Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning and Production of PhoPol-II Intein
2.2. Cis-Splicing of PhoPol-II Intein
2.3. Crystallization of PhoPol-II Inteins
2.4. Structure Determination and Refinement
3. Results
3.1. Crystal Structure of PhoPol-II Intein
3.2. Comparison with Other Mini-Inteins from P. horikoshii
3.3. Comparison with Naturally-Occurring Mini-Intein Structures from Other Thermophiles
3.4. Protein Splicing Activity of PhoPol-II Intein
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 2000, 69, 447–496. [Google Scholar] [CrossRef]
- Perler, F.B.; Davis, E.O.; Dean, G.E.; Gimble, F.S.; Jack, W.E.; Neff, N.; Noren, C.J.; Thorner, J.; Belfort, M. Protein splicing elements: Inteins and exteins—A definition of terms and recommended nomenclature. Nucleic Acids Res. 1994, 22, 1125–1127. [Google Scholar] [CrossRef]
- Gogarten, J.P.; Senejani, A.G.; Zhaxybayeva, O.; Olendzenski, L.; Hilario, E. Inteins: Structure, function, and evolution. Annu. Rev. Microbiol. 2002, 56, 263–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novikova, O.; Topilina, N.; Belfort, M. Enigmatic distribution, evolution, and function of inteins. J. Biol. Chem. 2014, 289, 14490–14497. [Google Scholar] [CrossRef] [Green Version]
- Belfort, M. Mobile self-splicing introns and inteins as environmental sensors. Curr. Opin. Microbiol. 2017, 38, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Pietrokovski, S. Intein spread and extinction in evolution. Trends Genet. 2001, 17, 465–472. [Google Scholar] [CrossRef]
- Novikova, O.; Jayachandran, P.; Kelley, D.S.; Morton, Z.; Merwin, S.; Topilina, N.I.; Belfort, M. Intein Clustering Suggests Functional Importance in Different Domains of Life. Mol. Biol. Evol. 2016, 33, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Aranko, A.S.; Oeemig, J.S.; Kajander, T.; Iwaï, H. Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nat. Chem. Biol. 2013, 9, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Iwaï, H.; Mikula, K.M.; Oeemig, J.S.; Zhou, D.; Li, M.; Wlodawer, A. Structural Basis for the Persistence of Homing Endonucleases in Transcription Factor IIB Inteins. J. Mol. Biol. 2017, 429, 3942–3956. [Google Scholar] [CrossRef] [PubMed]
- Topilina, N.I.; Mills, K.V. Recent advances in in vivo applications of intein-mediated protein splicing. Mob. DNA 2014, 5, 1–14. [Google Scholar] [CrossRef]
- Nanda, A.; Nasker, S.S.; Mehra, A.; Panda, S.; Nayak, S. Inteins in Science: Evolution to Application. Microorganisms 2020, 8, 2004. [Google Scholar] [CrossRef]
- Ciragan, A.; Aranko, A.S.; Tascon, I.; Iwaï, H. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. J. Mol. Biol. 2016, 428, 4573–4588. [Google Scholar] [CrossRef]
- Gogarten, J.P.; Hilario, E. Inteins, introns, and homing endonucleases: Recent revelations about the life cycle of parasitic genetic elements. BMC Evol. Biol. 2006, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranko, A.S.; Oeemig, J.S.; Zhou, D.; Kajander, T.; Wlodawer, A.; Iwaï, H. Structure-based engineering and comparison of novel split inteins for protein ligation. Mol. Biosyst. 2014, 10, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.; Thornton, E.L.; Wang, B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat. Commun. 2020, 11, 1529. [Google Scholar] [CrossRef] [Green Version]
- Hiraga, K.; Derbyshire, V.; Dansereau, J.T.; van Roey, P.; Belfort, M. Minimization and stabilization of the Mycobacterium tuberculosis recA intein. J. Mol. Biol. 2005, 354, 916–926. [Google Scholar] [CrossRef]
- Oeemig, J.S.; Zhou, D.; Kajander, T.; Wlodawer, A.; Iwaï, H. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J. Mol. Biol. 2012, 412, 85–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, H.M.; Mikula, K.M.; Kudling, T.V.; Iwaï, H. Crystal structures of CDC21-1 inteins from hyperthermophilic archaea reveal the selection mechanism for the highly conserved homing endonuclease insertion site. Extremophiles 2019, 23, 669–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellilä, S.; Jurvansuu, J.M.; Iwaï, H. Evaluation and comparison of protein splicing by exogenous inteins with foreign exteins in Escherichia coli. FEBS Lett. 2011, 585, 3471–3477. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.V.; Korovina, A.N.; Tunitskaya, V.L.; Kostyuk, D.A.; Rechinsky, V.O.; Kukhanova, M.K.; Kochetkov, S.N. Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins. Protein Expr. Purif. 2006, 48, 14–23. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 2, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Langer, G.; Cohen, S.X.; Lamzin, V.S.; Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 2008, 3, 1171–1179. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, P.D.; Grosse-Kunstleve, R.W.; Hung, L.W.; Ioerger, T.R.; McCoy, A.J.; Moriarty, N.W.; Read, R.J.; Sacchettini, J.C.; Sauter, N.K.; Terwilliger, T.C. PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1948–1954. [Google Scholar] [CrossRef] [Green Version]
- Brünger, AT. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355, 472–475. [Google Scholar] [CrossRef]
- Karplus, PA.; Diederichs, K. Linking crystallographic model and data quality. Science 2012, 336, 1030–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Liu, J.; Albracht, C.D.; Hsu, A.; Chen, W.; Marieni, M.D.; Colelli, K.M.; Williams, J.E.; Reitter, J.N.; Mills, K.V.; Wang, C. Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol. Chem. 2011, 286, 38638–38648. [Google Scholar] [CrossRef] [Green Version]
- Aranko, A.S.; Wlodawer, A.; Iwaï, H. Nature’s recipe for splitting inteins. Protein Eng. Des. Sel. 2014, 27, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Razvi, A.; Scholtz, JM. Lessons in stability from thermophilic proteins. Protein Sci. 2006, 15, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.A.; Southworth, M.W.; Herrmann, T.; Brace, L.; Perler, F.B.; Wüthrich, K. NMR structure of a KlbA intein precursor from Methanococcus jannaschii. Protein Sci. 2007, 16, 1316–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, J.M.; Masuchi, Y.; Robb, F.T.; Ammerman, J.W.; Maeder, D.L.; Yanagibayashi, M.; Tamaoka, J.; Kato, C. Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 1998, 2, 123–130. [Google Scholar] [CrossRef]
- Erauso, G.; Reysenbach, A.L.; Godfroy, A.; Meunier, J.R.; Crunp, B.; Partensky, F.; Baross, J.A.; Marteinsson, V.; Barbier, G.; Pace, N.R.; Prieur, D. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 1993, 160, 338–349. [Google Scholar] [CrossRef]
- Huber, H.; Stetter, K.O. Thermoplasmatales. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 101–112. [Google Scholar] [CrossRef]
- Tsoka, S.; Simon, D.; Ouzounis, C.A. Automated metabolic reconstruction for Methanococcus jannaschii. Archaea 2004, 1, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, K.V.; Manning, J.S.; Garcia, A.M.; Wuerdeman, L.A. Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine. J. Biol. Chem. 2004, 279, 20685–20691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naor, A.; Altman-Price, N.; Soucy, S.M.; Green, A.G.; Mitiagin, Y.; Turgeman-Grott, I.; Davidovich, N.; Gogarten, J.P.; Gophna, U. Impact of a homing intein on recombination frequency and organismal fitness. Proc. Natl. Acad. Sci. USA 2016, 113, E4654–E4661. [Google Scholar] [CrossRef] [Green Version]
- Topilina, N.I.; Novikova, O.; Stanger, M.; Banavali, N.K.; Belfort, M. Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Res. 2015, 43, 6631–6648. [Google Scholar] [CrossRef] [Green Version]
- Green, C.M.; Novikova, O.; Belfort, M. The dynamic intein landscape of eukaryotes. Mob. DNA 2018, 9. [Google Scholar] [CrossRef] [Green Version]
Intein | PhoPol-II Intein (C1A) |
---|---|
PDB ID Data collection | 7OEC DIAMOND I03 |
Space group | P 41 21 2 |
Cell dimensions | |
a, b, c, Å | 70.82, 70.82, 70.66 |
α, β, γ, ° | 90.00, 90.00, 90.00 |
Wavelength, Å | 0.9763 |
Resolution, Å | 35.41−1.48 (1.53–1.48) |
Total reflections | 776,435 (76,171) |
Unique reflections | 30,544 (2978) |
Completeness, % | 99.87 (99.77) |
I/σ | 16.35 (4.23) |
Rmeas a | 0.1939 (7.025) |
CC1/2c | 0.998 (0.572) |
Multiplicity | 25.4 (25.5) |
Refinement | |
Molecules/au | 1 |
Resolution, Å | 35.41−1.48 (1.533–1.480) |
Reflections (refinement/Rfree) | 30,543/2978 |
Rwork/Rfree b | 0.1539/0.1869 |
Number of atoms | |
Protein | 1382 |
Water | 76 |
Ligand | 34 |
RMS deviations | |
Bond length, Å | 0.017 |
Bond angles, ° | 1.44 |
Ramachandran plot, % | |
Most favored regions | 97.55 |
Outliers | 0.00 |
Average B-factors, Å2 | 29.71 |
Protein | 28.21 |
Water | 37.29 |
Clash score | 2.12 |
MolProbity score | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiltunen, M.K.; Beyer, H.M.; Iwaï, H. Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins. Microorganisms 2021, 9, 1226. https://doi.org/10.3390/microorganisms9061226
Hiltunen MK, Beyer HM, Iwaï H. Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins. Microorganisms. 2021; 9(6):1226. https://doi.org/10.3390/microorganisms9061226
Chicago/Turabian StyleHiltunen, Mimmu K., Hannes M. Beyer, and Hideo Iwaï. 2021. "Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins" Microorganisms 9, no. 6: 1226. https://doi.org/10.3390/microorganisms9061226
APA StyleHiltunen, M. K., Beyer, H. M., & Iwaï, H. (2021). Mini-Intein Structures from Extremophiles Suggest a Strategy for Finding Novel Robust Inteins. Microorganisms, 9(6), 1226. https://doi.org/10.3390/microorganisms9061226