Extensive Comparative Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whole Genome Sequencing and Sequence Extraction from NCBI
2.2. Genome Phylogenetic Tree Reconstruction of Both E. faecalis and E. faecium
2.3. Detection of Recombination Hotspots inside the Genomes of E. faecalis and E. faecium
2.4. Detection of Clustered, Regularly Interspaced, Short Palindromic Repeat (CRISPR) Spacers inside the E. faecalis and E. faecium Genomes
2.5. Orthologous Gene Detection and Pan-Genome Analysis of Both Species
2.6. Statistical Analysis
3. Results
3.1. Comparison of the E. faecalis and E. faecium Genome Features Reveals Differences in Genome Size and No Difference in GC Percentage
3.2. The Genomes of E. faecalis Contain a High Density of Recombination Hotspots Compared to E. faecium
3.3. There Were More CRISPR–Cas Systems and Absence of Anti-Endonuclease in E. faecalis Genomes Compared to E. faecium
3.4. The Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease Genes (ardA) and Acquisition of the Vancomycin Resistance Genes vanA, vanB in E. faecium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [Green Version]
- Elsner, H.A.; Sobottka, I.; Mack, D.; Claussen, M.; Laufs, R.; Wirth, R. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Guzman Prieto, A.M.; van Schaik, W.; Rogers, M.R.C.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J.L. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuita, N.I.A.; Huycke, M.M. Enterococcal Disease, Epidemiology, and Implications for Treatment. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y.S.N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014; pp. 1–27. [Google Scholar]
- García-Solache, M.; Lebreton, F.; McLaughlin, R.E.; Whiteaker, J.D.; Gilmore, M.S.; Rice, L.B. Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2016, 60, 5777–5786. [Google Scholar] [CrossRef] [Green Version]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Bourgogne, A.; Garsin, D.A.; Qin, X.; Singh, K.V.; Sillanpaa, J.; Yerrapragada, S.; Ding, Y.; Dugan-Rocha, S.; Buhay, C.; Shen, H.; et al. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 2008, 9, R110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solheim, M.; Brekke, M.C.; Snipen, L.G.; Willems, R.J.L.; Nes, I.F.; Brede, D. A Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol. 2011, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Prado, G.V.B.; Marchi, A.P.; Moreno, L.Z.; Rizek, C.; Amigo, U.; Moreno, A.M.; Rossi, F.; Guimaraes, T.; Levin, A.S.; Costa, S.F. Virulence and resistance pattern of a novel sequence type of linezolid-resistant Enterococcus faecium identified by whole-genome sequencing. J. Glob. Antimicrob. Resist. 2016, 6, 27–31. [Google Scholar] [CrossRef]
- Sivertsen, A.; Pedersen, T.; Larssen, K.W.; Bergh, K.; Rønning, T.G.; Radtke, A.; Hegstad, K. A Silenced vanA Gene Cluster on a Transferable Plasmid Caused an Outbreak of Vancomycin-Variable Enterococci. Antimicrob. Agents Chemother. 2016, 60, 4119–4127. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; van Schaik, W.; Willems, R.J.L.; Gilmore, M.S.; Willem Van Schaik, C.A.; Willems, R.J.L.; Gilmore, M.S. Enterococcal Genomics; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Evans, M.; Davies, J.K.; Sundqvis, G.; Figdor, D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Aust. Endod. J. 2001, 27, 115. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Banerjei, L.; Myers, G.S.A.; Nelson, K.E.; Seshadri, R.; Read, T.D.; Eisen, J.A.; Gill, S.R.; Fouts, D.E.; Heidelberg, J.F. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003, 299, 2071–2074. [Google Scholar] [CrossRef] [Green Version]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef]
- Lebreton, F.; Depardieu, F.; Bourdon, N.; Fines-Guyon, M.; Berger, P.; Camiade, S.; Leclercq, R.; Courvalin, P.; Cattoir, V. D-Ala-D-Ser VanN-Type Transferable Vancomycin Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2011, 55, 4606–4612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Mikalsen, T.; Pedersen, T.; Willems, R.; Coque, T.M.; Werner, G.; Sadowy, E.; van Schaik, W.; Jensen, L.B.; Sundsfjord, A.; Hegstad, K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genom. 2015, 16, 282. [Google Scholar] [CrossRef] [Green Version]
- Kayaoglu, G.; Ørstavik, D. Virulence factors of Enterococcus faecalis: Relationship to endodontic disease. Crit. Rev. Oral Biol. Med. 2004, 15, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Nallapareddy, S.R.; Singh, K.V.; Sillanp, J.; Garsin, D.A.; Hk, M.; Erlandsen, S.L.; Murray, B.E. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J. Clin. Investig. 2006, 116, 2799–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domann, E.; Hain, T.; Ghai, R.; Billion, A.; Kuenne, C.; Zimmermann, K.; Chakraborty, T. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int. J. Med. Microbiol. 2007, 297, 533–539. [Google Scholar] [CrossRef]
- Soheili, S.; Ghafourian, S.; Sekawi, Z.; Neela, V.; Sadeghifard, N.; Ramli, R.; Hamat, R.A. Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates. Sci. World J. 2014, 2014, 623174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef] [Green Version]
- McMahon, S.A.; Roberts, G.A.; Johnson, K.A.; Cooper, L.P.; Liu, H.; White, J.H.; Carter, L.G.; Sanghvi, B.; Oke, M.; Walkinshaw, M.D.; et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res. 2009, 37, 4887–4897. [Google Scholar] [CrossRef]
- Ravi, R.K.; Walton, K.; Khosroheidari, M. MiSeq: A Next Generation Sequencing Platform for Genomic Analysis. Methods Mol. Biol. 2018, 223–232. [Google Scholar] [CrossRef]
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015, 31, 587–589. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Keane, J.A.; Page, A.J.; Delaney, A.J.; Taylor, B.; Seemann, T.; Harris, S.R.; Soares, J. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A.; Quang Minh, B.; Anh Thi Nguyen, M.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30. [Google Scholar] [CrossRef] [PubMed]
- Didelot, X.; Wilson, D.J. ClonalFrameML: Efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 2015, 11, e1004041. [Google Scholar] [CrossRef] [Green Version]
- Minced: Mining CRISPRs in Environmental Datasets. Available online: https://github.com/ctSkennerton/minced/tree/master (accessed on 10 January 2021).
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31. [Google Scholar] [CrossRef]
- Kaas, R.S.; Friis, C.; Ussery, D.W.; Aarestrup, F.M.; Otto, T.; Oryan, M.; Prado, V.; Pickering, L.; Russo, T.; Johnson, J.; et al. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genom. 2012, 13, 577. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team R: A language and environment for statistical computing. Stat. Comput. 2006. [CrossRef]
- Furtado, I.; Xavier, P.C.N.; Tavares, L.V.M.; Alves, F.; Martins, S.F.; de Martins, A.S.; Palhares, D.B. Enterococcus faecium and Enterococcus faecalis in blood of newborns with suspected nosocomial infection. Rev. Inst. Med. Trop. São Paulo 2014, 56, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Ronald, A. The etiology of urinary tract infection: Traditional and emerging pathogens. Dis. Mon. 2003, 49, 71–82. [Google Scholar] [CrossRef]
- Lebreton, F.; van Schaik, W.; McGuire, A.M.; Godfrey, P.; Griggs, A.; Mazumdar, V.; Corander, J.; Cheng, L.; Saif, S.; Young, S.; et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, K.L.; Carniol, K.; Manson, J.M.; Heiman, D.; Shea, T.; Young, S.; Zeng, Q.; Gevers, D.; Feldgarden, M.; Birren, B.; et al. High-quality draft genome sequences of 28 Enterococcus sp. isolates. J. Bacteriol. 2010, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hal, S.J.; Ip, C.L.C.; Ansari, M.A.; Wilson, D.J.; Espedido, B.A.; Jensen, S.O.; Bowden, R. Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance. Microb. Genom. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 2015, 526, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ratner, H.K.; Sampson, T.R.; Weiss, D.S. Overview of CRISPR-Cas9 Biology. Cold Spring Harb. Protoc. 2016, 2016. [Google Scholar] [CrossRef]
- Brodrick, H.J.; Raven, K.E.; Harrison, E.M.; Blane, B.; Reuter, S.; Török, M.E.; Parkhill, J.; Peacock, S.J. Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Med. 2016, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Pougach, K.; Tikhonov, A.; Wanner, B.L.; Severinov, K.; Semenova, E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 2012, 3, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, O. Vancomycin resistant enterococci in farm animals—Occurrence and importance. Infect. Ecol. Epidemiol. 2012, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlaga, K.D.; Garcia, V.; Colson, P.; Ruimy, R.; Rolain, J.-M.; Diene, S.M. Extensive Comparative Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium. Microorganisms 2021, 9, 1118. https://doi.org/10.3390/microorganisms9061118
Mlaga KD, Garcia V, Colson P, Ruimy R, Rolain J-M, Diene SM. Extensive Comparative Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium. Microorganisms. 2021; 9(6):1118. https://doi.org/10.3390/microorganisms9061118
Chicago/Turabian StyleMlaga, Kodjovi D., Vincent Garcia, Philippe Colson, Raymond Ruimy, Jean-Marc Rolain, and Seydina M. Diene. 2021. "Extensive Comparative Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium" Microorganisms 9, no. 6: 1118. https://doi.org/10.3390/microorganisms9061118
APA StyleMlaga, K. D., Garcia, V., Colson, P., Ruimy, R., Rolain, J.-M., & Diene, S. M. (2021). Extensive Comparative Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium. Microorganisms, 9(6), 1118. https://doi.org/10.3390/microorganisms9061118