Machine Learning Approach Reveals the Assembly of Activated Sludge Microbiome with Different Carbon Sources during Microcosm Startup
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of AS Microcosms
2.2. Mathematical Model for Describing Dynamic Functional Acclimation of AS
2.3. 16S rRNA Gene Sequencing and Analysis
2.4. ML Modeling
2.5. Nucleotide Sequence Accession Number
3. Results and Discussion
3.1. Quantifying Functional Dynamics of AS Microcosms during Startups
3.2. Shifts in Community Structure and Diversity during Laboratory Startups
3.3. Carbon Source Effects on Community Composition during Microcosm Startups
3.4. Implication on Microcosm Studies Using AS
4. Conclusions
- A mathematical model revealed 1.7–2.4 times the SRT as the minimal duration for microcosm startups using AS.
- The species richness and diversity indices were reduced by 37–45% and 33–40%, respectively, in the AS microcosm communities.
- The ML modeling application using microbiome data showed high performances (>95% of accuracy) for predicting the assembly patterns of microcosm communities shaped upon feeding carbon sources.
- Despite the inevitable reduction in community diversity, AS microcosm communities might retain many of the core AS members often found in full-scale WWTPs.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rittmann, B.E. Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol. 2006, 24, 261–266. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1991; Volume 4. [Google Scholar]
- McDuffie, N.G. Bioreactor Design Fundamentals; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Johansen, R.; Albright, M.; Gallegos-Graves, L.; Lopez, D.; Runde, A.; Yoshida, T.; Dunbar, J. Tracking Replicate Divergence in Microbial Community Composition and Function in Experimental Microcosms. Microb. Ecol. 2019, 78, 1035–1039. [Google Scholar] [CrossRef]
- Park, S.; Seungdae, O. Inhibitory mechanisms and fate of the analgesic drug acetaminophen in nitrifying activated sludge. J. Hazard. Mater. 2020, 399, 123104. [Google Scholar] [CrossRef]
- Park, S.; Oh, S. Activated sludge-degrading analgesic drug acetaminophen: Acclimation, microbial community dynamics, degradation characteristics, and bioaugmentation potential. Water Res. 2020, 182, 115957. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Nguyen, L.N.; Oh, S. Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge. Environ. Geochem. Health 2020, 42, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Choi, D. Emerging investigator series: Activated sludge upon antibiotic shock loading: Mechanistic description of functional stability and microbial community dynamics. Environ. Sci. Water Res. Technol. 2020, 6, 1262–1271. [Google Scholar] [CrossRef]
- Bakonyi, P.; Nemestothy, N.; Simon, V.; Belafi-Bako, K. Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renew. Sust. Energ. Rev. 2014, 40, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.G.; Choi, D.; Cheon, S.; Ko, S.-O.; Kang, S.; Oh, S. Addition of biochar into activated sludge improves removal of antibiotic ciprofloxacin. J. Water Process. Eng. 2020, 33, 101019. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M. APHA: Standard Methods for the Examination of Water and Wastewater, Centennial, ed.; APHA, AWWA, WEF: Washington, DC, USA, 2005. [Google Scholar]
- Todman, L.C.; Fraser, F.C.; Corstanje, R.; Deeks, L.K.; Harris, J.A.; Pawlett, M.; Ritz, K.; Whitmore, A.P. Defining and quantifying the resilience of responses to disturbance: A conceptual and modelling approach from soil science. Sci. Rep. 2016, 6, 28426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keerthisinghe, T.P.; Nguyen, L.N.; Kwon, E.E.; Oh, S. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure. J. Environ. Manag. 2019, 237, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Nghiem, L.D.; Pramanik, B.K.; Oh, S. Cometabolic biotransformation and impacts of the anti-inflammatory drug diclofenac on activated sludge microbial communities. Sci. Total Environ. 2019, 657, 739–745. [Google Scholar] [CrossRef]
- Topçuoğlu, B.D.; Lesniak, N.A.; Ruffin, M.T.; Wiens, J.; Schloss, P.D. A framework for effective application of machine learning to microbiome-based classification problems. mBio 2020, 11, e00434-20. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Statnikov, A.; Henaff, M.; Narendra, V.; Konganti, K.; Li, Z.G.; Yang, L.Y.; Pei, Z.H.; Blaser, M.J.; Aliferis, C.F.; Alekseyenko, A.V. A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.; Lee, S.-I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Roh, H.; Chu, K.H. Effects of solids retention time on the performance of bioreactors bioaugmented with a 17 beta-estradiol-utilizing bacterium, Sphingomonas strain KC8. Chemosphere 2011, 84, 227–233. [Google Scholar] [CrossRef]
- Viero, A.F.; Sant’Anna, G.L. Is hydraulic retention time an essential parameter for MBR performance? J. Hazard. Mater. 2008, 150, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, R.M.R.; Van Impe, J.F.M.; Smets, I.Y.M. Assessment of activated sludge stability in lab-scale experiments. J. Biotechnol. 2009, 141, 147–154. [Google Scholar] [CrossRef]
- Van den Kerkhof, P.; Gins, G.; Van den Broeck, R.; Van Impe, J.F.M. Multivariate assessment of activated sludge stability in lab-scale experiments. Process. Biochem. 2013, 48, 1789–1793. [Google Scholar] [CrossRef]
- Llado, S.; Zifcakova, L.; Vetrovsky, T.; Eichlerova, I.; Baldrian, P. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol. Fert. Soils 2016, 52, 251–260. [Google Scholar] [CrossRef]
- Sarhan, M.S.; Patz, S.; Hamza, M.A.; Youssef, H.H.; Mourad, E.F.; Fayez, M.; Murphy, B.; Ruppel, S.; Hegazi, N.A. G3 PhyloChip Analysis Confirms the Promise of Plant-Based Culture Media for Unlocking the Composition and Diversity of the Maize Root Microbiome and for Recovering Unculturable Candidate Divisions/Phyla. Microbes Environ. 2018, 33, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIlroy, S.J.; Kirkegaard, R.H.; Dueholm, M.S.; Fernando, E.; Karst, S.M.; Albertsen, M.; Nielsen, P.H. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front. Microbiol. 2017, 8, 1134. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Xu, X.-W. The family Hyphomicrobiaceae. Prokaryotes 2014, 247, 281. [Google Scholar]
- Kumar, M.; Revathi, K.; Khanna, S. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp. R-28. Carbohydr. Polym. 2015, 134, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Lee, K.C.; Lee, J.S. Nakamurella panacisegetis sp. nov and proposal for reclassification of Humicoccus flavidus Yoon et al., 2007 and Saxeibacter lacteus Lee et al., 2008 as Nakamurella flavida comb. nov and Nakamurella lactea comb. nov. Syst. Appl. Microbiol. 2012, 35, 291–296. [Google Scholar] [CrossRef]
- Pohlner, M.; Dlugosch, L.; Wemheuer, B.; Mills, H.; Engelen, B.; Reese, B.K. The Majority of Active Rhodobacteraceae in Marine Sediments Belong to Uncultured Genera: A Molecular Approach to Link Their Distribution to Environmental Conditions. Front. Microbiol. 2019, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- D’Argenio, V.; Notomista, E.; Petrillo, M.; Cantiello, P.; Cafaro, V.; Izzo, V.; Naso, B.; Cozzuto, L.; Durante, L.; Troncone, L.; et al. Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genom. 2014, 15, 384. [Google Scholar] [CrossRef] [Green Version]
- Birolli, W.G.; Lima, R.N.; Porto, A.L.M. Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front. Microbiol. 2019, 10, 1453. [Google Scholar] [CrossRef]
- Paine, R.T. A note on trophic complexity and community stability. Am. Nat. 1969, 103, 91–93. [Google Scholar] [CrossRef]
- Saunders, A.M.; Albertsen, M.; Vollertsen, J.; Nielsen, P.H. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 2016, 10, 11–20. [Google Scholar] [CrossRef]
- Wu, L.; Ning, D.; Zhang, B.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.R.; Li, Z.; Van Nostrand, J.D.; et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 2019, 4, 1183–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, F.; Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 2015, 9, 683–695. [Google Scholar] [CrossRef]
- Choi, D.; Oh, S. Removal of Chloroxylenol Disinfectant by an Activated Sludge Microbial Community. Microbes Environ. 2019, 34, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Oh, S. Detoxification and bioaugmentation potential for acetaminophen and its derivatives using Ensifer sp. isolated from activated sludge. Chemosphere 2020, 260, 127532. [Google Scholar] [CrossRef]
- Xia, Y.; Wen, X.; Zhang, B.; Yang, Y. Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol. Adv. 2018, 36, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Park, S.; Oh, S. Machine Learning Approach Reveals the Assembly of Activated Sludge Microbiome with Different Carbon Sources during Microcosm Startup. Microorganisms 2021, 9, 1387. https://doi.org/10.3390/microorganisms9071387
Kim Y, Park S, Oh S. Machine Learning Approach Reveals the Assembly of Activated Sludge Microbiome with Different Carbon Sources during Microcosm Startup. Microorganisms. 2021; 9(7):1387. https://doi.org/10.3390/microorganisms9071387
Chicago/Turabian StyleKim, Youngjun, Sangeun Park, and Seungdae Oh. 2021. "Machine Learning Approach Reveals the Assembly of Activated Sludge Microbiome with Different Carbon Sources during Microcosm Startup" Microorganisms 9, no. 7: 1387. https://doi.org/10.3390/microorganisms9071387
APA StyleKim, Y., Park, S., & Oh, S. (2021). Machine Learning Approach Reveals the Assembly of Activated Sludge Microbiome with Different Carbon Sources during Microcosm Startup. Microorganisms, 9(7), 1387. https://doi.org/10.3390/microorganisms9071387