Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Culture Conditions
2.2. Antimicrobial Susceptibility Testing
2.3. Molecular Screening on qnr Genes
2.4. Determination of Isolate-Specific Macrorestriction Patterns and Plasmid Profiles
2.5. Whole-Genome Sequencing (WGS) and Bioinformatics Analysis
2.6. Analysis and Statistics
3. Results and Discussion
3.1. qnrS Is the Most Prevalent qnr Gene in E. coli from Livestock and Food
3.2. qnr-Carrying E. coli Isolates Exhibit Diverse Resistance Phenotypes Including Multidrug Resistances
3.3. qnr-Carrying E. coli Isolates Are Associated with Highly Diverse Resistomes
3.4. Virulence Genes Associated with qnr-Carrying E. coli
3.5. In-Silico-Based Prediction of Plasmids Types Carrying qnr
3.6. Frequent Detection of Point Mutations in the gyrA, parC and parE Genes of qnrS-Carrying E. coli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140085. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14 (Suppl. 1), 117–123. [Google Scholar] [CrossRef] [Green Version]
- WHO. Antimicrobial Resistance Global Reporton Surveillance; WHO Library Cataloguing-in-Publication Data; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- EFSA. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Cattoir, V.; Poirel, L.; Aubert, C.; Soussy, C.J.; Nordmann, P. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas sp. Emerg. Infect. Dis. 2008, 14, 231–237. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Shao, B.; Shen, J.; Wang, S.; Wu, Y. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: Potential transfer to agricultural lands. Environ. Health Perspect. 2012, 120, 1144–1149. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Machuca, J.; Cano, M.E.; Calvo, J.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Update 2016, 29, 13–29. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 2005, 56, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Martínez, L.; Pascual, A.; Jacoby, G.A. Quinolone resistance from a transferable plasmid. Lancet 1998, 351, 797–799. [Google Scholar] [CrossRef]
- Wong, M.H.; Chan, E.W.; Liu, L.Z.; Chen, S. PMQR genes oqxAB and aac(6’)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front. Microbiol. 2014, 5, 521. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Qi, Y.; Liang, Y.; Zhang, J.; Yu, L. Characteristics of Klebsiella pneumoniae harboring qnrB32, aac(6’)-Ib-cr, gyrA and CTX-M-22 genes. Folia Histochem. Cytobiol. 2012, 50, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.X.; Tang, D.; Liu, Y.H.; Zhang, X.H.; Zeng, Z.L.; Xu, L.; Hawkey, P.M. Prevalence and characteristics of β-lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China. J. Antimicrob. Chemother. 2012, 67, 2350–2353. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.H.; Liu, H.Y.; Lin, Y.C.; Hsueh, P.R.; Lee, Y.J. Correlation between levofloxacin consumption and the incidence of nosocomial infections due to fluoroquinolone-resistant Escherichia coli. J. Microbiol. Immunol. Infect. 2016, 49, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupouy, V.; Abdelli, M.; Moyano, G.; Arpaillange, N.; Bibbal, D.; Cadiergues, M.C.; Lopez-Pulin, D.; Sayah-Jeanne, S.; de Gunzburg, J.; Saint-Lu, N.; et al. Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae from Dogs in France and Spain-Characterization of ESBL/pAmpC Isolates, Genes, and Conjugative Plasmids. Front. Vet. Sci. 2019, 6, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Zoonosen Monitoring Bericht 2017; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL): Berlin, Germany, 2017. Available online: https://www.bvl.bund.de/SharedDocs/Downloads/01_Lebensmittel/04_Zoonosen_Monitoring_2017.pdf?_blob=publicationFile&v=4 (accessed on 14 May 2021).
- The European Commission Commission Implementing Decision of 12 November 2013 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria (2013/652/EU); The European Commission; Official Journal of the European Union, EU: Brussels, Belgium, 2013.
- Dortet, L.; Bonnin, R.A.; Pennisi, I.; Gauthier, L.; Jousset, A.B.; Dabos, L.; Furniss, R.C.D.; Mavridou, D.A.I.; Bogaerts, P.; Glupczynski, Y.; et al. Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: The MALDIxin test. J. Antimicrob. Chemother. 2018, 73, 3359–3367. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.S.; Quigley, M. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 1981, 114, 193–197. [Google Scholar] [CrossRef]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Kraychete, G.B.; Botelho, L.A.; Campana, E.H.; Picao, R.C.; Bonelli, R.R. Updated Multiplex PCR for Detection of All Six Plasmid-Mediated qnr Gene Families. Antimicrob. Agents Chemother. 2016, 60, 7524–7526. [Google Scholar] [CrossRef] [Green Version]
- PulsNet. Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. 2017. Available online: https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf (accessed on 29 May 2021).
- Juraschek, K.; Borowiak, M.; Tausch, S.H.; Malorny, B.; Käsbohrer, A.; Otani, S.; Schwarz, S.; Meemken, D.; Deneke, C.; Hammerl, J.A. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli. Microorganisms 2021, 9, 598. [Google Scholar] [CrossRef]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsenterica serovar Paratyphi, B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Deneke, C.; Brendebach, H.; Uelze, L.; Borowiak, M.; Malorny, B.; Tausch, S.H. Species-Specific Quality Control, Assembly and Contamination Detection in Microbial Isolate Sequences with AQUAMIS. Genes 2021, 12, 644. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Abricate. 2014. Available online: https://github.com/tseemann/abricate (accessed on 29 May 2021).
- Deneke, C. BakCharak. 2018. Available online: https://gitlab.com/bfr_bioinformatics/bakcharak (accessed on 9 January 2020).
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef] [PubMed]
- Hadley, W. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T. GGTREE: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby, L.M.; Kund, O.; Moller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Deneke, C. refSNPer. 2019. Available online: https://gitlab.com/bfr_bioinformatics/refsnper/ (accessed on 9 January 2020).
- Grützke, J.; Gwida, M.; Deneke, C.; Brendebach, B.; Projahn, M.; Schattschneider, A.; Hofreuter, D.; El-Ashker, M.; Malorny, B.; Al Dahouk, S. Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using Brucella as a model pathogen. Microb. Genom. 2021, 7, 000552. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018, 16, 5182. [Google Scholar]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, e05598. [Google Scholar]
- Kindle, P.; Zurfluh, K.; Nüesch-Inderbinen, M.; von Ah, S.; Sidler, X.; Stephan, R.; Kümmerlen, D. Phenotypic and genotypic characteristics of Escherichia coli with non-susceptibility to quinolones isolated from environmental samples on pig farms. Porc. Health Manag. 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Kilani, H.; Ferjani, S.; Mansouri, R.; Boutiba-Benboubaker, I.; Salah Abbassi, M. Occurrence of plasmid-mediated quinolone resistance determinants among Escherichia coli strains isolated from animals in Tunisia: Specific pathovars acquired qnr genes. J. Glob. Antimicrob. Resist. 2020, 20, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Potron, A.; Poirel, L.; Bernabeu, S.; Monnet, X.; Richard, C.; Nordmann, P. Nosocomial spread of ESBL-positive Enterobacter cloacae co-expressing plasmid-mediated quinolone resistance qnr determinants in one hospital in France. J. Antimicrob. Chemother. 2009, 64, 653–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, K.; Nagano, N.; Suzuki, M.; Wachino, J.I.; Kimura, K.; Arakawa, Y. ESBL-producing Escherichia coli and Its Rapid Rise among Healthy People. Food Saf. 2017, 5, 122–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tian, G.B.; Zhang, R.; Shen, Y.; Tyrrell, J.M.; Huang, X.; Zhou, H.; Lei, L.; Li, H.Y.; Doi, Y.; et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1 -positive Enterobacteriaceae in patients and healthy adults from China: An epidemiological and clinical study. Lancet Infect. Dis. 2017, 17, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Madec, J.Y.; Haenni, M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 2018, 99, 72–81. [Google Scholar] [CrossRef]
- Segura, W.D.; Ramos, H.P.; de Faria Blanc Amorim, R.E.; da Silva Ribeiro, Á.C.; Pereira, E.C.; Cayo, R.; Gales, A.C.; Piantino Ferreira, A.J.; da Rocha Minarini, L.A. In vitro and in vivo persistence of IncN plasmids carrying qnr genes in uropathogenic Escherichia coli isolates. J. Glob. Antimicrob. Resist. 2020, 22, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Falgenhauer, L.; Imirzalioglu, C.; Oppong, K.; Akenten, C.W.; Hogan, B.; Krumkamp, R.; Poppert, S.; Levermann, V.; Schwengers, O.; Sarpong, N.; et al. Detection and Characterization of ESBL-Producing Escherichia coli From Humans and Poultry in Ghana. Front. Microbiol. 2019, 9, 3358. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Qi, Q.; Zhang, X.; Cai, Y.; Yu, G.; Lv, J.; Gao, L.; Wei, L.; Chai, T. Dissemination of Escherichia coli carrying plasmid-mediated quinolone resistance (PMQR) genes from swine farms to surroundings. Sci. Total Environ. 2019, 665, 33–40. [Google Scholar] [CrossRef]
- Allen, H.K.; Stanton, T.B. Altered Egos: Antibiotic Effects on Food Animal Microbiomes. Annu. Rev. Microbiol. 2014, 68, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Salah, F.D.; Soubeiga, S.T.; Ouattara, A.K.; Sadji, A.Y.; Metuor-Dabire, A.; Obiri-Yeboah, D.; Banla-Kere, A.; Karou, S.; Simpore, J. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spin Lomé, Togo. Antimicrob. Resist. Infect. Control 2019, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.T.; Chou, C.C. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater—Associated Methicillin-Resistant Staphylococcus aureus. Int. J. Environ. Res. Public Health 2015, 12, 6249–6260. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Z.; Zhang, M.; O’Donoghue, M.; Boost, M. Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus. Vet. Microbiol. 2013, 162, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; He, X.; Meng, Y.; Guo, L.; Long, M.; Yu, H.; Li, B.; Fan, L.; Liu, S.; Wang, H.; et al. Antibiotic and Disinfectant Resistance of Escherichia coli Isolated from Retail Meats in Sichuan, China. Microb. Drug Resist. 2016, 22, 80–87. [Google Scholar] [CrossRef]
- Raeispour, M.; Ranjbar, R. Antibiotic resistance, virulence factors and genotyping of Uropathogenic Escherichia coli strains. Antimicrob. Resist. Infect. Control 2018, 7, 118. [Google Scholar] [CrossRef]
- Rahdar, M.; Rashki, A.; Miri, H.R.; Rashki Ghalehnoo, M. Detection of pap, sfa, afa, foc, and fim Adhesin-Encoding Operons in Uropathogenic Escherichia coli Isolates Collected From Patients with Urinary Tract Infection. Jundishapur J. Microbiol. 2015, 8, e22647. [Google Scholar] [CrossRef] [Green Version]
- Dreux, N.; Denizot, J.; Martinez-Medina, M.; Mellmann, A.; Billig, M.; Kisiela, D.; Chattopadhyay, S.; Sokurenko, E.; Neut, C.; Gower-Rousseau, C.; et al. Point mutations in FimH adhesin of Crohn’s disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog. 2013, 9, e1003141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Sun, H.; Fan, R.; Fu, S.; Zhang, J.; Matussek, A.; Xiong, Y.; Bai, X. Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci. Rep. 2020, 10, 3275. [Google Scholar] [CrossRef] [PubMed]
- Eltai, N.O.; Al Thani, A.A.; Al Hadidi, S.H.; Al Ansari, K.; Yassine, H.M. Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol. 2020, 20, 54. [Google Scholar] [CrossRef]
- Pérez-Etayo, L.; González, D.; Vitas, A.I. The Aquatic Ecosystem, a Good Environment for the Horizontal Transfer of Antimicrobial Resistance and Virulence-Associated Factors Among Extended Spectrum β-lactamases Producing E. coli. Microorganisms 2020, 8, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Genet. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Eikmeyer, F.; Hadiati, A.; Szczepanowski, R.; Wibber, D.; Schneiker-Bekel, S.; Rogers, L.M.; Brown, C.J.; Top, E.M.; Pühler, A.; Schlüter, A. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid 2012, 68, 13–24. [Google Scholar] [PubMed]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Miao, M.; Yan, J.; Wang, M.; Tang, Y.W.; Kreiswirth, B.N.; Zhang, X.; Chen, L.; Du, H. Expression characteristics of the plasmid-borne mcr-1 colistin resistance gene. Oncotarget 2017, 8, 107596–107602. [Google Scholar] [CrossRef]
- Burmølle, M.; Norman, A.; Sørensen, S.J.; Hansen, L.H. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae. PLoS ONE 2012, 7, e41259. [Google Scholar] [CrossRef] [Green Version]
- Hasman, H.; Hammerum, A.M.; Hansen, F.; Hendriksen, R.S.; Olesen, B.; Agersø, Y.; Zankari, E.; Leekitcharoenphon, P.; Stegger, M.; Kaas, R.S.; et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance 2015, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falgenhauer, L.; Waezsada, S.E.; Gwozdzinski, K.; Ghosh, H.; Doijad, S.; Bunk, B.; Spröer, C.; Imirzalioglu, C.; Seifert, H.; Irrgang, A.; et al. Chromosomal Locations of mcr-1 and blaCTX-M-15 in Fluoroquinolone-Resistant Escherichia coli ST410. Emerg. Infect. Dis. 2016, 22, 1689–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobiasova, H.; Dolejska, M. Prevalence and diversity of IncX plasmids carrying fluoroquinolone and β-lactam resistance genes in Escherichia coli originating from diverse sources and geographical areas. J. Antimicrob. Chemother. 2016, 71, 2118–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, R.; Ren, Y.; Xu, H. Identification of Plasmid-Mediated Quinolone Resistance qnr Genes in Multidrug-Resistant Gram-Negative Bacteria from Hospital Wastewaters and Receiving Waters in the Jinan Area, China. Microb. Drug Resist. 2013, 19, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Yoshida, J.; Hatou, S.; Yoshida, T.; Minagawa, Y. Mutations in the quinolone resistance determining region in Staphylococcus epidermidis recovered from conjunctiva and their association with susceptibility to various fluoroquinolones. Br. J. Ophthalmol. 2008, 92, 848–851. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, N.; Paul, D.; Chanda, D.D.; Chetri, S.; Chakravarty, A.; Bhattacharjee, A. Observation of a New Pattern of Mutations in gyrA and parC within Escherichia coli Exhibiting Fluroquinolone Resistance. Indian J. Med. Microbiol. 2018, 36, 131–135. [Google Scholar] [CrossRef]
- Vingopoulou, E.I.; Siarkou, V.I.; Batzias, G.; Kaltsogianni, F.; Sianou, E.; Tzavaras, I.; Koutinas, A.; Saridomichelakis, M.N.; Sofianou, D.; Tzelepi, E.; et al. Emergence and maintenance of multidrug-resistant Escherichia coli of canine origin harbouring a blaCMY-2-IncI1/ST65 plasmid and topoisomerase mutations. J. Antimicrob. Chemother. 2014, 69, 2076–2080. [Google Scholar] [CrossRef] [Green Version]
Gene *1 | Gene *2 | Occurrence | Frequency # |
---|---|---|---|
qnrA | qnrA1 | 1 | 1.0% |
qnrB | qnrB1 | 3 | 5.8% |
qnrB2 | 1 | ||
qnrB19 | 2 | ||
qnrS | qnrS1 | 92 | 92.2% |
qnrS2 | 3 | ||
qnrVC | qnrVC4 | 1 | 1.0% |
Matrix | Matrix Occurrence | AMP | AZI | CHL | CIP | COL | FOT | GEN | MERO | NAL | SMX | TAZ | TET | TMP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
faeces, veal calves | 56 (52/4) | 54 (51/3) | 4 (4/0) | 19 (17/2) | 55 (52/3) | 1 (1/0) | 53 (52/1) | 6 (6/0) | 1 (1/0) | 8 (7/1) | 37 (36/1) | 52 (52/0) | 48 (44/4) | 40 (37/3) |
faeces, deer | 1 (1/0) | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
faeces, pigs | 38 (24/14) | 38 (24/14) | 6 (5/1) | 11 (9/2) | 37 (24/13) | 0 | 27 (24/3) | 4 (4/0) | 0 | 10 (7/3) | 22 (18/4) | 27 (24/3) | 22 (17/5) | 20 (17/3) |
meat, veal | 2 (2/0) | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 2 |
meat, deer | 1 (1/0) | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
meat, pork | 2 (0/2) | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 |
minced meat | 3 (0/3) | 3 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 |
qnrA1 | qnrB1 | qnrB2 | qnrB19 | qnrS1 | qnrS2 | |
---|---|---|---|---|---|---|
aadA1 | 0.1625 | 0.00348101 | 1 | 1 | 0.00462503 | 0.41693038 |
aph(3′)-lia | 1 | 1 | 1 | 1 | 0.1125 | 0.0375 |
aph(3′)-XV | 0.0125 | 1 | 1 | 1 | 0.1125 | 1 |
arr-3 | 1 | 1 | 1 | 1 | 0.011392405 | 0.00094937 |
blaACC-1 | 0.0125 | 1 | 1 | 1 | 0.1125 | 1 |
blaCTX-M-65 | 1 | 1 | 1 | 1 | 0.060414269 | 0.00559883 |
blaOXA-1 | 1 | 0.00012171 | 1 | 1 | 0.000000524 | 0.00925024 |
blaVIM-1 | 0.0125 | 1 | 1 | 1 | 0.1125 | 1 |
catA1 | 0.0625 | 0.00012171 | 1 | 1 | 0.000377371 | 1 |
catB2 | 0.0125 | 1 | 1 | 1 | 0.1125 | 1 |
catB3 | 1 | 1 | 1 | 0.0375 | 0.001022395 | 0.00282376 |
dfrA25 | 1 | 1 | 0.0125 | 1 | 0.1125 | 1 |
floR | 0.25 | 1 | 1 | 1 | 0.038946034 | 0.01387537 |
mef(C) | 1 | 0.10966407 | 1 | 1 | 0.032132425 | 0.10966407 |
mph(A) | 0.2125 | 1 | 1 | 1 | 0.090321713 | 0.00827653 |
mph(G) | 1 | 0.10966407 | 1 | 1 | 0.032132425 | 0.10966407 |
qacEΔ1 | 0.2 | 0.49289192 | 0.2 | 0.2 | 0.001541798 | 0.10029211 |
sul1 | 0.175 | 0.44303798 | 0.175 | 0.175 | 0.006847169 | 0.44303798 |
Plasmid Type and Resistance Genes on Matching Reference | Frequency |
---|---|
IncN | ∑ 12 |
aac(3)-IId, qnrS1 | 1 |
blaTEM-1, qnrS1 | 5 |
qnrB19 | 1 |
qnrS1 | 5 |
IncR, IncX1 | ∑ 1 |
aadA2, blaTEM-1, dfrA12, floR, qnrS1, sul2, tet(A), tet(M) | 1 |
IncX1 | ∑ 9 |
aph(3′)-Ia, floR, qnrS2 | 8 |
blaTEM-1, qnrS1, tet(M) | 1 |
IncX1, IncX3 | ∑ 14 |
blaTEM-1, qnrS1 | 14 |
IncX3 | ∑ 6 |
blaSHV, qnrS1 | 6 |
IncY | ∑ 19 |
aph(3″)-Ib, aph(6)-Id, blaCTX-M-15, blaTEM-1, qnrS1, sul2, tet(A) | 15 |
aph(3″)-Ib, aph(6)-Id, blaCTX-M-15, blaTEM-1, dfrA14, qnrS1, sul2, tet(A) | 2 |
aph(3″)-Ib, aph(6)-Id, blaCTX-M-15, blaTEM-1, qnrS1, sul2 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juraschek, K.; Deneke, C.; Schmoger, S.; Grobbel, M.; Malorny, B.; Käsbohrer, A.; Schwarz, S.; Meemken, D.; Hammerl, J.A. Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms 2021, 9, 1308. https://doi.org/10.3390/microorganisms9061308
Juraschek K, Deneke C, Schmoger S, Grobbel M, Malorny B, Käsbohrer A, Schwarz S, Meemken D, Hammerl JA. Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms. 2021; 9(6):1308. https://doi.org/10.3390/microorganisms9061308
Chicago/Turabian StyleJuraschek, Katharina, Carlus Deneke, Silvia Schmoger, Mirjam Grobbel, Burkhard Malorny, Annemarie Käsbohrer, Stefan Schwarz, Diana Meemken, and Jens Andre Hammerl. 2021. "Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017" Microorganisms 9, no. 6: 1308. https://doi.org/10.3390/microorganisms9061308
APA StyleJuraschek, K., Deneke, C., Schmoger, S., Grobbel, M., Malorny, B., Käsbohrer, A., Schwarz, S., Meemken, D., & Hammerl, J. A. (2021). Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms, 9(6), 1308. https://doi.org/10.3390/microorganisms9061308