Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening Of Mutants and Identification of Transposon Insertion Sites
2.2. Bacterial Strains and Growth Conditions
2.3. Construction of the XanA Deletion Mutant and Complementation of EZ-Tn5 Insertion and Deletion Mutants of the X. Citri
2.4. Biofilm Formation on Abiotic Surfaces
2.5. Xanthan Gum Quantification
2.6. Bacterial Motility Assay
2.7. Pathogenicity Assay
2.8. Xanthan Gum Composition Assessment in XanA Mutant and Wild-Type
2.9. Statistical Analysis
3. Results
3.1. XanA Encodes a Phosphoglucomutase Protein, Important to the Biofilm Formation and Xanthan Gum Production
3.2. Mutant Strain XanA::Tn5 Developed No Symptoms on Sweet Orange Host
3.3. xanA Plays a Critical Role in Controlling Important Features in X. citri
3.4. Xanthan Gum from xanA Mutant Have Altered Monosaccharides Content
3.5. XanA Is Highly Conserved in the Xanthomonads Group
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Graham, J.H.; Gottwald, T.R.; Cubero, J.; Achor, D.S. Xanthomonas axonopodis pv. citri: Factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Pierce, F.; Graham, J.H. Citrus Canker: The Pathogen and Its Impact Plant Health Progress Plant Health Progress. Plant Health Prog. 2002, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Granato, L.M.; Picchi, S.C.; Andrade, M.O.; Takita, M.A.; de Souza, A.A.; Wang, N.; Machado, M.A. The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiol. 2016, 16, 55. [Google Scholar] [CrossRef] [Green Version]
- Rigano, L.A.; Siciliano, F.; Enrique, R.; Sendín, L.; Filippone, P.; Torres, P.S.; Qüesta, J.; Dow, J.M.; Castagnaro, A.P.; Vojnov, A.A.; et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol. Plant Microbe Interact. 2007, 20, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Granato, L.M.; Picchi, S.C.; De Oliveira Andrade, M.; Martins, P.M.M.; Takita, M.A.; Machado, M.A.; De Souza, A.A. The EcnA antitoxin is important not only for human pathogens: Evidence of its role in the plant pathogen Xanthomonas citri subsp. citri. J. Bacteriol. 2019, 201, e00796-18. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, Y.; Li, J.-L.; Wang, N. DSF-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri. Mol. Plant Microbe Interact. 2012, 25, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Figueiredo, F.; Jones, J.; Wang, N. HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Mol. Plant Microbe Interact. 2011, 24, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, N. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 2011, 12, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Malamud, F.; Conforte, V.P.; Rigano, L.A.; Castagnaro, A.P.; Marano, M.R.; Morais do Amaral, A.; Vojnov, A.A. HrpM is involved in glucan biosynthesis, biofilm formation and pathogenicity in Xanthomonas citri ssp. citri. Mol. Plant Pathol. 2012, 13, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Jansson, P.-E.; Kenne, L.; Bengt, L. Structure of the extracellular polysacchride from Xanthomonas campestris. Carbohydr. Res. 1975, 45, 275–282. [Google Scholar] [CrossRef]
- Koplin, R.; Arnold, W.; Hotte, B.; Simon, R.; Wang, G.; Puhler, A. Genetics of xanthan production in Xanthomonas campestris: The xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J. Bacteriol. 1992, 174, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, L.S.; Vessoni Alexandrino, A.; Malvessi Pereira, C.; Silva Martins, C.; D’Muniz Pereira, H.; Brandão-Neto, J.; Marques Novo-Mansur, M.T. Structural and functional characterization of the phosphoglucomutase from Xanthomonas citri subsp. citri. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 1658–1666. [Google Scholar] [CrossRef]
- Hung, C.-H.; Wu, H.-C.; Tseng, Y.-H. Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage (phi)L7 adsorption. Biochem. Biophys. Res. Commun. 2002, 291, 338–343. [Google Scholar] [CrossRef]
- Baptista, J.C.; Machado, M.A.; Homem, R.A.; Torres, P.S.; Vojnov, A.A.; do Amaral, A.M. Mutation in the xpsD gene of Xanthomonas axonopodis pv. citri affects cellulose degradation and virulence. Genet. Mol. Biol. 2010, 33, 146–153. [Google Scholar] [CrossRef]
- Liu, Y.G.; Whittier, R.F. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 1995, 25, 674–681. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Ferro, J.A.; Reinach, F.C.; Farah, C.S.; Furlan, L.R.; Quaggio, R.B.; Monteiro-Vitorello, C.B.; Van Sluys, M.A.; Almeida, N.F.; Alves, L.M.C.; et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417, 459–463. [Google Scholar] [CrossRef]
- Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983, 166, 557–580. [Google Scholar] [CrossRef]
- Schaad, N.W.; Postnikova, E.; Lacy, G.H.; Sechler, A.; Agarkova, I.; Stromberg, P.E.; Stromberg, V.K.; Vidaver, A.K. Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. Syst. Appl. Microbiol. 2005, 28, 494–518. [Google Scholar] [CrossRef]
- El Yacoubi, B.; Brunings, A.M.; Yuan, Q.; Shankar, S.; Gabriel, D.W. In planta horizontal transfer of a major pathogenicity effector gene. Appl. Environ. Microbiol. 2007, 73, 1612–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular Cloning, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012; Volume 1, ISBN 9781936113415. [Google Scholar]
- Andrade, M.O.; Farah, C.S.; Wang, N. The Post-transcriptional Regulator rsmA/csrA Activates T3SS by Stabilizing the 5′ UTR of hrpG, the Master Regulator of hrp/hrc Genes, in Xanthomonas. PLoS Pathog. 2014, 10, 1–19. [Google Scholar] [CrossRef]
- Amaral, A.M.; Toledo, C.P.; Baptista, J.C.; Machado, M.A. Transformation of Xanthomonas axonopodis pv. citri by Electroporation. Fitopatol. Bras. 2005, 30, 292–294. [Google Scholar] [CrossRef]
- Souza, D.P.; Andrade, M.O.; Alvarez-Martinez, C.E.; Arantes, G.M.; Farah, C.S.; Salinas, R.K. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog. 2011, 7, e1002031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzzo, C.R.; Salinas, R.K.; Andrade, M.O.; Farah, C.S. PILZ Protein Structure and Interactions with PILB and the FIMX EAL Domain: Implications for Control of Type IV Pilus Biogenesis. J. Mol. Biol. 2009, 393, 848–866. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; O’Neill, R. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal. Biochem. 1995, 227, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Cui, J.; Robbins, P.W.; Samuelson, J. A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities. Glycobiology 2010, 20, 1233–1240. [Google Scholar] [CrossRef] [Green Version]
- Zandonadi, F.S.; Ferreira, S.P.; Alexandrino, A.V.; Carnielli, C.M.; Artier, J.; Barcelos, M.P.; Nicolela, N.C.S.; Prieto, E.L.; Goto, L.S.; Belasque, J.; et al. Periplasm-enriched fractions from Xanthomonas citri subsp. citri type A and X. fuscans subsp. aurantifolii type B present distinct proteomic profiles under in vitro pathogenicity induction. PLoS ONE 2020, 15, 1–24. [Google Scholar] [CrossRef]
- Schatschneider, S.; Huber, C.; Neuweger, H.; Watt, T.F.; Pühler, A.; Eisenreich, W.; Wittmann, C.; Niehaus, K.; Vorhölter, F.J. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: Prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Mol. Biosyst. 2014, 10, 2663–2676. [Google Scholar] [CrossRef]
- Rosalam, S.; England, R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzyme Microb. Technol. 2006, 39, 197–207. [Google Scholar] [CrossRef]
- Becker, A.; Katzen, F.; Pühler, A.; Ielpi, L. Xanthan gum biosynthesis and application: A biochemical /genetic perspective. Appl. Microbiol. Biotechnol. 1998, 50, 145–152. [Google Scholar] [CrossRef]
- Betlach, M.; Capage, D.; Doherty, D.; Hassler, R.; Henderson, N.; Vanderslice, R.; Marrelli, J.; Ward, M. Genetically engineered polymers: Manipulation of xanthan gum biosynthesis. In Industrial Polysaccharides Genetic Engineering, Structure/Property Relations and Applications; Yalpani, M., Ed.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1987; pp. 35–50. [Google Scholar]
- Li, J.; Wang, N. Foliar application of biofilm formation-inhibiting compounds enhances control of citrus canker caused by Xanthomonas citri subsp. citri. Phytopathology 2014, 104, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Murray, T.S.; Kazmierczak, B.I. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J. Bacteriol. 2008, 190, 2700–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malamud, F.; Torres, P.S.; Roeschlin, R.; Rigano, L.A.; Enrique, R.; Bonomi, H.R.; Castagnaro, A.P.; Marano, M.R.; Vojnov, A.A. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 2011, 157, 819–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Sagaram, U.S.; Kim, J.; Wang, N. Requirement of the galU gene for polysaccharide production by and pathogenicity and growth in planta of Xanthomonas citri subsp. citri. Appl. Environ. Microbiol. 2010, 76, 2234–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malamud, F.; Homem, R.A.; Conforte, V.P.; Yaryura, P.M.; Castagnaro, A.P.; Marano, M.R.; Morais do Amaral, A.; Vojnov, A.A. Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri. Microbiology 2013. [Google Scholar] [CrossRef] [Green Version]
Primer | Nucleotide Sequence (5′–3′) |
---|---|
KanA | CATGCAAGCTTCAGGGTTGA |
KanB | GCGGGGATCCTCTAGAGTCG |
KanC | ACCTACAACAAAGCTCTCATCAACC |
AD1 | NTCGA(G/C)T(A/T)T(G/C)G(A/T)GTT |
XAC3579F | TATTTCCAGACCGATTACCTCA |
XAC3579R | GAAACTCCAAAGTGCGTCTATG |
Strains/Plasmids | Characteristics | Reference or Source |
---|---|---|
Escherichia coli | F- ɸ80dlacZhM15 h (lacZYA-argF) U169 endA1 deoR recA1 hsdR17(rK- mK+) phoA supE44 λ- thi-1 gyrA96 relA1 | [17] |
Xanthomonas citri subsp. citri (X. citri) | 306 Syn. X. axonopodis pv. citri strain 306; wild-type, Rfr, Apr | [16,18] |
A7/xanA::Tn5 (xanA-) | xanA (XAC3579), Kmr. Transposon (Tn5) mutant. | [14] |
xanA::Tn5_c (xanA+) | xanA (contained in puFR053, Gmr) | This study |
ΔxanA (xanA-) | Deletion (Tn5) mutant; xanA (XAC3579), Apr. | This study |
ΔxanA_c (xanA+) | xanA (contained in puFR053, Gmr) | This study |
pNPTS138 | pNPTS138, Kmr, sacB, lacZα+ | M. R. Alley, unpublished |
pNPTS_xanA | xanA gene cloning on pNPTS138 | This study |
pUFR053 | IncW Mob+mob (P) lacZα+ Par+, Cmr, Gmr, Kmr, shuttle vector | [19] |
pUFR053_xanA | xanA (XAC3579) gene cloning on pUFR053 | This study |
X. citri Strains | % | ||||||
---|---|---|---|---|---|---|---|
Man | Rha | GlcA | GalA | Glc | Gal | Xyl | |
wt | 51.86 | 6.20 | 3.45 | 0.39 | 27.32 | 4.60 | 1.92 |
xanA::Tn5 | 58.95 | 1.58 | 0.48 | 0.35 | 16.68 | 7.98 | 2.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picchi, S.C.; Granato, L.M.; Franzini, M.J.F.; Andrade, M.O.; Takita, M.A.; Machado, M.A.; de Souza, A.A. Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri. Microorganisms 2021, 9, 1176. https://doi.org/10.3390/microorganisms9061176
Picchi SC, Granato LM, Franzini MJF, Andrade MO, Takita MA, Machado MA, de Souza AA. Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri. Microorganisms. 2021; 9(6):1176. https://doi.org/10.3390/microorganisms9061176
Chicago/Turabian StylePicchi, Simone Cristina, Laís Moreira Granato, Maria Júlia Festa Franzini, Maxuel Oliveira Andrade, Marco Aurélio Takita, Marcos Antonio Machado, and Alessandra Alves de Souza. 2021. "Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri" Microorganisms 9, no. 6: 1176. https://doi.org/10.3390/microorganisms9061176
APA StylePicchi, S. C., Granato, L. M., Franzini, M. J. F., Andrade, M. O., Takita, M. A., Machado, M. A., & de Souza, A. A. (2021). Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri. Microorganisms, 9(6), 1176. https://doi.org/10.3390/microorganisms9061176