Dengue Virus Induces the Expression and Release of Endocan from Endothelial Cells by an NS1–TLR4-Dependent Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. Recombinant NS1 Proteins from Dengue
2.3. Evaluation of Endocan Expression by qPCR Assay
2.4. Blockage of TLR4 on HMEC Cell Line
2.5. Subjects
2.6. Detection Endocan Production in Supernatant by ELISA
2.7. Dengue Diagnosis and Laboratory Parameters
2.8. Detection of NS1 Antigen in Dengue Patients
2.9. Statistical Analysis
3. Results
3.1. Dengue NS1 Proteins Induce Endocan Expression in Human Endothelial Cells
3.2. Dengue NS1 Protein Induces Endocan Expression in Human Endothelial Cells by a Toll-Like Receptor-4-Dependent Mechanism
3.3. High Serum Levels of Endocan Are Associated with Clinical Biomarkers of Dengue Infection
3.4. Dengue NS1 Positivity and Endocan Serum Levels
3.5. Kinetics of Endocan Serum Levels in the Clinical Course of Dengue Infection
3.6. Correlation between Endocan Serum Levels and Hematological and Biochemical Laboratory Parameters in Dengue Infection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; et al. Dengue: A Continuing Global Threat. Nat. Rev. Microbiol. 2010, 8, S7–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO and Special Programme for Research and Training in Tropical Diseases Dengue Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009; pp. 1–144. ISBN 978 92 4 154787 1. [Google Scholar]
- Mackow, E.R.; Gorbunova, E.E.; Gavrilovskaya, I.N. Endothelial Cell Dysfunction in Viral Hemorrhage and Edema. Front. Microbiol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.-T.; Chen, H.-C.; Lin, Y.-D.; Shieh, C.-C.; Wu-Hsieh, B.A. Enhancement by Tumor Necrosis Factor Alpha of Dengue Virus-Induced Endothelial Cell Production of Reactive Nitrogen and Oxygen Species Is Key to Hemorrhage Development. J. Virol. 2008, 82, 12312–12324. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.H.; Lei, H.Y.; Liu, H.S.; Lin, Y.S.; Liu, C.C.; Yeh, T.M. Dengue Virus Infects Human Endothelial Cells and Induces IL-6 and IL-8 Production. Am. J. Trop. Med. Hyg. 2000, 63, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raekiansyah, M.; Espada-Murao, L.A.; Okamoto, K.; Kubo, T.; Morita, K. Dengue Virus Neither Directly Mediates Hyperpermeabi Lity nor Enhances Tumor Necrosis Factor-α-Induced Permeability in Vitro. Jpn. J. Infect. Dis. 2014, 67, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Modhiran, N.; Watterson, D.; Muller, D.A.; Panetta, A.K.; Sester, D.P.; Liu, L.; Hume, D.A.; Stacey, K.J.; Young, P.R. Dengue Virus NS1 Protein Activates Cells via Toll-like Receptor 4 and Disrupts Endothelial Cell Monolayer Integrity. Sci. Transl. Med. 2015, 7, 304ra142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beatty, P.R.; Puerta-Guardo, H.; Killingbeck, S.S.; Glasner, D.R.; Hopkins, K.; Harris, E. Dengue Virus NS1 Triggers Endothelial Permeability and Vascular Leak That Is Prevented by NS1 Vaccination. Sci. Transl. Med. 2015, 7, 304ra141. [Google Scholar] [CrossRef] [Green Version]
- Dalrymple, N.; Mackow, E.R. Productive Dengue Virus Infection of Human Endothelial Cells Is Directed by Heparan Sulfate-Containing Proteoglycan Receptors. J. Virol. 2011, 85, 9478–9485. [Google Scholar] [CrossRef] [Green Version]
- Jessie, K.; Fong, M.Y.; Devi, S.; Lam, S.K.; Wong, K.T. Localization of Dengue Virus in Naturally Infected Human Tissues, by Immunohistochemistry and in Situ Hybridization. J. Infect. Dis. 2004, 189, 1411–1418. [Google Scholar] [CrossRef]
- Zellweger, R.M.; Prestwood, T.R.; Shresta, S. Enhanced Infection of Liver Sinusoidal Endothelial Cells in a Mouse Model of Antibody-Induced Severe Dengue Disease. Cell Host Microbe 2010, 7, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Edeling, M.A.; Diamond, M.S.; Fremont, D.H. Structural Basis of Flavivirus NS1 Assembly and Antibody Recognition. Proc. Natl. Acad. Sci. USA 2014, 111, 4285–4290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutsche, I.; Coulibaly, F.; Voss, J.E.; Salmon, J.; D’Alayer, J.; Ermonval, M.; Larquet, E.; Charneau, P.; Krey, T.; Mégret, F.; et al. Secreted Dengue Virus Nonstructural Protein NS1 Is an Atypical Barrel-Shaped High-Density Lipoprotein. Proc. Natl. Acad. Sci. USA 2011, 108, 8003–8008. [Google Scholar] [CrossRef] [Green Version]
- Alcon, S.; Talarmin, A.; Debruyne, M.; Falconar, A.; Deubel, V.; Flamand, M. Enzyme-Linked Immunosorbent Assay Specific to Dengue Virus Type 1 Nonstructural Protein NS1 Reveals Circulation of the Antigen in the Blood during the Acute Phase of Disease in Patients Experiencing Primary or Secondary Infections. J. Clin. Microbiol. 2002, 40, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Libraty, D.H.; Young, P.R.; Pickering, D.; Endy, T.P.; Kalayanarooj, S.; Green, S.; Vaughn, D.W.; Nisalak, A.; Ennis, F.A.; Rothman, A.L. High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever. J. Infect. Dis. 2002, 186, 1165–1168. [Google Scholar] [CrossRef]
- 16. Puerta-Guardo, H.; Glasner, D.R.; Harris, E. Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. 2016, 12, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Glasner, D.R.; Ratnasiri, K.; Puerta-Guardo, H.; Espinosa, D.A.; Beatty, P.R.; Harris, E. Dengue Virus NS1 Cytokine-Independent Vascular Leak Is Dependent on Endothelial Glycocalyx Components. PLoS Pathog. 2017, 13, e1006673. [Google Scholar] [CrossRef]
- Scherpereel, A.; Depontieu, F.; Grigoriu, B.; Cavestri, B.; Tsicopoulos, A.; Gentina, T.; Jourdain, M.; Pugin, J.; Tonnel, A.-B.; Lassalle, P. Endocan, a New Endothelial Marker in Human Sepsis. Crit. Care Med. 2006, 34, 532–537. [Google Scholar] [CrossRef]
- Zhao, T.; Kecheng, Y.; Zhao, X.; Hu, X.; Zhu, J.; Wang, Y.; Ni, J. The Higher Serum Endocan Levels May Be a Risk Factor for the Onset of Cardiovascular Disease: A Meta-Analysis. Medicine 2018, 97, e13407. [Google Scholar] [CrossRef]
- Bechard, D.; Scherpereel, a.; Hammad, H.; Gentina, T.; Tsicopoulos, a.; Aumercier, M.; Pestel, J.; Dessaint, J.-P.; Tonnel, a.-B.; Lassalle, P. Human Endothelial-Cell Specific Molecule-1 Binds Directly to the Integrin CD11a/CD18 (LFA-1) and Blocks Binding to Intercellular Adhesion Molecule-1. J. Immunol. 2001, 167, 3099–3106. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, A.; Portier, L.; Mathieu, D.; Hureau, M.; Tsicopoulos, A.; Lassalle, P.; De Freitas Caires, N. Cleaved Endocan Acts as a Biologic Competitor of Endocan in the Control of ICAM-1-Dependent Leukocyte Diapedesis. J. Leukoc. Biol. 2020, 107, 833–841. [Google Scholar] [CrossRef]
- Yu, P.-H.; Chou, S.-F.; Chen, C.-L.; Hung, H.; Lai, C.-Y.; Yang, P.-M.; Jeng, Y.-M.; Liaw, S.-F.; Kuo, H.-H.; Hsu, H.-C.; et al. Upregulation of Endocan by Epstein-Barr Virus Latent Membrane Protein 1 and Its Clinical Significance in Nasopharyngeal Carcinoma. PLoS ONE 2013, 8, e82254. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, Y.; Wang, S.; Wang, X.; Fan, D.; Zhou, D.; An, J. Human Cytomegalovirus Infection Contributes to Glioma Disease Progression via Upregulating Endocan Expression. Transl. Res. J. Lab. Clin. Med. 2016, 177, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tok, D.; Ekiz, F.; Basar, O.; Coban, S.; Ozturk, G. Serum Endocan Levels in Patients with Chronic Liver Disease. Int. J. Clin. Exp. Med. 2014, 7, 1802–1807. [Google Scholar] [PubMed]
- Doğan, H.O.; Büyüktuna, S.A.; Kapancik, S.; Bakir, S. Evaluation of the Associations between Endothelial Dysfunction, Inflammation and Coagulation in Crimean-Congo Hemorrhagic Fever Patients. Arch. Virol. 2018, 163, 609–616. [Google Scholar] [CrossRef]
- Aranda, E.; Owen, G.I. A Semi-Quantitative Assay to Screen for Angiogenic Compounds and Compounds with Angiogenic Potential Using the EA.Hy926 Endothelial Cell Line. Biol. Res. 2009, 42, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, G.; Visoso-Carvajal, G.; Garcia-Cordero, J.; Leon-Juarez, M.; Chavez-Munguia, B.; Lopez, T.; Nava, P.; Villegas-Sepulveda, N.; Cedillo-Barron, L. Dengue Virus Serotype 2 and Its Non-Structural Proteins 2A and 2B Activate NLRP3 Inflammasome. Front. Immunol. 2020, 11, 352. [Google Scholar] [CrossRef]
- Puerta-Guardo, H.; Glasner, D.R.; Espinosa, D.A.; Biering, S.B.; Patana, M.; Ratnasiri, K.; Wang, C.; Beatty, P.R.; Harris, E. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep. 2019, 26, 1598–1613.e8. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chao, C.; Liu, C.; Ho, T.; Tsai, P.; Perng, G.; Lin, Y.; Wang, J.; Yeh, T. Macrophage Migration Inhibitory Factor Is Critical for Dengue NS1-Induced Endothelial Glycocalyx Degradation and Hyperpermeability. PLoS Pathog. 2018, 14, 1–22. [Google Scholar] [CrossRef]
- Tang, T.H.C.; Alonso, S.; Ng, L.F.P.; Thein, T.L.; Pang, V.J.X.; Leo, Y.S.; Lye, D.C.B.; Yeo, T.W. Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Disease Severity. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Avirutnan, P.; Punyadee, N.; Noisakran, S.; Komoltri, C.; Thiemmeca, S.; Auethavornanan, K.; Jairungsri, A.; Kanlaya, R.; Tangthawornchaikul, N.; Puttikhunt, C.; et al. Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Comple-ment. J. Infect. Dis. 2006, 193, 1078–1088. [Google Scholar] [CrossRef] [Green Version]
- Suwarto, S.; Sasmono, R.T.; Sinto, R.; Ibrahim, E.; Suryamin, M. Association of Endothelial Glycocalyx and Tight and Adherens Junctions with Severity of Plasma Leakage in Dengue Infection. J. Infect. Dis. 2017, 215, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Butthep, P.; Chunhakan, S.; Yoksan, S.; Tangnararatchakit, K.; Chuansumrit, A. Alteration of Cytokines and Chemokines during Febrile Episodes Associated with Endothelial Cell Damage and Plasma Leakage in Dengue Hemorrhagic Fever. Pediatric Infect. Dis. J. 2012, 31. [Google Scholar] [CrossRef]
- Lee, W.; Ku, S.K.; Kim, S.W.; Bae, J.S. Endocan Elicits Severe Vascular Inflammatory Responses in Vitro and in Vivo. J. Cell. Physiol. 2014, 229, 620–630. [Google Scholar] [CrossRef]
- Hijiya, N.; Miyake, K.; Akashi, S.; Matsuura, K.; Higuchi, Y.; Yamamoto, S. Possible Involvement of Toll-like Receptor 4 in Endothelial Cell Activation of Larger Vessels in Response to Lipopolysaccharide. Pathobiology 2002, 70, 18–25. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Fang, J.; Zhou, H.; Liu, X.; Su, S.B. High Glucose Induces and Activates Toll-like Receptor 4 in Endothelial Cells of Diabetic Retinopathy. Diabetol. Metab. Syndr. 2015, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wong, M.H.; Schulte, D.J.; Arditi, M.; Michelsen, K.S. Differential Expression of Toll-like Receptor 2 (TLR2) and Responses to TLR2 Ligands between Human and Murine Vascular Endothelial Cells. J. Endotoxin. Res. 2007, 13, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Lam, P.K.; McBride, A.; Le, D.H.T.; Huynh, T.T.; Vink, H.; Wills, B.; Yacoub, S. Visual and Biochemical Evidence of Glycocalyx Disruption in Human Dengue Infection, and Association with Plasma Leakage Severity. Front. Med. 2020, 7, 545813. [Google Scholar] [CrossRef]
- Medetalibeyoglu, A.; Emet, S.; Kose, M.; Akpinar, T.S.; Senkal, N.; Catma, Y.; Kaytaz, A.M.; Genc, S.; Omer, B.; Tukek, T. Serum Endocan Levels on Admission Are Associated with Worse Clinical Outcomes in COVID-19 Patients: A Pilot Study. Angiology 2021, 72, 187–193. [Google Scholar] [CrossRef]
Characteristics | HC n = 20 | Dengue without Warning Signs n = 16 | Dengue with Warning Signs n = 29 | p Value |
---|---|---|---|---|
Male n = (%) | 9 | 8 (50) | 9 (31.03) | 0.997 |
Day of onset of symptoms, mean (SD) | NA | 3.68 (1.74) | 5.55 (2.70) | 0.01 |
Age, mean (SD) | 32.4 (13.82) | 32.5 (15.09) | 34.79 (13.98) | 0.77 |
Secondary infection n = (%) | NA | 16 (100) | 29 (100) | 1.00 |
Positive NS1 n = (%) | NA | 5 (31.25) | 10 (34.48) | 0.33 |
Hemoglobin gr/dl, median (SD) | 14.3 (0.96) | 13.70 (2.07) | 13.35 (1.82) | 0.09 |
Hematocrit %, median (SD) | 41.85 (2.72) | 39.65 (5.41) | 40.70 (5.77) | 0.06 |
Platelets 103/mm3, median (SD) | 289 (58.55) | 32.00 (70.79) | 35.00 (26.03) | <0.0001 |
Leukocytes 103/mm3, median (SD) | 7.55 (1.27) | 1.58(0.78) | 2.01 (1.05) | <0.0001 |
Neutrophils 103/mm3, median (SD) | 4.75 (1.07) | 2.03 (2.30) | 1.52 (1.38) | <0.0001 |
Lymphocytes 103/mm3, median (SD) | 2.30 (0.68) | 1.58 (0.78) | 2.01 (1.05) | 0.006 |
Monocytes 103/mm3, median (SD) | 0.50 (0.12) | 0.32 (0.14) | 0.34 (0.16) | 0.002 |
Eosinophils 103/mm3, median (SD) | NA | 0.05 (0.05) | 0.07 (0.22) | 0.46 |
Basophils 103/mm3, median (SD) | NA | 0.06 (0.06) | 0.10 (0.08) | 0.51 |
Signs and Symptoms | Dengue without Warning Signs (n/%) n = 16 | Dengue with Warning Signs (n/%) n = 29 | p |
---|---|---|---|
Sickness | 6/37.5 | 17/58.6 | 0.2 |
Headache | 11/68.7 | 17/58.6 | 0.5 |
Myalgia | 16/100 | 22/75.8 | 0.03 |
Arthralgia | 16/100 | 22/75.8 | 0.03 |
Abdominal pain | 0/0 | 27/93.1 | <0.0001 |
Diarrhea | 2/12.5 | 9/31 | 0.22 |
Vomiting | 2/12.5 | 11/37.9 | 0.07 |
Gingivorrhagia | 2/12.5 | 8/27.5 | 0.2 |
Hepatomegaly | 0/0 | 4/13.7 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Alemán, C.A.; Sánchez-Vargas, L.A.; Hernández-Flores, K.G.; Torres-Zugaide, A.I.; Reyes-Sandoval, A.; Cedillo-Barrón, L.; Remes-Ruiz, R.; Vivanco-Cid, H. Dengue Virus Induces the Expression and Release of Endocan from Endothelial Cells by an NS1–TLR4-Dependent Mechanism. Microorganisms 2021, 9, 1305. https://doi.org/10.3390/microorganisms9061305
Domínguez-Alemán CA, Sánchez-Vargas LA, Hernández-Flores KG, Torres-Zugaide AI, Reyes-Sandoval A, Cedillo-Barrón L, Remes-Ruiz R, Vivanco-Cid H. Dengue Virus Induces the Expression and Release of Endocan from Endothelial Cells by an NS1–TLR4-Dependent Mechanism. Microorganisms. 2021; 9(6):1305. https://doi.org/10.3390/microorganisms9061305
Chicago/Turabian StyleDomínguez-Alemán, Carlos Alonso, Luis Alberto Sánchez-Vargas, Karina Guadalupe Hernández-Flores, Andrea Isabel Torres-Zugaide, Arturo Reyes-Sandoval, Leticia Cedillo-Barrón, Ricardo Remes-Ruiz, and Héctor Vivanco-Cid. 2021. "Dengue Virus Induces the Expression and Release of Endocan from Endothelial Cells by an NS1–TLR4-Dependent Mechanism" Microorganisms 9, no. 6: 1305. https://doi.org/10.3390/microorganisms9061305
APA StyleDomínguez-Alemán, C. A., Sánchez-Vargas, L. A., Hernández-Flores, K. G., Torres-Zugaide, A. I., Reyes-Sandoval, A., Cedillo-Barrón, L., Remes-Ruiz, R., & Vivanco-Cid, H. (2021). Dengue Virus Induces the Expression and Release of Endocan from Endothelial Cells by an NS1–TLR4-Dependent Mechanism. Microorganisms, 9(6), 1305. https://doi.org/10.3390/microorganisms9061305