Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin
Abstract
:1. Introduction
2. Biochemical Function of VHb
2.1. The Oxygen-Binding Property of VHb
2.2. The Activity of Terminal Oxidase and Peroxidase
2.3. The Potential Sulfide Receptor and Storage
2.4. Other Functions
3. Structure and Bioinformatics Analysis of VHb and Its Mutants
3.1. The Structure of VHb and Its Mutants
3.2. The Homology Analysis of VHb
4. The Heterologous Expression of VHb
4.1. The Regulation of VHb Expression by Its Native Promoter
4.2. The Strategies to Improve VHb Expression
5. The Effect of VHb Expression on Cell Metabolism
6. Applications of VHb in Biotechnology
6.1. VHb in Biotechnological Productions
6.2. VHb in Plants
6.3. VHb in Mammalian Cells
6.4. VHb in Biodegradation Applications
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Webster, D.A.; Hackett, D.P. The Purification and Properties of Cytochrome o from Vitreoscilla. J. Biol. Chem. 1966, 241, 3308–3315. [Google Scholar] [CrossRef]
- Wakabayashi, S.; Matsubara, H.; Webster, D.A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 1986, 322, 481–483. [Google Scholar] [CrossRef]
- Khosla, C.; Bailey, J.E. The Vitreoscilla hemoglobin gene: Molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol. Gen. Genet. 1988, 214, 158–161. [Google Scholar] [CrossRef]
- Webster, D.A.; Liu, C.Y. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome o purified from Vitreoscilla. Evidence for an intermediate oxygenated form of cytochrome o. J. Biol. Chem. 1974, 249, 4257–4260. [Google Scholar] [CrossRef]
- Tyree, B.; Webster, D.A.; Tyree, B. The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla. Evidence for subunit interaction in the reduced protein. J. Biol. Chem. 1978, 253, 6988–6991. [Google Scholar] [CrossRef]
- Stark, B.C.; Pagilla, K.R.; Dikshit, K.L. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol. 2015, 99, 1627–1636. [Google Scholar] [CrossRef]
- Juárez, M.; La Rosa, C.H.G.-D.; Memún, E.; Sigala, J.-C.; Lara, A.R. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells. Biotechnol. J. 2017, 12, 1600438. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.-Y.; Du, H.-T.; Zhang, X.; Ma, Y.-M.; Chen, J.-C.; Ye, J.-W.; Jiang, X.-R.; Chen, G.-Q. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metab. Eng. 2019, 54, 69–82. [Google Scholar] [CrossRef]
- Du, H.; Shen, X.; Huang, Y.; Huang, M.; Zhang, Z. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biol. 2016, 16, 35. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Ke, X.; Hu, Z.-C.; Zheng, Y.-G. Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose. J. Biosci. Bioeng. 2021, 131, 518–524. [Google Scholar] [CrossRef]
- Sar, T.; Chen, Y.; Bai, Y.; Liu, B.; Agarwal, P.; Stark, B.C.; Akbas, M.Y. Combining co-culturing of Paenibacillus strains and Vitreoscilla hemoglobin expression as a strategy to improve biodesulfurization. Lett. Appl. Microbiol. 2021, 72, 484–494. [Google Scholar] [CrossRef]
- Orii, Y.; Webster, D.A. Photodissociation of oxygenated cytochrome o(s) (Vitreoscilla) and kinetic studies of reassociation. J. Biol. Chem. 1986, 261, 3544–3547. [Google Scholar] [CrossRef]
- Webster, D.A. Structure and function of bacterial hemoglobin and related proteins. Adv. Inorg. Biochem. 1988, 7, 245–265. [Google Scholar]
- Ramandeep; Hwang, K.W.; Raje, M.; Kim, K.J.; Stark, B.C.; Dikshit, K.L.; Webster, D.A. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J. Biol. Chem. 2001, 276, 24781–24789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.-W.; Kim, K.-J.; Howard, A.J.; Stark, B.C.; Webster, D.A. Vitreoscilla Hemoglobin Binds to Subunit I of Cytochrome bo Ubiquinol Oxidases. J. Biol. Chem. 2002, 277, 33334–33337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikshit, R.P.; Dikshit, K.L.; Liu, Y.; Webster, D.A. The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Arch. Biochem. Biophys. 1992, 293, 241–245. [Google Scholar] [CrossRef]
- Kvist, M.; Ryabova, E.S.; Nordlander, E.; Bülow, L. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J. Biol. Inorg. Chem. 2007, 12, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Y.; Xu, H.; Wu, L.; Cao, Y.; Zhao, H.; Li, Z. pH-induced quaternary assembly of Vitreoscilla hemoglobin: The monomer exhibits better peroxidase activity. Biochim. Biophys. Acta. 2013, 1834, 2124–2132. [Google Scholar] [CrossRef]
- Suwanwong, Y.; Kvist, M.; Isarankura-Na-Ayudhya, C.; Tansila, N.; Bulow, L.; Prachayasittikul, V. Chimeric Antibody-Binding Vitreoscilla Hemoglobin (vhb) Mediates Redox-Catalysis Reaction: New Insight into the Functional Role of VHb. Int. J. Biol. Sci. 2006, 2, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Isarankura-Na-Ayudhya, C.; Tansila, N.; Worachartcheewan, A.; Bülow, L.; Prachayasittikul, V. Biochemical and cellular investigation of Vitreoscilla hemoglobin (vhb) variants possessing efficient peroxidase activity. J. Microbiol. Biotechnol. 2010, 20, 532–541. [Google Scholar]
- Zhang, Z.; Li, W.; Li, H.; Zhang, J.; Zhang, Y.; Cao, Y.; Ma, J.; Li, Z. Construction and Characterization of Vitreoscilla Hemoglobin (vhb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye. J. Microbiol. Biotechnol. 2015, 25, 1433–1441. [Google Scholar] [CrossRef]
- Ramos-Alvarez, C.; Yoo, B.K.; Pietri, R.; Lamarre, I.; Martin, J.L.; Lopez-Garriga, J.; Negrerie, M. Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata. Biochemistry 2013, 52, 7007–7021. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, L.; Wang, H.; Xu, H.; Chen, L.; Ma, L.; Li, Z. Clues for discovering a new biological function of Vitreoscilla hemoglobin in organisms: Potential sulfide receptor and storage. FEBS Lett. 2016, 590, 1132–1142. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.C.; Bonamore, A.; Macone, A.; Boffi, A.; Bozzi, A.; Di Giulio, A. Interaction of Vitreoscilla Hemoglobin with Membrane Lipids. Biochemistry 2006, 45, 4069–4076. [Google Scholar] [CrossRef]
- Kaur, R.; Pathania, R.; Sharma, V.; Mande, S.C.; Dikshit, K.L. Chimeric Vitreoscilla Hemoglobin (vhb) Carrying a Flavoreductase Domain Relieves Nitrosative Stress in Escherichia coli: New Insight into the Functional Role of VHb. Appl. Environ. Microbiol. 2002, 68, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Duk, B.T.; Singh, S.; Akbas, M.Y.; Webster, D.A.; Stark, B.C.; Dikshit, K.L. Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: Novel regulation of VHb biosynthesis under oxidative stress. Biochem. J. 2010, 426, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-M.; Stark, B.C.; Webster, D.A. Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors. J. Ind. Microbiol. Biotechnol. 2003, 30, 362–368. [Google Scholar] [CrossRef]
- Tarricone, C.; Galizzi, A.; Coda, A.; Ascenzi, P.; Bolognesi, M. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 1997, 5, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, M.; Boffi, A.; Coletta, M.; Mozzarelli, A.; Pesce, A.; Tarricone, C.; Ascenzi, P. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: A thermodynamic, kinetic and X-ray crystallographic study. J. Mol. Biol. 1999, 291, 637–650. [Google Scholar] [CrossRef]
- Dikshit, K.L.; Orii, Y.; Navani, N.; Patel, S.; Huang, H.Y.; Stark, B.C.; Webster, D.A. Site-directed mutagenesis of bacterial hemoglobin: The role of glutamine (E7) in oxygen-binding in the distal heme pocket. Arch. Biochem. Biophys. 1998, 349, 161–166. [Google Scholar] [CrossRef]
- Ratakonda, S.; Anand, A.; Dikshit, K.; Stark, B.C.; Howard, A.J. Crystallographic structure determination of B10 mutants of Vitreoscilla hemoglobin: Role of Tyr29 (B10) in the structure of the ligand-binding site. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013, 69, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Ahuja, S.; Anand, A.; Singh, B.; Stark, B.C.; Webster, D.A.; Dikshit, K.L. Functional implications of the proximal site hydrogen bonding network in Vitreoscilla hemoglobin (vhb): Role of Tyr95 (G5) and Tyr126 (H12). FEBS Lett. 2008, 582, 3494–3500. [Google Scholar] [CrossRef] [Green Version]
- El Ghachi, M.; Bouhss, A.; Blanot, D.; Mengin-Lecreulx, D. The bacA Gene of Escherichia coli Encodes an Undecaprenyl Pyrophosphate Phosphatase Activity. J. Biol. Chem. 2004, 279, 30106–30113. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Webster, D.A.; Stark, B.C. ArcA works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. Microbiol. Res. 2005, 160, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Sanny, T.; Arnaldos, M.; Kunkel, S.A.; Pagilla, K.; Stark, B.C. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl. Microbiol. Biotechnol. 2010, 88, 1103–1112. [Google Scholar] [CrossRef]
- Khosla, C.; Curtis, J.E.; DeModena, J.; Rinas, U.; Bailey, J.E. Expression of Intracellular Hemoglobin Improves Protein Synthesis in Oxygen-Limited Escherichia coli. Nat. Biotechnol. 1990, 8, 849–853. [Google Scholar] [CrossRef]
- Wu, H.; Wang, H.; Chen, J.; Chen, G.-Q. Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Appl. Microbiol. Biotechnol. 2014, 98, 10013–10021. [Google Scholar] [CrossRef]
- Ouyang, P.; Wang, H.; Hajnal, I.; Wu, Q.; Guo, Y.; Chen, G.-Q. Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab. Eng. 2018, 45, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.R.; Velázquez, D.; Penella, I.; Islas, F.; La Rosa, C.H.G.-D.; Sigala, J.-C. Design of a synthetic miniR1 plasmid and its production by engineered Escherichia coli. Bioprocess Biosyst. Eng. 2019, 42, 1391–1397. [Google Scholar] [CrossRef]
- Jaén, K.E.; Velazquez, D.; Delvigne, F.; Sigala, J.-C.; Lara, A.R. Engineering E. coli for improved microaerobic pDNA production. Bioprocess Biosyst. Eng. 2019, 42, 1457–1466. [Google Scholar] [CrossRef]
- Roos, V.; Andersson, C.I.; Bülow, L. Gene expression profiling of Escherichia coli expressing double Vitreoscilla haemoglobin. J. Biotechnol. 2004, 114, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Yang, M.; Zhao, J.; Sharshar, M.M.; Tian, J.; Xing, J. Improvement of desulfurizing activity of haloalkaliphilic Thialkalivibrio versutus SOB306 with the expression of Vitreoscilla hemoglobin gene. Biotechnol. Lett. 2016, 39, 447–452. [Google Scholar] [CrossRef]
- Wu, W.; Guo, X.; Zhang, M.; Huang, Q.; Qi, F.; Huang, J. Enhancement of l -phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol. Appl. Biochem. 2017, 65, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Weng, C.; Peng, X.; Han, Y. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions. Metab. Eng. 2020, 61, 11–23. [Google Scholar] [CrossRef]
- Vyas, R.; Pandya, M.; Pohnerkar, J.; Kumar, G.N. Vitreoscilla hemoglobin promotes biofilm expansion and mitigates sporulation in Bacillus subtilis DK1042. 3 Biotech 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Suen, Y.L.; Tang, H.; Huang, J.; Chen, F. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J. Agric. Food Chem. 2014, 62, 12392–12398. [Google Scholar] [CrossRef]
- Wang, T.; Bai, L.; Zhu, D.; Lei, X.; Liu, G.; Deng, Z.; You, D. Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. Enzym. Microb. Technol. 2012, 50, 5–9. [Google Scholar] [CrossRef]
- Zhou, Q.; Su, Z.; Jiao, L.; Wang, Y.; Yang, K.; Li, W.; Yan, Y. High-Level Production of a Thermostable Mutant of Yarrowia lipolytica Lipase 2 in Pichia Pastoris. Int. J. Mol. Sci. 2019, 21, 279. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Y.; Liu, D. Improved production of Aspergillus usamii endo-beta-1,4-Xylanase in Pichia Pastoris via combined strategies. Biomed. Res. Int. 2016, 2016, 3265895. [Google Scholar]
- Guo, Z.; Tan, H.; Lv, Z.; Ji, Q.; Huang, Y.; Liu, J.; Chen, D.; Diao, Y.; Si, J.; Zhang, L. Targeted expression of Vitreoscilla hemoglobin improves the production of tropane alkaloids in Hyoscyamus niger hairy roots. Sci. Rep. 2018, 8, 17969. [Google Scholar] [CrossRef]
- Tsai, P.S.; Hatzimanikatis, V.; Bailey, J.E. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol. Bioeng. 1996, 49, 139–150. [Google Scholar] [CrossRef]
- Frey, A.; Fiaux, J.; Szyperski, T.; Wüthrich, K.; Bailey, J.E.; Kallio, P.T. Dissection of Central Carbon Metabolism of Hemoglobin-Expressing Escherichia coli by 13C Nuclear Magnetic Resonance Flux Distribution Analysis in Microaerobic Bioprocesses. Appl. Environ. Microbiol. 2001, 67, 680–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, D.; Chen, Y.; He, P.; Wang, S.; Mo, F.; Li, X.; Wang, Q.; Nomura, C.T.; Wen, Z.; Ma, X.; et al. Enhanced production of poly-gamma-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol. Bioeng. 2018, 115, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.R.; Galindo, J.; Jaén, K.E.; Juárez, M.; Sigala, J.-C. Physiological Response of Escherichia coli W3110 and BL21 to the Aerobic Expression of Vitreoscilla Hemoglobin. J. Microbiol. Biotechnol. 2020, 30, 1592–1596. [Google Scholar] [CrossRef]
- Frey, A.D.; Koskenkorva, T.; Kallio, P.T. Vitreoscilla hemoglobin promoter is not responsive to nitrosative and oxidative stress in Escherichia coli. FEMS Microbiol. Lett. 2003, 224, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Kallio, P.T.; Bollinger, C.J.; Koskenkorva, T.; Frey, A.D. Assessment of Biotechnologically Relevant Characteristics of Heterologous Hemoglobins in E. coli. Methods Enzymol. 2008, 436, 255–272. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, Y.; Chen, W.; Tang, K.; Zhang, L. Functional expression of Vitreoscilla hemoglobin (vhb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism. Plant Sci. 2009, 176, 66–77. [Google Scholar] [CrossRef]
- Guan, B.; Ma, H.; Wang, Y.; Hu, Y.; Lin, Z.; Zhu, Z.; Hu, W. Vitreoscilla Hemoglobin (vhb) Overexpression Increases Hypoxia Tolerance in Zebrafish (Danio rerio). Mar. Biotechnol. 2010, 13, 336–344. [Google Scholar] [CrossRef]
- Geckil, H.; Barak, Z.; Chipman, D.M.; Erenler, S.O.; Webster, D.A.; Stark, B.C. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst. Eng. 2004, 26, 325–330. [Google Scholar] [CrossRef]
- Geckil, H.; Gencer, S.; Ates, B.; Ozer, U.; Uckun, M.; Yilmaz, I. Effect of Vitreoscilla hemoglobin on production of a chemotherapeutic enzyme, L-asparaginase, by Pseudomonas aeruginosa. Biotechnol. J. 2006, 1, 203–208. [Google Scholar] [CrossRef]
- Akbas, M.Y.; Stark, B.C. Recent trends in bioethanol production from food processing byproducts. J. Ind. Microbiol. Biotechnol. 2016, 43, 1593–1609. [Google Scholar] [CrossRef]
- Sar, T.; Stark, B.C.; Akbas, M.Y. Effective ethanol production from whey powder through immobilized E. coli expressing Vitreoscilla hemoglobin. Bioengineered 2016, 8, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Sar, T.; Stark, B.C.; Akbas, M.Y. Bioethanol production from whey powder by immobilized E. coli expressing Vitreoscilla hemoglobin: Optimization of sugar concentration and inoculum size. Biofuels 2019. [Google Scholar] [CrossRef]
- da Silva, A.J.; Cunha, J.S.; Hreha, T.; Micocci, K.C.; Selistre-De-Araujo, H.S.; Barquera, B.; Koffas, M.A. Metabolic engineering of E. coli for pyocyanin production. Metab. Eng. 2021, 64, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Mejía, A.; Luna, D.; Fernández, F.J.; Barrios-González, J.; Gutierrez, L.H.; Reyes, A.G.; Absalón, A.E.; Kelly, S. Improving rifamycin production in Amycolatopsis mediterranei by expressing a Vitreoscilla hemoglobin (vhb) gene fused to a cytochrome P450 monooxygenase domain. 3 Biotech. 2018, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ye, L.; Chen, Z.; Hu, W.; Shi, Y.; Chen, J.; Wang, C.; Li, Y.; Li, W.; Yu, H. Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q 10 in Rhodobacter sphaeroides. Enzym. Microb. Technol. 2017, 101, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Feng, Y.; Cui, Q.; Song, X. Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpina. BMC Biotechnol. 2017, 17, 68. [Google Scholar] [CrossRef]
- Ye, J.; Liu, M.; He, M.; Ye, Y.; Huang, J. Illustrating and Enhancing the Biosynthesis of Astaxanthin and Docosahexaenoic Acid in Aurantiochytrium sp. SK4. Mar. Drugs 2019, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-J.; He, Y.-L.; Zhang, D.-H.; Yue, T.-H.; Jiang, L.-X.; Li, N.; Xu, J.-W. Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum. J. Biotechnol. 2016, 227, 35–40. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Xie, Y.; Jia, S.; Hou, Y.; Zou, Y.; Zhong, C. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl. Microbiol. Biotechnol. 2018, 102, 1155–1165. [Google Scholar] [CrossRef]
- Xue, S.-J.; Jiang, H.; Chen, L.; Ge, N.; Liu, G.-L.; Hu, Z.; Chi, Z.-M.; Chi, Z. Over-expression of Vitreoscilla hemoglobin (vhb) and flavohemoglobin (FHb) genes greatly enhances pullulan production. Int. J. Biol. Macromol. 2019, 132, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, Y.; Gao, X.; Liu, H.; Zhao, K.; Gao, Y.; Qiu, L. Promotion of the growth and plant biomass degrading enzymes production in solid-state cultures of Lentinula edodes expressing Vitreoscilla hemoglobin gene. J. Biotechnol. 2019, 302, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Akbas, M.Y.; Sar, T.; Ozcelik, B. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing” Escherichia coli. Biosci. Biotechnol. Biochem. 2014, 78, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Arnaldos, M.; Kunkel, S.A.; Wang, J.; Pagilla, K.; Stark, B.C. Vitreoscilla hemoglobin enhances ethanol production by Escherichia coli in a variety of growth media. Biomass Bioenergy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Kosiorowska, K.E.; Biegalska, A.; Rakicka-Pustułka, M.; Szczepańczyk, M.; Dobrowolski, A. Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica. Microb. Cell Factories 2019, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tan, T. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker’s Yeast (Saccharomyces cerevisiae). J. Agric. Food Chem. 2018, 66, 5200–5209. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, C.; Liu, Y.; Wang, J.; Zhao, Y.; Deng, Y. Enhancement of glucaric acid production in Saccharomyces cerevisiae by expressing Vitreoscilla hemoglobin. Biotechnol. Lett. 2020, 42, 2169–2178. [Google Scholar] [CrossRef]
- Cao, M.X.; Huang, J.Q.; Wei, Z.M.; Yao, Q.H.; Wan, C.Z.; Lu, J.A. Engineering Higher Yield and Herbicide Resistance in Rice by Agrobacterium-Mediated Multiple Gene Transformation. Crop. Sci. 2004, 44, 2206–2213. [Google Scholar] [CrossRef]
- Li, X.; Peng, R.-H.; Fan, H.-Q.; Xiong, A.-S.; Yao, Q.-H.; Cheng, Z.-M.; Li, Y. Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep. 2005, 23, 710–715. [Google Scholar] [CrossRef]
- Wilhelmson, A.; Kallio, P.T.; Oksman-Caldentey, K.-M.; Nuutila, A.M. Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare). Plant Cell Rep. 2007, 26, 1773–1783. [Google Scholar] [CrossRef]
- Zelasco, S.; Reggi, S.; Calligari, P.; Balestrazzi, A.; Bongiorni, C.; Quattrini, E.; Delia, G.; Bisoffi, S.; Fogher, C.; Confalonieri, M. Expression of the Vitreoscilla Hemoglobin (VHb)-Encoding Gene in Transgenic White Poplar: Plant Growth and Biomass Production, Biochemical Characterization and Cell Survival under Submergence, Oxidative and Nitrosative Stress Conditions. Mol. Breed. 2006, 17, 201–216. [Google Scholar] [CrossRef]
- Pendse, G.J.; Bailey, J.E. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells. Biotechnol. Bioeng. 1994, 44, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Xing, J.; Li, X.; Bai, X.; Li, W.; Li, Y.; Liu, H. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl. Environ. Microbiol. 2007, 73, 2394–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, I.; Mohamed, M.E.-S.; Rozas, D.; García, J.L.; Díaz, E. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab. Eng. 2016, 35, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Liu, R.; Zuo, Z.; Che, Y.; Yu, H.; Song, C.; Yang, C. Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and gamma-hexachlorocyclohexane. ACS. Synth. Biol. 2016, 5, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Xu, X.; Che, Y.; Liu, R.; Gao, W.; Zhao, F.; Yu, H.; Liang, J.; Xu, P.; Song, C.; et al. Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Sci. Rep. 2017, 7, 7064. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Xu, X.; Dang, Y.; Kong, A.; Wu, Y.; Liang, P.; Wang, S.; Yu, H.; Xu, P.; Yang, C. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Sci. Total. Environ. 2018, 628–629, 1258–1265. [Google Scholar] [CrossRef]
- Urgun-Demirtas, M.; Stark, B.C.; Pagilla, K.R. Comparison of 2-chlorobenzoic acid biodegradation in a membrane bioreactor by B. cepacia and B. cepacia bearing the bacterial hemoglobin gene. Water Res. 2006, 40, 3123–3130. [Google Scholar] [CrossRef]
- Kunkel, S.A.; Pagilla, K.; Stark, B.C. Directed evolution to produce sludge communities with improved oxygen uptake abilities. Appl. Microbiol. Biotechnol. 2015, 99, 10725–10734. [Google Scholar] [CrossRef]
- Kahraman, H.; Geckil, H. Degradation of Benzene, Toluene and Xylene by Pseudomonas aeruginosa Engineered with the Vitreoscilla Hemoglobin Gene. Eng. Life Sci. 2005, 5, 363–368. [Google Scholar] [CrossRef]
- Khleifat, K.M.; Abboud, M.M.; Al-Mustafa, A.H. Effect of Vitreoscilla hemoglobin gene (vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes. Process. Biochem. 2006, 41, 930–934. [Google Scholar] [CrossRef]
- Harnois, T.; Rousselot, M.; Rogniaux, H.; Zal, F. High-level Production of Recombinant Arenicola marina Globin Chains in Escherichia coli: A New Generation of Blood Substitute. Artif. Cells Blood Substit. Biotechnol. 2009, 37, 106–116. [Google Scholar] [CrossRef]
- Liu, L.; Martínez, J.L.; Liu, Z.; Petranovic, D.; Nielsen, J. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab. Eng. 2014, 21, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginzburg, Y.Z.; Rybicki, A.C.; Suzuka, S.M.; Hall, C.B.; Breuer, W.; Cabantchik, Z.I.; Bouhassira, E.E.; Fabry, M.E.; Nagel, R.L. Exogenous iron increases hemoglobin in beta-thalassemic mice. Exp. Hematol. 2009, 37, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Yu, Z.; Zhou, X.-T.; Zhang, S.-J.; Zou, S.-P.; Xiong, N.; Xue, Y.-P.; Liu, Z.-Q.; Zheng, Y.-G. Identification of a novel promoter for driving antibiotic-resistant genes to reduce the metabolic burden during protein expression and effectively select multiple integrations in Pichia Pastoris. Appl. Microbiol. Biotechnol. 2021, 105, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Malakar, P.; Venkatesh, K.V. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl. Microbiol. Biotechnol. 2012, 93, 2543–2549. [Google Scholar] [CrossRef]
Enzymes/Regulators | Functions | References |
---|---|---|
Flavoreductase | Relieve nitrosative stress | [25] |
Transcriptional regulators (OxyR, Fnr, ArcA, Crp) | Transcriptional regulation | [26] |
2,4-dinitrotoluene dioxygenase | Enhance dioxygenase activity | [27] |
Strain | Expression Strategies | References |
---|---|---|
Escherichia coli | Free; inducible; vgb promoter | [36] |
E. coli | Free; inducible; vgb promoter | [35] |
E. coli | Free; inducible; P8vgb | [37] |
E. coli, Halomonas bluephagenesis and Halomonas campaniensis | Free; inducible; P8vgb | [38] |
E. coli | Integrative; constitutive; trc promoter | [39] |
E. coli | Integrative; inducible; trc promoter | [40] |
E. coli | Free; inducible; tac promoter | [41] |
Thialkalivibrio versutus | Free; constitutive; tac promoter | [42] |
E. coli | Free; constitutive; tac promoter | [43] |
Cupriavidus necator | Free; constitutive; PphaC1-j5 promoter | [44] |
Bacillus subtilis | Free; constitutive; P43 promoter | [45] |
Aurantiochytrium sp. | Integrative; constitutive; tubulin promoter | [46] |
Streptomyces sp. | Integrative; constitutive; ermE promoter | [47] |
Pichia pastoris | Integrative; inducible; AOX1 promoter | [48] |
P. pastoris | Integrative; inducible; AOX1 promoter | [49] |
Arabidopsis and Zea mays L. | Integrative; constitutive; CaMV35S promoter | [9] |
Hyoscyamus niger | Integrative; constitutive; CaMV35S promoter | [50] |
Products | Enhancement | Strain | References | |
---|---|---|---|---|
Alcohols | Ethanol | ~362% | E. coli | [73] |
~118% | E. coli | [35] | ||
~60% | E. coli | [74] | ||
~47% | E. coli | [62] | ||
~(41-83%) | E. coli | [63] | ||
Butanediol | ~83% | Enterobacter aerogenes | [59] | |
Erythritol | ~26.13% | Yarrowia lipolytica | [75] | |
Antibiotics | Pyocyanin | ~3-fold | E. coli | [64] |
Rifamycin B | ~2.2-fold | Amycolatopsis mediterranei | [65] | |
Enzymes | Lipase 2 | ~87.84% | P. pastoris | [48] |
Coenzyme Q10 | ~71% | Rhodobacter sphaeroides | [66] | |
Xylanase | ~31% | P. pastoris | [49] | |
L-asparaginase | ~70% | Pseudomonas aeruginosa | [60] | |
Acids | Arachidonic acid | ~8-fold | Mortierella alpina | [67] |
Docosahexaenoic acid | ~2.74-fold | Aurantiochytrium sp. | [68] | |
Ganoderic acid | ~1.4-fold | Ganoderma lucidum | [69] | |
S-adenosylmethionine | ~67% | S. cerevisiae | [76] | |
Glucaric acid | ~28.76% | S. cerevisiae | [77] | |
L-phenylalanine | ~16.6% | E. coli | [43] | |
Polysaccharides | Bacterial cellulose | ~58.6% | Gluconacetobacter xylinus | [70] |
Pullulan | ~42.08% | Aureobasidium melanogenum | [71] | |
β-glucan | ~(12.9–24.0%) | Lentinula edodes | [72] | |
6-(N-hydroxyethyl)-amino-6-deoxy-alpha-l-sorbofuranose | ~11.89% | Gluconobacter oxydans | [10] | |
Others | Polyhydroxybutyrate | ~71.5% | C. necator | [44] |
Acetoin | ~83% | Enterobacter aerogenes | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Zhao, X.; Wang, Z.; Liu, L.; Yi, L.; Zhou, J.; Li, J.; Chen, J.; Du, G. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms 2021, 9, 1455. https://doi.org/10.3390/microorganisms9071455
Yu F, Zhao X, Wang Z, Liu L, Yi L, Zhou J, Li J, Chen J, Du G. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms. 2021; 9(7):1455. https://doi.org/10.3390/microorganisms9071455
Chicago/Turabian StyleYu, Fei, Xinrui Zhao, Ziwei Wang, Luyao Liu, Lingfeng Yi, Jingwen Zhou, Jianghua Li, Jian Chen, and Guocheng Du. 2021. "Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin" Microorganisms 9, no. 7: 1455. https://doi.org/10.3390/microorganisms9071455
APA StyleYu, F., Zhao, X., Wang, Z., Liu, L., Yi, L., Zhou, J., Li, J., Chen, J., & Du, G. (2021). Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms, 9(7), 1455. https://doi.org/10.3390/microorganisms9071455