Scanning Electron Microscope: A New Potential Tool to Replace Gram Staining for Microbe Identification in Blood Cultures
Abstract
:1. Introduction
2. Methods
2.1. Sample Selection
2.1.1. Artificial Blood Cultures for the Developmental Stage
2.1.2. Clinical Blood Cultures for the Proof of Concept and Validation Stage
2.2. Sample Preparation Optimisation
2.3. Micrograph Acquisition
2.4. Post-Acquisition Analysis
2.4.1. Identification Based on Bacterial Morphology and Size
2.4.2. Cell Wall Analysis Based on Image Contrast
2.5. Comparison to Routine Microbial Identification
3. Results
3.1. Sample Preparation Optimization for SEM
3.2. Post-Acquisition Analysis
3.2.1. Step 1: Identification Based on Microbial Morphology by SEM
3.2.2. Step 2: Cell Wall Analysis by SEM Based on Image Contrast
3.2.3. Step 3: Identification Based on Microbial Size by SEM
3.3. SEM Compared to MALDI-TOF/MS Reference Identification
3.4. SEM vs. Gram Staining
3.4.1. Case of Blood Cultures Positive for Cocci
3.4.2. Case of Blood Cultures Positive for Bacilli
3.4.3. Case of Blood Cultures Positive for Other Microorganisms
3.4.4. Case of Negative Blood Cultures and Poly-Microbial Blood Cultures
3.5. Operator-Dependant Variability
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero-Gómez, M.-P.; Gómez-Gil, R.; Paño-Pardo, J.R.; Mingorance, J. Identification and Susceptibility Testing of Microorganism by Direct Inoculation from Positive Blood Culture Bottles by Combining MALDI-TOF and Vitek-2 Compact Is Rapid and Effective. J. Infect. 2012, 65, 513–520. [Google Scholar] [CrossRef]
- Kok, J.; Thomas, L.C.; Olma, T.; Chen, S.C.A.; Iredell, J.R. Identification of Bacteria in Blood Culture Broths Using Matrix-Assisted Laser Desorption-Ionization SepsityperTM and Time of Flight Mass Spectrometry. PLoS ONE 2011, 6, e23285. [Google Scholar] [CrossRef]
- Dubourg, G.; Raoult, D. Emerging Methodologies for Pathogen Identification in Positive Blood Culture Testing. Expert Rev. Mol. Diagn. 2016, 16, 97–111. [Google Scholar] [CrossRef]
- Dubourg, G.; Raoult, D.; Fenollar, F. Emerging Methodologies for Pathogen Identification in Bloodstream Infections: An Update. Expert Rev. Mol. Diagn. 2019, 19, 161–173. [Google Scholar] [CrossRef]
- Verroken, A.; Defourny, L.; Waroux, O.P.; de Belkhir, L.; Laterre, P.-F.; Delmée, M.; Glupczynski, Y. Clinical Impact of MALDI-TOF MS Identification and Rapid Susceptibility Testing on Adequate Antimicrobial Treatment in Sepsis with Positive Blood Cultures. PLoS ONE 2016, 11, e0156299. [Google Scholar] [CrossRef] [PubMed]
- Wolk, D.M.; Johnson, J.K. Rapid Diagnostics for Blood Cultures: Supporting Decisions for Antimicrobial Therapy and Value-Based Care. J. Appl. Lab. Med. 2019, 3, 686–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, Y. Refinement of presumptive antimicrobial therapy based on initial microbiological information on positive blood culture. Rinsho Byori 2010, 58, 498–507. [Google Scholar] [PubMed]
- Boyanova, L. Direct Gram Staining and Its Various Benefits in the Diagnosis of Bacterial Infections. Postgrad. Med. 2018, 130, 105–110. [Google Scholar] [CrossRef]
- SchØNheyder, H.C.; HØJbjerg, T. The Impact of the First Notification of Positive Blood Cultures on Antibiotic Therapy. APMIS 1995, 103, 37–44. [Google Scholar] [CrossRef]
- Barenfanger, J.; Graham, D.R.; Kolluri, L.; Sangwan, G.; Lawhorn, J.; Drake, C.A.; Verhulst, S.J.; Peterson, R.; Moja, L.B.; Ertmoed, M.M.; et al. Decreased Mortality Associated With Prompt Gram Staining of Blood Cultures. Am. J. Clin. Pathol. 2008, 130, 870–876. [Google Scholar] [CrossRef]
- Nagata, K.; Mino, H.; Yoshida, S. Usefulness and limit of Gram staining smear examination. Rinsho Byori 2010, 58, 490–497. [Google Scholar] [PubMed]
- Beveridge, T.J. Mechanism of Gram Variability in Select Bacteria. J. Bacteriol. 1990, 172, 1609–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban, J.; García-Calvo, G.; Jiménez-Castillo, P.; Soriano, F. Failure of Gram Stain to Detect Propionibacterium Acnes in Specimens from Clinically Significant Infections. J. Clin. Microbiol. 1996, 34, 2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliakos, E.E.; Andreatos, N.; Shehadeh, F.; Ziakas, P.D.; Mylonakis, E. The Cost-Effectiveness of Rapid Diagnostic Testing for the Diagnosis of Bloodstream Infections with or without Antimicrobial Stewardship. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verroken, A.; Despas, N.; Rodriguez-Villalobos, H.; Laterre, P.-F. The Impact of a Rapid Molecular Identification Test on Positive Blood Cultures from Critically Ill with Bacteremia: A Pre-Post Intervention Study. PLoS ONE 2019, 14, e0223122. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.-Y.; Chiang-Ni, C.; Teng, S.-H. Current Status of MALDI-TOF Mass Spectrometry in Clinical Microbiology. J. Food Drug Anal. 2019, 27, 404–414. [Google Scholar] [CrossRef] [PubMed]
- MacVane, S.H.; Nolte, F.S. Benefits of Adding a Rapid PCR-Based Blood Culture Identification Panel to an Established Antimicrobial Stewardship Program. J. Clin. Microbiol. 2016, 54, 2455–2463. [Google Scholar] [CrossRef] [Green Version]
- Mancini, N.; Infurnari, L.; Ghidoli, N.; Valzano, G.; Clementi, N.; Burioni, R.; Clementi, M. Potential Impact of a Microarray-Based Nucleic Acid Assay for Rapid Detection of Gram-Negative Bacteria and Resistance Markers in Positive Blood Cultures. J. Clin. Microbiol. 2014, 52, 1242–1245. [Google Scholar] [CrossRef] [Green Version]
- Peker, N.; Couto, N.; Sinha, B.; Rossen, J.W. Diagnosis of Bloodstream Infections from Positive Blood Cultures and Directly from Blood Samples: Recent Developments in Molecular Approaches. Clin. Microbiol. Infect. 2018, 24, 944–955. [Google Scholar] [CrossRef] [Green Version]
- Zrodlowski, T.; Flis, A.; Ziętkiewicz, M.; Drwiła, R.; Gosiewski, T. Fluorescent in Situ Hybridization and Gram-stained Smears of Whole Blood as Complementary Screening Tools in the Diagnosis of Sepsis. Pol. Arch. Intern. Med. 2017, 127, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Koh, H.; Aimoto, M.; Matsuhisa, A.; Inoue, S.-I.; Katayama, T.; Okamura, H.; Yoshimura, T.; Koh, S.; Nanno, S.; Nishimoto, M.; et al. Combinational Approach Using in Situ Hybridization Targeting 23S Ribosomal RNA Genes and Blood Cultures for Bacterial Identification in Patients with Neutropenia and Fever. J. Infect. Chemother. 2016, 22, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Berild, D.; Mohseni, A.; Diep, L.M.; Jensenius, M.; Ringertz, S.H. Adjustment of Antibiotic Treatment According to the Results of Blood Cultures Leads to Decreased Antibiotic Use and Costs. J. Antimicrob. Chemother. 2006, 57, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Bourbeau, P.P.; Ledeboer, N.A. Automation in Clinical Microbiology. J. Clin. Microbiol. 2013, 51, 1658–1665. [Google Scholar] [CrossRef] [Green Version]
- Dauwalder, O.; Landrieve, L.; Laurent, F.; de Montclos, M.; Vandenesch, F.; Lina, G. Does Bacteriology Laboratory Automation Reduce Time to Results and Increase Quality Management? Clin. Microbiol. Infect. 2016, 22, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Minor, L.; Véron, M. Bactériologie Médicale, 2nd ed.; Médecine-Sciences Flammarion: Paris, France, 1989; ISBN 2-257-12418-9. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.-E.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Sogaard, M.; Norgaard, M.; Schonheyder, H.C. First Notification of Positive Blood Cultures and the High Accuracy of the Gram Stain Report. J. Clin. Microbiol. 2007, 45, 1113–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutters, N.T.; Hodiamont, C.J.; de Jong, M.D.; Overmeijer, H.P.J.; van den Boogaard, M.; Visser, C.E. Performance of Kiestra Total Laboratory Automation Combined with MS in Clinical Microbiology Practice. Ann. Lab. Med. 2014, 34, 111–117. [Google Scholar] [CrossRef]
- Fenollar, F.; Raoult, D. Comparison of a Commercial Disk Test with Vancomycin and Colimycin Susceptibility Testing for Identification of Bacteria with Abnormal Gram Staining Reactions. EJCMID 2000, 19, 33–38. [Google Scholar] [CrossRef]
- Haddad, G.; Bellali, S.; Fontanini, A.; Francis, R.; La Scola, B.; Levasseur, A.; Bou Khalil, J.; Raoult, D. Rapid Scanning Electron Microscopy Detection and Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2 and Other Respiratory Viruses. Front. Microbiol. 2020, 11, 596180. [Google Scholar] [CrossRef]
- Haddad, G.; Fontanini, A.; Bellali, S.; Takakura, T.; Ominami, Y.; Hisada, A.; Hadjadj, L.; Rolain, J.M.; Raoult, D.; Bou Khalil, J. Rapid Detection of Imipenem Resistance in Gram-Negative Bacteria Using Tabletop Scanning Electron Microscopy: A Preliminary Evaluation. Front. Microbiol. 2021, 658322. [Google Scholar] [CrossRef]
- Hannachi, N.; Lepidi, H.; Fontanini, A.; Takakura, T.; Bou-Khalil, J.; Gouriet, F.; Habib, G.; Raoult, D.; Camoin-Jau, L.; Baudoin, J.-P. A Novel Approach for Detecting Unique Variations among Infectious Bacterial Species in Endocarditic Cardiac Valve Vegetation. Cells 2020, 9, 1899. [Google Scholar] [CrossRef] [PubMed]
- Verroken, A.; Defourny, L.; Lechgar, L.; Magnette, A.; Delmée, M.; Glupczynski, Y. Reducing Time to Identification of Positive Blood Cultures with MALDI-TOF MS Analysis after a 5-h Subculture. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Rossini, G.; Ambretti, S.; Gelsomino, F.; Pierro, A.M.; Varani, S.; Paolucci, M.; Landini, M.P.; Sambri, V. Blood Culture Systems: Rapid Detection—How and Why? Int. J. Antimicrob. Agents 2009, 34, S13–S15. [Google Scholar] [CrossRef]
Group Identified | Prevalence | Method | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) * | NPV (95% CI) * | Accuracy (95% CI) * |
---|---|---|---|---|---|---|---|
Cluster cocci | 47.33% | GRAM | 99.79% | 99.45% | 99.39% | 99.81% | 99.61% |
(98.86% to 99.99%) | (98.39% to 99.89%) | (98.13% to 99.80%) | (98.70% to 99.97%) | (99.01% to 99.89%) | |||
SEM | 99.59% | 99.44% | 99.38% | 99.63% | 99.51% | ||
(98.52% to 99.95%) | (98.38% to 99.88%) | (98.11% to 99.80%) | (98.54% to 99.91%) | (98.86% to 99.84%) | |||
Chain cocci | 10.11% | GRAM | 95.19% | 99.89% | 99% | 99.46% | 99.42% |
(89.14% to 98.42%) | (99.40% to 100%) | (93.31% to 99.86%) | (98.74% to 99.77%) | (98.74% to 99.79%) | |||
SEM | 89.42% (81.86% to 94.60%) | 100% | 100% | 98.82% (97.96% to 99.32%) | 98.93% (98.09% to 99.46%) | ||
Gram-negative cocci | 0.1% | GRAM | 100% | 100% | 100% | 100% | 100% (99.64% to 100%) |
SEM | 0% | 100% | 0% | 99.9% (99.90% to 99.90%) | 99.9% (99.45% to 100%) |
Group Identified | Prevalence | Method | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) * | NPV (95% CI) * | Accuracy (95% CI) * |
---|---|---|---|---|---|---|---|
Gram-negative bacilli | 37.8% | GRAM | 99.49% | 99.22% | 98.72% | 99.69% | 99.32% |
(98.16% to 99.94%) | (98.19% to 99.75%) | (97.00% to 99.46%) | (98.76% to 99.92%) | (98.60% to 99.73%) | |||
SEM | 99.23% | 98.75% | 97.97% | 99.53% | 98.93% | ||
(97.76% to 99.84%) | (97.55% to 99.46%) | (96.04% to 98.97%) | (98.56% to 99.85%) | (98.10% to 99.47%) | |||
Enterobacteria | 32.65% | SEM | 99.7% | 99.13% | 98.24% | 99.85% | 99.32% |
(98.35% to 99.99%) | (98.13% to 99.68%) | (96.18% to 99.20%) | (98.98% to 99.98%) | (98.60% to 99.73%) | |||
Proteobacteria | 4.18% | SEM | 88.37% | 99.9% | 97.44% | 99.49% | 99.42% |
(74.92% to 96.11%) | (99.44% to 100%) | (84.24% to 99.63%) | (98.86% to 99.78%) | (98.74% to 99.79%) | |||
Acinetobacter sp. | 0.97% | SEM | 90% | 99.9% | 89.98% | 99.9% | 99.81% |
(55.50% to 99.75%) | (99.45% to 100%) | (55.61% to 98.47%) | (99.37% to 99.98%) | (99.30% to 99.98%) | |||
Gram-Positive Bacilli | 2.24% | GRAM | 82.61% (61.22% to 95.05%) | 100% | 100% | 99.6% (99.04% to 99.84%) | 99.61% (99.01% to 99.89%) |
SEM | 86.96% | 99.9% | 95.25% | 99.7% | 99.61% | ||
(66.41% to 97.22%) | (99.45% to 100%) | (73.74% to 99.31%) | (99.15% to 99.90%) | (99.01% to 99.89%) | |||
Actinomyces sp. | 0.29% | SEM | 100% | 100% | 100% | 100% | 100% |
Bacillus sp. | 0.78% | SEM | 87.5% (47.35% to 99.68%) | 100% | 100% | 99.9% (99.39% to 99.98%) | 99.9% (99.46% to 100%) |
Other Gram-positive bacilli | 0.68% | SEM | 100% | 100% | 100% | 100% | 100% |
Propionibacterium sp. | 0.49% | SEM | 60% (14.66% to 94.73%) | 99.9% (99.46% to 100%) | 75.16% (27.32% to 96.06%) | 99.8% (99.43% to 99.93%) | 99.71% (99.15% to 99.94%) |
Group Identified | Prevalence | Method | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) * | NPV (95% CI) * | Accuracy (95% CI) * |
---|---|---|---|---|---|---|---|
Yeast | 1.36% | GRAM | 100% | 100% | 100% | 100% | 100% |
SEM | 78.57% (49.20% to 95.34%) | 100% | 100% | 99.71% (99.20% to 99.89%) | 99.71% (99.15% to 99.94%) | ||
Others | 1.07% | GRAM | 90.91% | 99.51% | 66.69% | 99.9% | 99.42% |
(58.72% to 99.77%) | (98.86% to 99.84%) | (45.02% to 83.04%) | (99.36% to 99.98%) | (98.74% to 99.79%) | |||
SEM | 45.45% | 99.71% | 62.52% | 99.41% | 99.12% | ||
(16.75% to 76.62%) | (99.14% to 99.94%) | (31.21% to 85.98%) | (99.00% to 99.66%) | (98.35% to 99.60%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, G.; Bellali, S.; Takakura, T.; Fontanini, A.; Ominami, Y.; Bou Khalil, J.; Raoult, D. Scanning Electron Microscope: A New Potential Tool to Replace Gram Staining for Microbe Identification in Blood Cultures. Microorganisms 2021, 9, 1170. https://doi.org/10.3390/microorganisms9061170
Haddad G, Bellali S, Takakura T, Fontanini A, Ominami Y, Bou Khalil J, Raoult D. Scanning Electron Microscope: A New Potential Tool to Replace Gram Staining for Microbe Identification in Blood Cultures. Microorganisms. 2021; 9(6):1170. https://doi.org/10.3390/microorganisms9061170
Chicago/Turabian StyleHaddad, Gabriel, Sara Bellali, Tatsuki Takakura, Anthony Fontanini, Yusuke Ominami, Jacques Bou Khalil, and Didier Raoult. 2021. "Scanning Electron Microscope: A New Potential Tool to Replace Gram Staining for Microbe Identification in Blood Cultures" Microorganisms 9, no. 6: 1170. https://doi.org/10.3390/microorganisms9061170
APA StyleHaddad, G., Bellali, S., Takakura, T., Fontanini, A., Ominami, Y., Bou Khalil, J., & Raoult, D. (2021). Scanning Electron Microscope: A New Potential Tool to Replace Gram Staining for Microbe Identification in Blood Cultures. Microorganisms, 9(6), 1170. https://doi.org/10.3390/microorganisms9061170