Does the Composition of the Gut Bacteriome Change during the Growth of Tuna?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Extraction of the Gut Bacteriome
2.3. DNA Extraction, Amplification and Sequencing
2.4. Treatment and Analysis of the Bacterial Sequences
2.5. Statistical Analysis
3. Results
3.1. Fish Morphometric Traits
3.2. Alpha Diversity
3.3. Composition and Beta Diversity
3.4. The Core Gut Microbiome
4. Discussion
4.1. Microbial Changes during Fish Growth
4.2. Dietary Changes during Growth
4.3. Commensal and Potential Pathogenic Bacteria
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stal, L.J.; Cretoiu, M.S. The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Apprill, A. Marine animal microbiomes: Toward understanding host–microbiome interactions in a changing ocean. Front. Mar. Sci. 2017, 4, 222. [Google Scholar] [CrossRef] [Green Version]
- Trevathan-Tackett, S.M.; Sherman, C.D.H.; Huggett, M.J.; Campbell, A.H.; Laverock, B.; Hurtado-McCormick, V.; Macreadie, P.I. A horizon scan of priorities for coastal marine microbiome research. Nat. Ecol. Evol. 2019, 3, 1509–1520. [Google Scholar] [CrossRef]
- Chiarello, M.; Auguet, J.C.; Graham, N.; Claverie, T.; Sucre, E.; Bouvier, C.; Rieuvilleneuve, F.; Bettarel, Y.; Villeger, S.; Bouvier, T. Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc. R. Soc. B 2020, 287, 1927. [Google Scholar] [CrossRef] [PubMed]
- Tarnecki, A.M.; Burgos, F.A.; Ray, C.L.; Arias, C.R. Fish intestinal microbiome: Diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 2017, 123, 2–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Butt, R.L.; Volkoff, H. Gut microbiota and energy homeostasis in fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.K.; Minsuk, K.; Bakshi, U.; Cunningham, K.Y.; Davis III, J.M.D.; Lazaridis, K.N.; Nelson, H.; Chia, N.; Sung, J. A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 2020, 11, 4635. [Google Scholar] [CrossRef] [PubMed]
- Hansen, G.H.; Olafsen, J.A. Bacterial interactions in early life stages of marine cold water fish. Microb. Ecol. 1999, 38, 1–26. [Google Scholar] [CrossRef]
- Dhanasiri, A.K.S.; Brunvold, L.; Brinchmann, M.F.; Kornses, K.; Bergh, O.; Kiron, W. Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing. Microb. Ecol. 2011, 1, 20–30. [Google Scholar] [CrossRef]
- Miyake, S.; Ngugo, D.K.; Stingl, U. Diet strongly influences the gut microbiota of surgeon fishes. Mol. Ecol. 2015, 24, 656–672. [Google Scholar] [CrossRef]
- Clements, K.D.; Pasch, I.B.Y.; Moran, D.; Turner, S.J. Clostridia dominate 16S rRNA gene libraries prepared from the hindgut of temperate marine herbivorous fishes. Mar. Biol. 2007, 150, 1431–1440. [Google Scholar] [CrossRef]
- Hovda, M.B.; Fontanillas, R.; McGurk, C.; Obach, A.; Rosnes, J.T. Seasonal variations in the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquac. Res. 2012, 43, 154–159. [Google Scholar] [CrossRef]
- Bano, N.; Smith, A.D.; Bennett, W.; Vasquez, L.; Hollibaugh, J.T. Dominance of Mycoplasma in the guts of the long jawed Mudsucker, Gillichthys mirabilis, from five California salt marshes. Environ. Microbiol. 2007, 9, 2636–2641. [Google Scholar] [CrossRef] [PubMed]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish gut microbiome: Current approaches and future perspectives. Indian J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Perry, W.B.; Lindsay, E.; Payne, C.J.; Brodie, C.; Kazlauskaite, R. The role of the gut microbiome in sustainable teleost aquaculture. Proc. R. Soc. B 2020, 287, 20200184. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, M.S.; McGinnity, P.; Dionne, M.; Letourneau, J.; Thonier, F.; Carvalho, G.R.; Creer, S.; Derome, N. The biogeography of the atlantic salmon (Salmo salar) gut microbiome. ISME J. 2016, 10, 1280–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, K.M.; Lee, B.J.; Kothari, D.; Loo, W.D.; Hur, S.W.; Lim, S.G.; Kim, K.W.; Kim, N.N.; Kim, S.K. Dietary effect of low fish meal aquafeed on gut microbiota in olive flounder (Paralichtys olivaceus) at different growth stages. MicrobiologyOpen 2020, 9, e992. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Symonds, J.E.; Walker, S.P.; Steiner, K.; Carter, C.G.; Bowman, J.P.; Nowak, B.F. Salinity and fish age affect the gut microbiota of farmed Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 2020, 528, 735539. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Schaefer, K.M.; Fuller, D.W. Simultaneous behavior of skipjack (Katsuwonus pelamis), bigeye (Thunnus obsesus), and yellowfin (T. albacares) tunas, within large multi-species aggregations associated with drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean. Mar. Biol. 2013, 160, 3005–3014. [Google Scholar] [CrossRef]
- Albaret, J.J. La reproduction de l’albacore (Thunnus albacares) dans le Golfe de Guinée. Cah. ORSTOM. Série Océanographie 1977, 15, 389–419. [Google Scholar]
- Bettarel, Y.; Combe, M.; Adingra, A.; Ndiaye, A.; Bouvier, T.; Panfili, J.; Durand, J.D. Horde of phages in the fish gut of the tilapia Sarotherodon Melanotheron. Sci. Rep. 2018, 8, 11311. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, 1. [Google Scholar] [CrossRef]
- Andersson, A.F.; Lindberg, M.; Jakobsson, H.; Bäckhed, F.; Nyrén, P.; Engstrand, L. Comparative analysis of korean human gut microbiota by barcoded pyrosequencing. PLoS ONE 2008, 3, e2836. [Google Scholar] [CrossRef]
- Perreault, N.N.; Andersen, D.T.; Pollard, W.H.; Greer, C.W.; Whyte, L.G. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high arctic. Appl. Environ. Microbiol. 2007, 73, 1532–1543. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Met. 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acid Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahti, L.; Shetty, S.; Blake, T.; Salojarvi, J. Tools for Microbiome Analysis in R. Available online: https://microbiome.github.io/tutorials/ (accessed on 15 February 2019).
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kneifel, W.; Domig, K.J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Bouvier, C.; Bouvier, T.; Troussellier, M.; Escalas, A.; Mouillot, D. Genetic difference but fonctional similarity among fish gut bacterial communities through molecular and biogeochemical fingerprints. FEMS Microbiol. Ecol. 2012, 79, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Kitchell, J.F.; Neill, W.H.; Dizon, A.E.; Magnusson, J.J. Bioenergetic spectra of skipjack and yellowfin tunas. In The Physiologycal Ecology of Tunas; Sharp, G.D., Dizon, A.E., Eds.; Academic Press: New York, NY, USA, 1978; pp. 357–368. [Google Scholar]
- Sepulveda, J.; Moeller, A.H. The effects of temperature on animal gut microbiomes. Front. Microbiol. 2020, 11, 384. [Google Scholar] [CrossRef]
- Sharpton, T.J. Role of the gut microbiome in vertebrate Evolution. Msystems 2018, 3, e00174-17. [Google Scholar] [CrossRef] [Green Version]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; O’Connor, M.P.; Rosen, G.L.; Knight, R.; Kilham, S.S.; Russell, J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef] [Green Version]
- Givens, C.E.; Ransom, B.; Bano, N.; Hollibaugh, J.T. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar. Ecol. Prog. Ser. 2015, 518, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Burns, A.R.; Stephens, W.Z.; Stagaman, K.; Wong, S.; Rawls, J.F.; Guillemin, K.; Bohannan, B.J. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016, 10, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Heys, C.; Cheaib, B.; Busetti, A.; Kazlauskaite, R.; Sloan, W.T.; Ijaz, U.; Kaufmann, J.; McGinnity, P.; Llewellyn, M.S. Neutral processes dominate microbial community assembly in Atlantic salmon, Salmo salar. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolnick, D.I.; Snowberg, L.K.; Hirsch, P.E.; Lauber, C.L.; Org, E.; Parks, B.; Lusis, A.J.; Knight, R.; Caporaso, J.G.; Svanbäck, R. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 2014, 5, 4500. [Google Scholar] [CrossRef] [PubMed]
- Godon, J.-J.; Arulazhagan, P.; Steyer, J.-P.; Hamelin, J. Vertebrate bacterial gut diversity: Size also matters. BMC Ecol. 2016, 16, 12. [Google Scholar] [CrossRef] [Green Version]
- Dragovich, A. The Food of Bluefin Tuna (Thunnus thynnus) in the Western North Atlantic Ocean. Trans. Am. Fish. Soc. 1970, 99, 726–731. [Google Scholar] [CrossRef]
- Dragovich, A.; Potthoff, T. Comparative study of food of skipjack and yellowfin tunas off the coast of west Africa. Fish. Bull. 1972, 70, 1087–1110. [Google Scholar]
- Graham, J.B.; Dickson, K.A. Tuna comparative physiology. Mar. Biol. 2004, 150, 647–658. [Google Scholar] [CrossRef]
- Ringø, E.; Schillinger, U.; Holzapfel, W. Antimicrobial activity of lactic acid bacteria isolated from aquatic animals and the use of lactic acid bacteria in aquaculture. In Biology of Growing Animals; Elsevier: Amsterdam, The Netherlands, 2005; Volume 2, pp. 418–453. [Google Scholar]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquac. Res. 2020, 41, 1553–1573. [Google Scholar] [CrossRef]
- Sivasubramanian, K.; Ravichandran, S.; Kavitha, R. Isolation and characterization of gut microbiota from some estuarine fishes. Mar. Sci. 2012, 2, 1–6. [Google Scholar] [CrossRef]
- Pękala-Safińska, A. Contemporary threats of bacterial infections in freshwater fish. J. Vet. Res. 2018, 62, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leisner, J.J.; Laursen, B.G.; Prévost, H.; Drider, D.; Dalgaard, P. Carnobacterium: Positive and negative effects in the environment and in foods. FEMS Microbiol. Rev. 2007, 31, 592–613. [Google Scholar] [CrossRef] [Green Version]
- Del Rio-Rodriguez, R.E.; Inglis, V.; Millar, S.D. Survival of Escherichia coli in the intestine of fish. Aquac. Res. 1997, 28, 257–264. [Google Scholar] [CrossRef]
- David, O.M.; Wandili, S.; Kakai, R.; Waindi, E.N. Isolation of Salmonella and Shigella from fish harvested from the Winam Gulf of Lake Victoria, Kenya. J. Infect Dev. Ctries. 2009, 3, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, K.; Nagano, H.; Ando, A.; Shima, J.; Ogawa, J. Isolation and characterization of psychrotolerant endospore-forming Sporosarcina species associated with minced fish meat (surimi). Int. J. Food Microbiol. 2015, 199, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir-Butler, K.; Green, D.P.; Bolton, G.E.; McClellan-Green, P.D. Control of histamine-producing bacteria and histamine formation in fish muscle by trisodium phosphate. J. Food Sci. 2015, 80, 1253–1258. [Google Scholar] [CrossRef]
- Hungerford, J.M. Scombroid poisoning: A review. Toxicon 2010, 56, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Ogai, M.; Miya, S.; Kuda, T.; Kimura, B. Effects of environmental factors on histamine production in the psychrophilic histamine-producing bacterium Photobacterium iliopiscarium. Food Control. 2015, 52, 39–42. [Google Scholar] [CrossRef]
- Trevisani, M.; Cecchini, M.; Fedrizzi, G.; Corradini, A.; Mancusi, R.; Tothill, I.E. Biosensing the histamine producing potential of bacteria in tuna. Front. Microbiol. 2019, 10, 1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SKIPJACK | YELLOWFIN | BIGEYE | |||||||
---|---|---|---|---|---|---|---|---|---|
Size Class | Size (cm) | Weight (kg) | Sex | Size (cm) | Weight (kg) | Sex | Size (cm) | Weight (kg) | Sex |
Small | 30.5 | 0.6 | F | 66.1 | 5.8 | M | 71.4 | 8.0 | M |
32.1 | 0.6 | I | 71.0 | 6.8 | F | 79.2 | 12.2 | F | |
34.8 | 0.7 | I | 75.3 | 8.7 | M | 84.4 | 15.9 | F | |
38.9 | 1.1 | I | 84.9 | 12.1 | F | 87.8 | 13.2 | M | |
40.2 | 1.4 | F | 87.8 | 13.3 | M | 94.2 | 19.8 | M | |
42.1 | 1.4 | I | 91.9 | 15.3 | M | 97.8 | 22.2 | F | |
Medium | 45.5 | 1.8 | M | 103.8 | 25.9 | I | 102.8 | 23.8 | F |
46.7 | 2.1 | M | 109.3 | 28.3 | F | 109.5 | 29.9 | M | |
49.4 | 2.6 | F | 110.1 | 24.8 | F | 111.3 | 30.9 | F | |
51.0 | 2.7 | F | 116.8 | 32.3 | F | 115.7 | 36.6 | M | |
52.0 | 3.0 | F | 127.2 | 38.5 | F | 127.7 | 47.6 | F | |
55.5 | 3.9 | M | 131.3 | 50.4 | M | 132.5 | 51.7 | F | |
Large | 56.7 | 4.1 | F | 140.4 | 59.2 | M | 138.8 | 63.3 | M |
59.2 | 4.7 | M | 145.2 | 58.9 | F | 142.2 | 68.5 | M | |
60.8 | 5.2 | M | 151.6 | 68.7 | M | 152.8 | 78.4 | F | |
63.5 | 7.7 | M | 158.8 | 81.9 | M | 155.0 | 90.0 | F | |
65.5 | 6.0 | F | 161.6 | 89.9 | M | 162.1 | 87.3 | F | |
67.5 | 6.0 | F | 164.3 | 71.0 | M | 166.8 | 99.9 | M |
SKIPJACK | YELLOWFIN | BIGEYE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | Sum of Squares | F. Model | p Value | df | Sum of Squares | F. Model | p Value | df | Sum of Squares | F. Model | p Value | |
SIZE | 1 | 0.25 | 0.70 | 0.68 | 1 | 0.77 | 2.02 | 0.01 | 1 | 0.48 | 1.76 | 0.04 |
Residuals | 16 | 5.7 | 16 | 6.11 | 16 | 4.48 | ||||||
Total | 17 | 5.97 | 17 | 6.89 | 17 | 4.96 |
SKIPJACK | YELLOWFIN | BIGEYE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Genus Species | S | M | L | S | M | L | S | M | L | ||
Actinobacteria | Corynebacterium sp. | |||||||||||
Cutibacterium sp. | ||||||||||||
Kocuria sp. | ||||||||||||
Microbacterium sp. | ||||||||||||
Alphaproteobacteria | Bradyrhizobium sp. | |||||||||||
Brevundimonas sp. | ||||||||||||
Labrenzia sp. | ||||||||||||
Novosphingobium sp. | ||||||||||||
Paracoccus sp. | ||||||||||||
Ruegeria sp. | ||||||||||||
Bacilli | Brochothrix thermosphacta | |||||||||||
Carnobacteriumsp. | ||||||||||||
Lactococcus spp. | ||||||||||||
Sporosarcina spp. | ||||||||||||
Vagococcus salmoninarum | ||||||||||||
Bacteroidia | Ulvibacter spp. | |||||||||||
Vibrionimonas magnilacihabitans | ||||||||||||
Clostridia | Clostridium_sensu_stricto_7 spp. | |||||||||||
Gottschalkia spp. | ||||||||||||
Tissierella spp. | ||||||||||||
Fusobacteriia | Psychrilyobacter spp. | |||||||||||
Gammaproteobacteria | Acinetobacter spp. | |||||||||||
Acinetobacter haemolyticus | ||||||||||||
Aeromonas sp. | ||||||||||||
BD1-7_clade spp. | ||||||||||||
Enhydrobacter aerosaccus | ||||||||||||
Escherichia/Shigella sp. | ||||||||||||
Massilia sp. | ||||||||||||
Massilia timonae | ||||||||||||
Oceanisphaera spp. | ||||||||||||
Oceanisphaera ostreae | ||||||||||||
Photobacterium spp. | ||||||||||||
Photobacterium angustum | ||||||||||||
Photobacterium leiognathi | ||||||||||||
Pseudomonas spp. | ||||||||||||
Psychrobacter spp. | ||||||||||||
Psychrobacter fozii | ||||||||||||
Psychrobacter maritimus | ||||||||||||
Rahnella spp. | ||||||||||||
Shewanella sp. | ||||||||||||
Mollicutes | Mycoplasma sp. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadoin, E.; Durand, L.; Guillou, A.; Crochemore, S.; Bouvier, T.; Roque, E.; Dagorn, L.; Auguet, J.-C.; Adingra, A.; Desnues, C.; et al. Does the Composition of the Gut Bacteriome Change during the Growth of Tuna? Microorganisms 2021, 9, 1157. https://doi.org/10.3390/microorganisms9061157
Gadoin E, Durand L, Guillou A, Crochemore S, Bouvier T, Roque E, Dagorn L, Auguet J-C, Adingra A, Desnues C, et al. Does the Composition of the Gut Bacteriome Change during the Growth of Tuna? Microorganisms. 2021; 9(6):1157. https://doi.org/10.3390/microorganisms9061157
Chicago/Turabian StyleGadoin, Elsa, Lucile Durand, Aurélie Guillou, Sandrine Crochemore, Thierry Bouvier, Emmanuelle Roque, Laurent Dagorn, Jean-Christophe Auguet, Antoinette Adingra, Christelle Desnues, and et al. 2021. "Does the Composition of the Gut Bacteriome Change during the Growth of Tuna?" Microorganisms 9, no. 6: 1157. https://doi.org/10.3390/microorganisms9061157
APA StyleGadoin, E., Durand, L., Guillou, A., Crochemore, S., Bouvier, T., Roque, E., Dagorn, L., Auguet, J. -C., Adingra, A., Desnues, C., & Bettarel, Y. (2021). Does the Composition of the Gut Bacteriome Change during the Growth of Tuna? Microorganisms, 9(6), 1157. https://doi.org/10.3390/microorganisms9061157