microorganisms. 2021; 9(5):1047. https://doi.org/10.3390/microorganisms9051047
Chicago/Turabian StyleDíaz-Guerrero, Miguel, Meztlli O. Gaytán, Eduardo Soto, Norma Espinosa, Elizabeth García-Gómez, Arely Marcos-Vilchis, Angel Andrade, and Bertha González-Pedrajo. 2021. "CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome" Microorganisms 9, no. 5: 1047. https://doi.org/10.3390/microorganisms9051047
APA StyleDíaz-Guerrero, M., Gaytán, M. O., Soto, E., Espinosa, N., García-Gómez, E., Marcos-Vilchis, A., Andrade, A., & González-Pedrajo, B. (2021). CesL Regulates Type III Secretion Substrate Specificity of the Enteropathogenic E. coli Injectisome. Microorganisms, 9(5), 1047. https://doi.org/10.3390/microorganisms9051047